Virtual machine placement and workload assignment for mobile edge computing

As an extension to cloud computing, Mobile Edge Computing (MEC) provides computing capability at close proximity to mobile users to reduce service latency and improve users' quality of experience. In MEC, tiny datacenters, equipped with computing and storage capabilities, are located at the edg...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE 6th International Conference on Cloud Networking (CloudNet) pp. 1 - 6
Main Authors Wei Wang, Yongli Zhao, Tornatore, Massimo, Gupta, Abhishek, Jie Zhang, Mukherjee, Biswanath
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
DOI10.1109/CloudNet.2017.8071527

Cover

Loading…
Abstract As an extension to cloud computing, Mobile Edge Computing (MEC) provides computing capability at close proximity to mobile users to reduce service latency and improve users' quality of experience. In MEC, tiny datacenters, equipped with computing and storage capabilities, are located at the edge of the mobile network. Services in these tiny datacenters are supported by application-specific software instances, which are packaged in Virtual Machines (VM). We study the problem of VM placement and workload assignment for mobile cloud applications in MEC. We formulate a mathematical model to minimize the hardware consumption required by VMs for supporting given workloads in a multi-application scenario, while meeting heterogeneous latency requirements of different applications. Numerical results show that applications' latency requirement, MEC servers' hardware capacity, and users' request load have significant influences on overall hardware consumption, and MEC server utilization can be optimized by leveraging remote VM placement and workload aggregation.
AbstractList As an extension to cloud computing, Mobile Edge Computing (MEC) provides computing capability at close proximity to mobile users to reduce service latency and improve users' quality of experience. In MEC, tiny datacenters, equipped with computing and storage capabilities, are located at the edge of the mobile network. Services in these tiny datacenters are supported by application-specific software instances, which are packaged in Virtual Machines (VM). We study the problem of VM placement and workload assignment for mobile cloud applications in MEC. We formulate a mathematical model to minimize the hardware consumption required by VMs for supporting given workloads in a multi-application scenario, while meeting heterogeneous latency requirements of different applications. Numerical results show that applications' latency requirement, MEC servers' hardware capacity, and users' request load have significant influences on overall hardware consumption, and MEC server utilization can be optimized by leveraging remote VM placement and workload aggregation.
Author Tornatore, Massimo
Jie Zhang
Mukherjee, Biswanath
Gupta, Abhishek
Wei Wang
Yongli Zhao
Author_xml – sequence: 1
  surname: Wei Wang
  fullname: Wei Wang
  email: weiw@bupt.edu.cn
  organization: Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 2
  surname: Yongli Zhao
  fullname: Yongli Zhao
  email: yonglizhao@bupt.edu.cn
  organization: Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 3
  givenname: Massimo
  surname: Tornatore
  fullname: Tornatore, Massimo
  email: massimo.tornatore@polimi.it
  organization: Univ. of California, Davis, Davis, CA, USA
– sequence: 4
  givenname: Abhishek
  surname: Gupta
  fullname: Gupta, Abhishek
  email: abgupta@ucdavis.edu
  organization: Univ. of California, Davis, Davis, CA, USA
– sequence: 5
  surname: Jie Zhang
  fullname: Jie Zhang
  email: lgr24@bupt.edu.cn
  organization: Beijing Univ. of Posts & Telecommun., Beijing, China
– sequence: 6
  givenname: Biswanath
  surname: Mukherjee
  fullname: Mukherjee, Biswanath
  email: bmukherjee@ucdavis.edu
  organization: Univ. of California, Davis, Davis, CA, USA
BookMark eNotj8tKxDAYhSPoQsd5AhHyAq1Jk6bNUoo3HHQzuB3-JH9qME1KL4hv76CzOnD4OHznipynnJCQW85Kzpm-62Je3RsuZcV4U7as4XXVnJGtblpeM80kqxS_JK8fYVpWiHQA-xkS0jGCxQHTQiE5-p2nr5jBUZjn0Ke_3ueJDtmEiBRdj9TmYVyXkPprcuEhzrg95YbsHx_23XOxe3966e53RdBsKaSz1nhhW1cr643QtZfSMPQgHEhvlIKjrGksl8K3sgXOnXCKW33kFKvEhtz8zwZEPIxTGGD6OZweil_n5E2Z
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CloudNet.2017.8071527
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509040261
1509040269
EndPage 6
ExternalDocumentID 8071527
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-4dccbf3c8d56cfb395f44b0efa3da4fb66a071b7c143f848a11d3d61c9f446023
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:13 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-4dccbf3c8d56cfb395f44b0efa3da4fb66a071b7c143f848a11d3d61c9f446023
PageCount 6
ParticipantIDs ieee_primary_8071527
PublicationCentury 2000
PublicationDate 2017-Sept.
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle 2017 IEEE 6th International Conference on Cloud Networking (CloudNet)
PublicationTitleAbbrev CloudNet
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8551438
Snippet As an extension to cloud computing, Mobile Edge Computing (MEC) provides computing capability at close proximity to mobile users to reduce service latency and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cloud computing
Collaboration
Delays
Edge computing
Hardware
Hardware consumption
Latency
Mobile communication
Mobile Edge Computing
Servers
VM placement
Workload assignment
Title Virtual machine placement and workload assignment for mobile edge computing
URI https://ieeexplore.ieee.org/document/8071527
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCbbTp7UbMbf4eDRdkUopefFZdFs8TDNbgvwwDRurVnai3-9QOuMxoM3QviVB-F7wPfxELpJwOYZUBXlUlJ3QOEiUoanEWVUWw6QZsTrnecLPntmD6t01UO3ey2MMSaQz0zsk-EtHyrd-KuysXB4mN5lfdR3y6zVanWiHJLk48mmamBhPEGSZHFX9kfQlIAZ00M0_-qtpYq8xU2tYv3x6yPG_w7nCI2-1Xn4aY87x6hnyiF6fCl2XgqCt4EdaXAgW_kGsCwBe_rVppKAna9cvAYGAHbuKt5Wym0L2F-qYR0CPLgmR2g5vV9OZlEXKCEq8qSOGGitLNUCUq6tonlqGVOJsZKCZFZxLt1IVaadb2QFE5IQoMCJzl057kD7BA3KqjSnCJtUJkQlSnCqnCvHciWkBOJqc2DCyDM09HZYv7dfYaw7E5z_nX2BDvxctJSsSzSod425chheq-sweZ_T6aDy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVKGWAC1CLeeGAkaYwfceaKqtCHGArqVvmJKtoEVcnC12M7oQjEwGZZ9rVlSz7X1-f4AnCTaJulGssoEwK7CwrjkTSMRphgZZnWNEVe7zyZsuEzeZzTeQvcbrUwxphAPjOxL4a3fF2oyofKetzhIb1Ld8Cuw31Ca7VWI8tBSdbrr4pKT42nSKI0blr_SJsSUGNwACZf49Vkkbe4KmWsPn59xfjfCR2C7rc-Dz5tkecItEzeAaOX5caLQeA68CMNDHQrbwCKXENPwFoVQkPnLS9fAwcAOocVrgvpDgbow2pQhRQPzmQXzAb3s_4walIlRMssKSOilZIWK64pU1bijFpCZGKswFoQKxkTbqYyVc47spxwgZDGmiGVuXbMwfYxaOdFbk4ANFQkSCaSMyydM0cyyYXQyPVmmnAjTkHHr8Pivf4MY9Eswdnf1ddgbzibjBfjh-noHOz7fakJWhegXW4qc-kQvZRXYSM_AW2kpD8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+6th+International+Conference+on+Cloud+Networking+%28CloudNet%29&rft.atitle=Virtual+machine+placement+and+workload+assignment+for+mobile+edge+computing&rft.au=Wei+Wang&rft.au=Yongli+Zhao&rft.au=Tornatore%2C+Massimo&rft.au=Gupta%2C+Abhishek&rft.date=2017-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCloudNet.2017.8071527&rft.externalDocID=8071527