Point cloud labeling using 3D Convolutional Neural Network
In this paper, we tackle the labeling problem for 3D point clouds. We introduce a 3D point cloud labeling scheme based on 3D Convolutional Neural Network. Our approach minimizes the prior knowledge of the labeling problem and does not require a segmentation step or hand-crafted features as most prev...
Saved in:
Published in | 2016 23rd International Conference on Pattern Recognition (ICPR) pp. 2670 - 2675 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we tackle the labeling problem for 3D point clouds. We introduce a 3D point cloud labeling scheme based on 3D Convolutional Neural Network. Our approach minimizes the prior knowledge of the labeling problem and does not require a segmentation step or hand-crafted features as most previous approaches did. Particularly, we present solutions for large data handling during the training and testing process. Experiments performed on the urban point cloud dataset containing 7 categories of objects show the robustness of our approach. |
---|---|
DOI: | 10.1109/ICPR.2016.7900038 |