A three-stage decision framework for multi-subject emotion recognition using physiological signals

This paper investigates the potential of physiological signals as reliable channels for multi-subject emotion recognition. A three-stage decision framework is proposed for recognizing four emotions of multiple subjects. The decision framework consists of three stages: (1) in the initial stage, ident...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) pp. 470 - 474
Main Authors Jing Chen, Bin Hu, Yue Wang, Yongqiang Dai, Yuan Yao, Shengjie Zhao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2016
Subjects
Online AccessGet full text
DOI10.1109/BIBM.2016.7822562

Cover

Loading…
Abstract This paper investigates the potential of physiological signals as reliable channels for multi-subject emotion recognition. A three-stage decision framework is proposed for recognizing four emotions of multiple subjects. The decision framework consists of three stages: (1) in the initial stage, identifying a subject group that a test subject can be mapped to; (2) in the second stage, identifying an emotion pool that an instance of the test subject can be assigned to; and (3) in the final stage, generating the predicted emotion from the given emotion pool for the test instance. In comparison with a series of alternative methods, the high accuracy of 70.04% achieved by our proposed method clearly demonstrates the potential of the three-stage decision method in multi-subject emotion recognition.
AbstractList This paper investigates the potential of physiological signals as reliable channels for multi-subject emotion recognition. A three-stage decision framework is proposed for recognizing four emotions of multiple subjects. The decision framework consists of three stages: (1) in the initial stage, identifying a subject group that a test subject can be mapped to; (2) in the second stage, identifying an emotion pool that an instance of the test subject can be assigned to; and (3) in the final stage, generating the predicted emotion from the given emotion pool for the test instance. In comparison with a series of alternative methods, the high accuracy of 70.04% achieved by our proposed method clearly demonstrates the potential of the three-stage decision method in multi-subject emotion recognition.
Author Jing Chen
Yuan Yao
Yue Wang
Yongqiang Dai
Shengjie Zhao
Bin Hu
Author_xml – sequence: 1
  surname: Jing Chen
  fullname: Jing Chen
  email: chenj12@lzu.edu.cn
  organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China
– sequence: 2
  surname: Bin Hu
  fullname: Bin Hu
  email: bh@lzu.edu.cn
  organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China
– sequence: 3
  surname: Yue Wang
  fullname: Yue Wang
  email: wangyue15@lzu.edu.cn
  organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China
– sequence: 4
  surname: Yongqiang Dai
  fullname: Yongqiang Dai
  email: daiyq14@lzu.edu.cn
  organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China
– sequence: 5
  surname: Yuan Yao
  fullname: Yuan Yao
  email: yaoy2015@lzu.edu.cn
  organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China
– sequence: 6
  surname: Shengjie Zhao
  fullname: Shengjie Zhao
  email: zhsj15@lzu.edu.cn
  organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China
BookMark eNotj0tOwzAYhI0ECyg9AGLjCyT4kdjxsq14VCpi031lO79TQ2JXjiPU2xOgq280mhlp7tB1iAEQeqCkpJSop_V2_V4yQkUpG8Zqwa7QUsmG1kTNJqXsFpkVzscEUIxZd4BbsH70MWCX9ADfMX1hFxMepj77YpzMJ9iMYYj5N5PAxi74Pz2NPnT4dDzP7T523uoej74Luh_v0Y2bAcsLF2j_8rzfvBW7j9ftZrUrvCK5qLUj0kprK1cZxYwQ0pHKmVY2EhgnwCvespYQWrVUccqACMNIY3RNhRE1X6DH_1kPAIdT8oNO58PlOP8BOSxTnw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BIBM.2016.7822562
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509016112
1509016112
EndPage 474
ExternalDocumentID 7822562
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-5af07c7cc4f4b92b667f04fbd787e230e343d2d0014d19312e06b208ba516b653
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:26 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-5af07c7cc4f4b92b667f04fbd787e230e343d2d0014d19312e06b208ba516b653
PageCount 5
ParticipantIDs ieee_primary_7822562
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
PublicationTitleAbbrev BIBM
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7538095
Snippet This paper investigates the potential of physiological signals as reliable channels for multi-subject emotion recognition. A three-stage decision framework is...
SourceID ieee
SourceType Publisher
StartPage 470
SubjectTerms affective computing
Brain models
Emotion recognition
Feature extraction
multimodal physiological signals
Physiology
Probability
subject-independent
Videos
Title A three-stage decision framework for multi-subject emotion recognition using physiological signals
URI https://ieeexplore.ieee.org/document/7822562
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB49mm91Nss3RiqUKFQ8VeiuZZFJEaEV3L_76JrvbiuLBQyCEQMJMknnkmxlCrr0plB8WyGzmcyaMTRkA1yzYYTY3BjSoGI08fVKTF_E4l_MOudnFwiBiDT7DJHbrv3y3tlV0lQ2iNJPxwd0LhlsTq9V-VKZcD0YPo2nEaqmknfejYEotL8YHZLpdqYGJvCVVCYn9-pWE8b9bOST978g8-ryTOUekg6segVtaBpYgC5reEqlry-ZQvwVe0aCZ0ho6yD4riJ4Xik35HroDEIV-xMAvae3r2D6JNOI7wgntk9n4fnY3YW3tBPaqecmk8YHYhbXCC9AZKFV4Ljy4cD8xWB2Yi9xlLhpILqhwaYZcQcaHYGSqQMn8mHRX6xWeEOq9MegLq2OuvNC0FdKImDnOSIdcnJJeJM_ivcmOsWgpc_b38DnZjyxqACEXpFt-VHgZxHoJVzU_N4tpp28
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9jHvSksonf5uDRdP1I0uXoxLHpOjxM2G0k6csQYRNtL_715rXdRPHgoRBKIeG9NO8jv997hFw7nUrXT4HZ2CWMaxsxY0LFfBxmE62NMhLZyNlUjp75w1zMW-Rmy4UBgAp8BgEOq7v8fG1LTJX10JoJPHB3BJJxa7ZWc1UZhao3GA8yRGvJoPnyR8uUymIM90m2masGirwGZWEC-_mrDON_F3NAut_cPPq0tTqHpAWrDjG3tPBKAeZ9vSXQvGmcQ90GekW9b0or8CD7KA3mXijUDXzoFkLkx4iCX9Iq27E5FCkiPPwe7ZLZ8H52N2JN9wT2osKCCe28uFNrueNGxUbK1IXcmdz_oeDjDkh4ksc5hki5d-KiGEJp4rBvtIikkSI5Iu3VegXHhDqnNbjUKqyW5x9ludAca8dpkUPIT0gHxbN4q-tjLBrJnP79-orsjmbZZDEZTx_PyB6qq4aHnJN28V7ChTfyhbmsdPsFclOqtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Bioinformatics+and+Biomedicine+%28BIBM%29&rft.atitle=A+three-stage+decision+framework+for+multi-subject+emotion+recognition+using+physiological+signals&rft.au=Jing+Chen&rft.au=Bin+Hu&rft.au=Yue+Wang&rft.au=Yongqiang+Dai&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=470&rft.epage=474&rft_id=info:doi/10.1109%2FBIBM.2016.7822562&rft.externalDocID=7822562