A three-stage decision framework for multi-subject emotion recognition using physiological signals
This paper investigates the potential of physiological signals as reliable channels for multi-subject emotion recognition. A three-stage decision framework is proposed for recognizing four emotions of multiple subjects. The decision framework consists of three stages: (1) in the initial stage, ident...
Saved in:
Published in | 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) pp. 470 - 474 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/BIBM.2016.7822562 |
Cover
Loading…
Abstract | This paper investigates the potential of physiological signals as reliable channels for multi-subject emotion recognition. A three-stage decision framework is proposed for recognizing four emotions of multiple subjects. The decision framework consists of three stages: (1) in the initial stage, identifying a subject group that a test subject can be mapped to; (2) in the second stage, identifying an emotion pool that an instance of the test subject can be assigned to; and (3) in the final stage, generating the predicted emotion from the given emotion pool for the test instance. In comparison with a series of alternative methods, the high accuracy of 70.04% achieved by our proposed method clearly demonstrates the potential of the three-stage decision method in multi-subject emotion recognition. |
---|---|
AbstractList | This paper investigates the potential of physiological signals as reliable channels for multi-subject emotion recognition. A three-stage decision framework is proposed for recognizing four emotions of multiple subjects. The decision framework consists of three stages: (1) in the initial stage, identifying a subject group that a test subject can be mapped to; (2) in the second stage, identifying an emotion pool that an instance of the test subject can be assigned to; and (3) in the final stage, generating the predicted emotion from the given emotion pool for the test instance. In comparison with a series of alternative methods, the high accuracy of 70.04% achieved by our proposed method clearly demonstrates the potential of the three-stage decision method in multi-subject emotion recognition. |
Author | Jing Chen Yuan Yao Yue Wang Yongqiang Dai Shengjie Zhao Bin Hu |
Author_xml | – sequence: 1 surname: Jing Chen fullname: Jing Chen email: chenj12@lzu.edu.cn organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China – sequence: 2 surname: Bin Hu fullname: Bin Hu email: bh@lzu.edu.cn organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China – sequence: 3 surname: Yue Wang fullname: Yue Wang email: wangyue15@lzu.edu.cn organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China – sequence: 4 surname: Yongqiang Dai fullname: Yongqiang Dai email: daiyq14@lzu.edu.cn organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China – sequence: 5 surname: Yuan Yao fullname: Yuan Yao email: yaoy2015@lzu.edu.cn organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China – sequence: 6 surname: Shengjie Zhao fullname: Shengjie Zhao email: zhsj15@lzu.edu.cn organization: Sch. of Inf. Sci. & Eng., Lanzhou Univ., Lanzhou, China |
BookMark | eNotj0tOwzAYhI0ECyg9AGLjCyT4kdjxsq14VCpi031lO79TQ2JXjiPU2xOgq280mhlp7tB1iAEQeqCkpJSop_V2_V4yQkUpG8Zqwa7QUsmG1kTNJqXsFpkVzscEUIxZd4BbsH70MWCX9ADfMX1hFxMepj77YpzMJ9iMYYj5N5PAxi74Pz2NPnT4dDzP7T523uoej74Luh_v0Y2bAcsLF2j_8rzfvBW7j9ftZrUrvCK5qLUj0kprK1cZxYwQ0pHKmVY2EhgnwCvespYQWrVUccqACMNIY3RNhRE1X6DH_1kPAIdT8oNO58PlOP8BOSxTnw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BIBM.2016.7822562 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509016112 1509016112 |
EndPage | 474 |
ExternalDocumentID | 7822562 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-5af07c7cc4f4b92b667f04fbd787e230e343d2d0014d19312e06b208ba516b653 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:26 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-5af07c7cc4f4b92b667f04fbd787e230e343d2d0014d19312e06b208ba516b653 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7822562 |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) |
PublicationTitleAbbrev | BIBM |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7538095 |
Snippet | This paper investigates the potential of physiological signals as reliable channels for multi-subject emotion recognition. A three-stage decision framework is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 470 |
SubjectTerms | affective computing Brain models Emotion recognition Feature extraction multimodal physiological signals Physiology Probability subject-independent Videos |
Title | A three-stage decision framework for multi-subject emotion recognition using physiological signals |
URI | https://ieeexplore.ieee.org/document/7822562 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB49mm91Nss3RiqUKFQ8VeiuZZFJEaEV3L_76JrvbiuLBQyCEQMJMknnkmxlCrr0plB8WyGzmcyaMTRkA1yzYYTY3BjSoGI08fVKTF_E4l_MOudnFwiBiDT7DJHbrv3y3tlV0lQ2iNJPxwd0LhlsTq9V-VKZcD0YPo2nEaqmknfejYEotL8YHZLpdqYGJvCVVCYn9-pWE8b9bOST978g8-ryTOUekg6segVtaBpYgC5reEqlry-ZQvwVe0aCZ0ho6yD4riJ4Xik35HroDEIV-xMAvae3r2D6JNOI7wgntk9n4fnY3YW3tBPaqecmk8YHYhbXCC9AZKFV4Ljy4cD8xWB2Yi9xlLhpILqhwaYZcQcaHYGSqQMn8mHRX6xWeEOq9MegLq2OuvNC0FdKImDnOSIdcnJJeJM_ivcmOsWgpc_b38DnZjyxqACEXpFt-VHgZxHoJVzU_N4tpp28 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9jHvSksonf5uDRdP1I0uXoxLHpOjxM2G0k6csQYRNtL_715rXdRPHgoRBKIeG9NO8jv997hFw7nUrXT4HZ2CWMaxsxY0LFfBxmE62NMhLZyNlUjp75w1zMW-Rmy4UBgAp8BgEOq7v8fG1LTJX10JoJPHB3BJJxa7ZWc1UZhao3GA8yRGvJoPnyR8uUymIM90m2masGirwGZWEC-_mrDON_F3NAut_cPPq0tTqHpAWrDjG3tPBKAeZ9vSXQvGmcQ90GekW9b0or8CD7KA3mXijUDXzoFkLkx4iCX9Iq27E5FCkiPPwe7ZLZ8H52N2JN9wT2osKCCe28uFNrueNGxUbK1IXcmdz_oeDjDkh4ksc5hki5d-KiGEJp4rBvtIikkSI5Iu3VegXHhDqnNbjUKqyW5x9ludAca8dpkUPIT0gHxbN4q-tjLBrJnP79-orsjmbZZDEZTx_PyB6qq4aHnJN28V7ChTfyhbmsdPsFclOqtw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Bioinformatics+and+Biomedicine+%28BIBM%29&rft.atitle=A+three-stage+decision+framework+for+multi-subject+emotion+recognition+using+physiological+signals&rft.au=Jing+Chen&rft.au=Bin+Hu&rft.au=Yue+Wang&rft.au=Yongqiang+Dai&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=470&rft.epage=474&rft_id=info:doi/10.1109%2FBIBM.2016.7822562&rft.externalDocID=7822562 |