Distinguishing schizophrenic patients from healthy controls based on MRI data: A tensor linear discriminant approach

Recently, there are available laboratory procedures providing useful information to psychiatric diagnostic systems. In this paper, a tensor-based pattern recognition system was used to classify schizophrenic patients and healthy controls. The novel tensor approach is an extension of linear discrimin...

Full description

Saved in:
Bibliographic Details
Published in2010 9th IEEE International Conference on Cognitive Informatics pp. 524 - 529
Main Authors Linchuan Zhang, Lubin Wang, Hui Shen, Dewen Hu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2010
Subjects
Online AccessGet full text
ISBN9781424480418
1424480418
DOI10.1109/COGINF.2010.5599683

Cover

Abstract Recently, there are available laboratory procedures providing useful information to psychiatric diagnostic systems. In this paper, a tensor-based pattern recognition system was used to classify schizophrenic patients and healthy controls. The novel tensor approach is an extension of linear discriminant analysis (LDA). In this method, each subject' structure MRI image was viewed as a tensor sample. After splitting samples into training and testing data, we obtained a series of projecting matrix through Tensor LDAalgorithm, and the feature matrix obtained can be used in the testing data to get the class labels. The performance of our system was tested by the leave-one-out cross-validation strategy. Experimental results showed that the sensitivity, specificity, and overall classification accuracy of our system were 86.36%, 94.44%, and 90%, respectively. Moreover, we compared the classification of Tensor LDAwith the traditional LDA. The results showed that the tensor method outperformed on this task than the traditional LDA.
AbstractList Recently, there are available laboratory procedures providing useful information to psychiatric diagnostic systems. In this paper, a tensor-based pattern recognition system was used to classify schizophrenic patients and healthy controls. The novel tensor approach is an extension of linear discriminant analysis (LDA). In this method, each subject' structure MRI image was viewed as a tensor sample. After splitting samples into training and testing data, we obtained a series of projecting matrix through Tensor LDAalgorithm, and the feature matrix obtained can be used in the testing data to get the class labels. The performance of our system was tested by the leave-one-out cross-validation strategy. Experimental results showed that the sensitivity, specificity, and overall classification accuracy of our system were 86.36%, 94.44%, and 90%, respectively. Moreover, we compared the classification of Tensor LDAwith the traditional LDA. The results showed that the tensor method outperformed on this task than the traditional LDA.
Author Dewen Hu
Lubin Wang
Hui Shen
Linchuan Zhang
Author_xml – sequence: 1
  surname: Linchuan Zhang
  fullname: Linchuan Zhang
  organization: Dept. of Autom. Control, Nat. Univ. of Defense Technol., Changsha, China
– sequence: 2
  surname: Lubin Wang
  fullname: Lubin Wang
  organization: Dept. of Autom. Control, Nat. Univ. of Defense Technol., Changsha, China
– sequence: 3
  surname: Hui Shen
  fullname: Hui Shen
  organization: Dept. of Autom. Control, Nat. Univ. of Defense Technol., Changsha, China
– sequence: 4
  surname: Dewen Hu
  fullname: Dewen Hu
  email: dwhu@nudt.edu.cn
  organization: Dept. of Autom. Control, Nat. Univ. of Defense Technol., Changsha, China
BookMark eNpVUM1KAzEYjKig1j5BL3mB1vztJvFWqtVCVZDeSzb7xY1skyWJh_r0XbAX5zJ8MzDMN3foKsQACM0oWVBK9MPq42Xzvl4wMgpVpXWt-AWaaqmoYEIoIgi9_HdTdYOmOX-TEaJigrFbVJ58Lj58_fjcjYSz7fxvHLoEwVs8mOIhlIxdigfcgelLd8Q2hpJin3FjMrQ4Bvz2ucGtKeYRL3GBkGPCvQ9gEm59tskffDChYDMMKRrb3aNrZ_oM0zNP0G79vFu9zrfjS6vldu41KfNKSqGsc66mtubUSmZcywBo21ScGyoaJkGCM1Y3LaEaABoJXCgmVF1BxSdo9hfrR2s_jDVMOu7PU_ETyuxh0A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/COGINF.2010.5599683
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424480401
1424480426
9781424480425
142448040X
EndPage 529
ExternalDocumentID 5599683
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-57748cfff61c631c72afd2ee1db533a14b27e7efac9bd019eeeb7e34824865e53
IEDL.DBID RIE
ISBN 9781424480418
1424480418
IngestDate Wed Aug 27 02:57:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-57748cfff61c631c72afd2ee1db533a14b27e7efac9bd019eeeb7e34824865e53
PageCount 6
ParticipantIDs ieee_primary_5599683
PublicationCentury 2000
PublicationDate 2010-July
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationTitle 2010 9th IEEE International Conference on Cognitive Informatics
PublicationTitleAbbrev COGINF
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452422
Score 1.4448915
Snippet Recently, there are available laboratory procedures providing useful information to psychiatric diagnostic systems. In this paper, a tensor-based pattern...
SourceID ieee
SourceType Publisher
StartPage 524
SubjectTerms Accuracy
Classification algorithms
Feature extraction
Magnetic resonance imaging
MRI
nearest-neighbor classifier(NNC)
Pattern recognition
Schizophrenic
Tensile stress
Tensor Linear Discriminant Analysis (Tensor LDA)
Training
Title Distinguishing schizophrenic patients from healthy controls based on MRI data: A tensor linear discriminant approach
URI https://ieeexplore.ieee.org/document/5599683
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJyZALeJbNzCSNkkdO2ZDhdIitSBUpG5VbF8QQkpQmwzw67HjpHyIgS3JENknW_d8fu8dIed-pKiUPveYiNGjoQq9xBycPUYDjcgFqqpryXTGxk_0bhEtWuRio4VBxIp8hj37WN3l61yVtlTWt-5YLB5skS2zzJxWa1NPsdbgNAwb7Za11YkbS6fmvXYdCnzRH97fTmYjR-2qf_ujv0qVXkY7ZNoMzLFKXntlIXvq45dn439Hvku6X0I-eNikqD3SwqxDimu7r7Pn0pWfYP2Nd6egNlpdgxWegJNJvkPNaF-DzXoa8gymjxOw9NJLuALLgs9XYBFrsgIr9HXNwrICGs_yLpmPbubDsVc3X_BehF94kYGFsUrTlAWKDQLFwyTVIWKgpQGISUBlyJFjmightYGJZsaSo3XKoTGLMBrsk3aWZ3hAQKccfaG5iTtSLQIplZSScaG0H8tYH5KODdjyzdlrLOtYHf39-Zhsuwt8y5g9Ie1iVeKpwQWFPKsWxCevZbej
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT4MwFMebOQ96UrMZf9uDR9mAlZZ6M9O56ZjGzGS3hbYPY0zAbHDQv96WwvwRD96AAykvkPd4_X4_D6EzN5BECJc5lIfgEF_6Tqx_nB1KPAXAOMhyakk0ocMncjsLZg10vvLCAEApPoOOOSz38lUmC9Mq6xo6Fg17a2hd530SWLfWqqNi4ODE92v3lgHrhDXUqT6vuEOey7v9-5vRZGDFXdWNf0xYKRPMYAtF9dKsruS1U-SiIz9-URv_u_Zt1P6y8uGHVZLaQQ1IWyi_Ml92-lzYBhReflPeSVyhVpfYWE-wNUq-40rTvsQm7ymcpTh6HGEjML3Al9jo4LMFNjVrvMDG6mvHhaU5rqnlbTQdXE_7Q6cav-C8cDd3Al0YhjJJEupJ2vMk8-NE-QCeErpEjD0ifAYMklhyoXShqJ9YMDCsHBLSAILeLmqmWQp7CKuEgcsV03EHorgnhBRCUMalckMRqn3UMgGbv1nAxryK1cHfl0_RxnAajefj0eTuEG3a7Xyjnz1CzXxRwLGuEnJxUr4cn3m7uvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+9th+IEEE+International+Conference+on+Cognitive+Informatics&rft.atitle=Distinguishing+schizophrenic+patients+from+healthy+controls+based+on+MRI+data%3A+A+tensor+linear+discriminant+approach&rft.au=Linchuan+Zhang&rft.au=Lubin+Wang&rft.au=Hui+Shen&rft.au=Dewen+Hu&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424480418&rft.spage=524&rft.epage=529&rft_id=info:doi/10.1109%2FCOGINF.2010.5599683&rft.externalDocID=5599683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480418/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480418/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424480418/sc.gif&client=summon&freeimage=true