CNN for IMU assisted odometry estimation using velodyne LiDAR
We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D matrices for the training of proposed networks and for the prediction. Our networks show significantly better precision in the estimation of trans...
Saved in:
Published in | 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) pp. 71 - 77 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICARSC.2018.8374163 |
Cover
Abstract | We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D matrices for the training of proposed networks and for the prediction. Our networks show significantly better precision in the estimation of translational motion parameters comparing with state of the art method LOAM, while achieving real-time performance. Together with IMU support, high quality odometry estimation and LiDAR data registration is realized. Moreover, we propose alternative CNNs trained for the prediction of rotational motion parameters while achieving results also comparable with state of the art. The proposed method can replace wheel encoders in odometry estimation or supplement missing GPS data, when the GNSS signal absents (e.g. during the indoor mapping). Our solution brings real-time performance and precision which are useful to provide online preview of the mapping results and verification of the map completeness in real time. |
---|---|
AbstractList | We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D matrices for the training of proposed networks and for the prediction. Our networks show significantly better precision in the estimation of translational motion parameters comparing with state of the art method LOAM, while achieving real-time performance. Together with IMU support, high quality odometry estimation and LiDAR data registration is realized. Moreover, we propose alternative CNNs trained for the prediction of rotational motion parameters while achieving results also comparable with state of the art. The proposed method can replace wheel encoders in odometry estimation or supplement missing GPS data, when the GNSS signal absents (e.g. during the indoor mapping). Our solution brings real-time performance and precision which are useful to provide online preview of the mapping results and verification of the map completeness in real time. |
Author | Herout, Adam Velas, Martin Hradis, Michal Spanel, Michal |
Author_xml | – sequence: 1 givenname: Martin surname: Velas fullname: Velas, Martin organization: Faculty of Information Technology, Brno University of Technology, Czech Republic – sequence: 2 givenname: Michal surname: Spanel fullname: Spanel, Michal organization: Faculty of Information Technology, Brno University of Technology, Czech Republic – sequence: 3 givenname: Michal surname: Hradis fullname: Hradis, Michal organization: Faculty of Information Technology, Brno University of Technology, Czech Republic – sequence: 4 givenname: Adam surname: Herout fullname: Herout, Adam organization: Faculty of Information Technology, Brno University of Technology, Czech Republic |
BookMark | eNotj8tqwzAURFVoFm2aL8hGP2D36ml50UVwXwE3hSRdBym6LoJEKpZb8N_XkKxmMXDmzD25jSkiIUsGJWNQP66b1XbXlByYKY2oJNPihizqyjAljFacM3FHnprNhnapp-uPL2pzDnlAT5NPZxz6kWIewtkOIUX6m0P8pn94Sn6MSNvwvNo-kFlnTxkX15yT_evLvnkv2s-3ab4tQg1DIa2WAFxZAdppqxw_Si-9U7zGqTlqLzpp66pyAhRnlXEAtnNGg-Wi81LMyfKCDYh4-OknpX48XD-Jf5kNRKA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICARSC.2018.8374163 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538652213 1538652218 |
EndPage | 77 |
ExternalDocumentID | 8374163 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-4a640025a306b6a5b2c4d4db529e640c6d3f4a977b3052178b00afb860a23fd43 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:34 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-4a640025a306b6a5b2c4d4db529e640c6d3f4a977b3052178b00afb860a23fd43 |
PageCount | 7 |
ParticipantIDs | ieee_primary_8374163 |
PublicationCentury | 2000 |
PublicationDate | 2018-April |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-April |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) |
PublicationTitleAbbrev | ICARSC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9665588 |
Snippet | We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 71 |
SubjectTerms | Convolutional neural networks Estimation Laser radar Measurement by laser beam Real-time systems Sensors Three-dimensional displays |
Title | CNN for IMU assisted odometry estimation using velodyne LiDAR |
URI | https://ieeexplore.ieee.org/document/8374163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp7UgPF3evBox-i6sh08kCkBI8QgJNzI2r4aYhyEjAP-9bbbxGg8eGvaJm332rzvdd_3CnDDlBYKpaIhMk65tQONeGAoSsO039GKaXcPORqLwYw_zsN5DW73WhhELMhn6Lli8S9fr9TWXZW1bTDl8EMd6nablVqtKpFQx4_bw6Q3eUkcWyvyqp4_nkwpPEb_EEZfY5VEkTdvm0tPffxKw_jfyRxB61ubR573XucYapg14S4Zj4mFn2Q4mhELh53tNLER5zvmmx1xmTRKiSJxPPdX4ohCepcheVre9yYtmPYfpsmAVg8j0GXs55Sngjusklq4L0UaSqa45lqGLEbbooQODE8tsJOBk-Z2I3u0UiMj4acsMJoHJ9DIVhmeAulaxGZEHJgoZFywWEoubbCsWexrFGjOoOlWvliXqS8W1aLP_66-gAP39UtiyyU08s0Wr6zPzuV1YaxP0ECXyg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHN0bXle3ggUwJKFsMQsKNrO2rIUYwZBzwr7fdpkbjwVvTNmmbl-Z97_X7XgGuqFRcopBOgJQ5zNjBCZmvHRSaKq-tJFU2D5mkvD9h99NgWoPrLy0MIhbkM3Rts3jLV0u5tqmylgmmLH7Ygm3j91lQqrWqUkJtL2oN4u7oKbZ8rdCt5v74NKXwGb09SD5XK6kiL-46F658_1WI8b_b2YfmtzqPPH75nQOo4aIBN3GaEgNAySCZEAOIrfUUMTHnK-arDbG1NEqRIrFM92diqUJqs0AynN92R00Y9-7Gcd-pvkZw5pGXOyzjzKKVzAB-wbNAUMkUUyKgEZoRyZWvWWagnfCtOLcTmsuVaRFyL6O-Vsw_hPpiucAjIB2D2TSPfB0GlHEaCcGECZcVjTyFHPUxNOzJZ29l8YtZdeiTv7svYac_Toaz4SB9OIVda4mS5nIG9Xy1xnPjwXNxURjuA_aamxc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Autonomous+Robot+Systems+and+Competitions+%28ICARSC%29&rft.atitle=CNN+for+IMU+assisted+odometry+estimation+using+velodyne+LiDAR&rft.au=Velas%2C+Martin&rft.au=Spanel%2C+Michal&rft.au=Hradis%2C+Michal&rft.au=Herout%2C+Adam&rft.date=2018-04-01&rft.pub=IEEE&rft.spage=71&rft.epage=77&rft_id=info:doi/10.1109%2FICARSC.2018.8374163&rft.externalDocID=8374163 |