3D-HOG Features -Based Classification using MRI Images to Early Diagnosis of Alzheimer's Disease

Alzheimer's is categorized as one severe dementia with a shrinking brain shape and reduced brain volume overall. The correlation between shrinking of the brain shape and decreasing volume also affects the change in texture shape. In this proposed study, a new feature descriptor called the Histo...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS) pp. 457 - 462
Main Authors Sarwinda, Devvi, Bustamam, Alhadi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
DOI10.1109/ICIS.2018.8466524

Cover

Loading…
Abstract Alzheimer's is categorized as one severe dementia with a shrinking brain shape and reduced brain volume overall. The correlation between shrinking of the brain shape and decreasing volume also affects the change in texture shape. In this proposed study, a new feature descriptor called the Histogram of Oriented Gradients from Three Orthogonal of Planes (HOG-TOP) is proposed to extract the dynamic texture features of 3D MRI brain images. The extension of the local binary pattern is the complete local binary pattern of sign magnitude (CLBPSM) as a feature extraction method also introduced. Because the features were in a high dimensional space, then probabilistic principal component analysis (PPCA) is used as one method of dimensionality reduction method. Furthermore, the random forest classifier is used for binary classification of Alzheimer's, Mild Cognitive Impairment (MCI) and normal. In the experimental results show that the 3D HOG-TOP features provide the highest sensitivity value compared to CLBPSM-TOP and hybrid feature for all classifications.
AbstractList Alzheimer's is categorized as one severe dementia with a shrinking brain shape and reduced brain volume overall. The correlation between shrinking of the brain shape and decreasing volume also affects the change in texture shape. In this proposed study, a new feature descriptor called the Histogram of Oriented Gradients from Three Orthogonal of Planes (HOG-TOP) is proposed to extract the dynamic texture features of 3D MRI brain images. The extension of the local binary pattern is the complete local binary pattern of sign magnitude (CLBPSM) as a feature extraction method also introduced. Because the features were in a high dimensional space, then probabilistic principal component analysis (PPCA) is used as one method of dimensionality reduction method. Furthermore, the random forest classifier is used for binary classification of Alzheimer's, Mild Cognitive Impairment (MCI) and normal. In the experimental results show that the 3D HOG-TOP features provide the highest sensitivity value compared to CLBPSM-TOP and hybrid feature for all classifications.
Author Sarwinda, Devvi
Bustamam, Alhadi
Author_xml – sequence: 1
  givenname: Devvi
  surname: Sarwinda
  fullname: Sarwinda, Devvi
  organization: Department of Mathematics, Universitas Inonesia, Depok, Indonesia
– sequence: 2
  givenname: Alhadi
  surname: Bustamam
  fullname: Bustamam, Alhadi
  organization: Department of Mathematics, Universitas Inonesia, Depok, Indonesia
BookMark eNotkL1OwzAYRY0EErT0ARCLN6YUO45deyzpX6SiStC9uPbnYJQflC8d2qcnEp3ucI7OcEfktmkbIOSJsynnzLwWefE5TRnXU50pJdPshoy4FFpJbVJ5TyaIP4yxVOnMcPFAvsQi2ezWdAW2P3WANHmzCJ7mlUWMITrbx7ahJ4xNSd8_ClrUthy0vqVL21Vnuoi2bFqMSNtA59XlG2IN3QsOAGFIPZK7YCuEyXXHZL9a7vNNst2ti3y-TaJhfSKl0wJ0NgvM-CBBaZ86YXxmTJDWK8O00UEdeQgpY8paZoI4OulmLmjlvBiT5_9sBIDDbxdr250P1w_EH3EtU4g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIS.2018.8466524
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISBN 1538658925
9781538658925
EndPage 462
ExternalDocumentID 8466524
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i90t-55c83e847f09df5e68d2c39d499f5ad690898f6b1ff2006aa09f3bc5c7cf86cd3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:53:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-55c83e847f09df5e68d2c39d499f5ad690898f6b1ff2006aa09f3bc5c7cf86cd3
PageCount 6
ParticipantIDs ieee_primary_8466524
PublicationCentury 2000
PublicationDate 2018-June
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June
PublicationDecade 2010
PublicationTitle 2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS)
PublicationTitleAbbrev ICIS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684913
Score 1.7587037
Snippet Alzheimer's is categorized as one severe dementia with a shrinking brain shape and reduced brain volume overall. The correlation between shrinking of the brain...
SourceID ieee
SourceType Publisher
StartPage 457
SubjectTerms Alzheimer's disease
Dementia
Feature extraction
Forestry
Histograms
HOG-TOP
Magnetic resonance imaging
MRI images
texture feature
Three-dimensional displays
Title 3D-HOG Features -Based Classification using MRI Images to Early Diagnosis of Alzheimer's Disease
URI https://ieeexplore.ieee.org/document/8466524
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VDoiJR4t4ywMSC07zshuP0FIapAKCInUriR9QQRvUJkt_PbYTikAMbJGjKJHPui939913AKe-Spl2iAIzKhIcUhloP-hzbMXOuO8nwupsD25p_ym8GZFRDc5XvTBSSks-k465tLV8kfHCpMpaGisp8cM1WNPHrOzVWuVTjGoJ84KqcOm5rBV34kfD3Yqc6rkfA1QsfvQ2YfD15pI28uYUeerw5S9Rxv9-2hY0vzv10P0Kg7ahJmc7sG7mbZohbg14Drq4f3eNzJ9eoRcRvtSwJZCdhWlYQtYwyLDfX9DgIUbxVDuYBcozZKWPUbek4k0WKFPo4n35KidTOT9b6Bu2stOEYe9q2OnjaqgCnjA3x4TwKJAakpTLhCKSRsLnARM68FEkEdSUASNFU08pk2xIEpepIOWEt7mKKBfBLtRn2UzuAeIa_Tzlp6GbRKHUgViqo6-2pGHiESEE34eG2afxRymbMa626ODv5UPYMLYqWVhHUM_nhTzWeJ-nJ9bQn5CfqkE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKkYATS4vY8QGJC26z2Y2P0AIJNAVBkXoriReooA1qk0u_HtsJRSAO3CJHkS2PNC8z8-YNACeOTKhyiBxRwmPkEeEqP-gwZMTOmOPE3OhsRz0SPHk3AzyogLNFL4wQwpDPREM_mlo-T1muU2VNhZUEO94SWFa47-GiW2uRUdG6JdR2y9KlbdFm2A4fNXvLb5Rf_hihYhDkah1EX3sXxJG3Rp4lDTb_Jcv438NtgPp3rx68X6DQJqiIyRZY0RM39Ri3Gnh2Oyi4u4b6Xy9XixBdKODi0EzD1DwhYxqo-e8vMHoIYThWLmYGsxQa8WPYKch4oxlMJTx_n7-K0VhMT2fqhant1EH_6rLfDlA5VgGNqJUhjJnvCgVK0qJcYkF87jCXchX6SBxzoguBviSJLaVON8SxRaWbMMxaTPqEcXcbVCfpROwAyBT-2dJJPCv2PaFCsUTFXy1BvNjGnHO2C2r6noYfhXDGsLyivb-Xj8Fq0I-6w27Yu90Ha9puBSfrAFSzaS4OFfpnyZEx-ieqFq2O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+ACIS+17th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=3D-HOG+Features+-Based+Classification+using+MRI+Images+to+Early+Diagnosis+of+Alzheimer%27s+Disease&rft.au=Sarwinda%2C+Devvi&rft.au=Bustamam%2C+Alhadi&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=457&rft.epage=462&rft_id=info:doi/10.1109%2FICIS.2018.8466524&rft.externalDocID=8466524