CNN for IMU assisted odometry estimation using velodyne LiDAR

We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D matrices for the training of proposed networks and for the prediction. Our networks show significantly better precision in the estimation of trans...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) pp. 71 - 77
Main Authors Velas, Martin, Spanel, Michal, Hradis, Michal, Herout, Adam
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2018
Subjects
Online AccessGet full text
DOI10.1109/ICARSC.2018.8374163

Cover

Abstract We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D matrices for the training of proposed networks and for the prediction. Our networks show significantly better precision in the estimation of translational motion parameters comparing with state of the art method LOAM, while achieving real-time performance. Together with IMU support, high quality odometry estimation and LiDAR data registration is realized. Moreover, we propose alternative CNNs trained for the prediction of rotational motion parameters while achieving results also comparable with state of the art. The proposed method can replace wheel encoders in odometry estimation or supplement missing GPS data, when the GNSS signal absents (e.g. during the indoor mapping). Our solution brings real-time performance and precision which are useful to provide online preview of the mapping results and verification of the map completeness in real time.
AbstractList We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D matrices for the training of proposed networks and for the prediction. Our networks show significantly better precision in the estimation of translational motion parameters comparing with state of the art method LOAM, while achieving real-time performance. Together with IMU support, high quality odometry estimation and LiDAR data registration is realized. Moreover, we propose alternative CNNs trained for the prediction of rotational motion parameters while achieving results also comparable with state of the art. The proposed method can replace wheel encoders in odometry estimation or supplement missing GPS data, when the GNSS signal absents (e.g. during the indoor mapping). Our solution brings real-time performance and precision which are useful to provide online preview of the mapping results and verification of the map completeness in real time.
Author Herout, Adam
Velas, Martin
Hradis, Michal
Spanel, Michal
Author_xml – sequence: 1
  givenname: Martin
  surname: Velas
  fullname: Velas, Martin
  organization: Faculty of Information Technology, Brno University of Technology, Czech Republic
– sequence: 2
  givenname: Michal
  surname: Spanel
  fullname: Spanel, Michal
  organization: Faculty of Information Technology, Brno University of Technology, Czech Republic
– sequence: 3
  givenname: Michal
  surname: Hradis
  fullname: Hradis, Michal
  organization: Faculty of Information Technology, Brno University of Technology, Czech Republic
– sequence: 4
  givenname: Adam
  surname: Herout
  fullname: Herout, Adam
  organization: Faculty of Information Technology, Brno University of Technology, Czech Republic
BookMark eNotj8tqwzAURFVoFm2aL8hGP2D36ml50UVwXwE3hSRdBym6LoJEKpZb8N_XkKxmMXDmzD25jSkiIUsGJWNQP66b1XbXlByYKY2oJNPihizqyjAljFacM3FHnprNhnapp-uPL2pzDnlAT5NPZxz6kWIewtkOIUX6m0P8pn94Sn6MSNvwvNo-kFlnTxkX15yT_evLvnkv2s-3ab4tQg1DIa2WAFxZAdppqxw_Si-9U7zGqTlqLzpp66pyAhRnlXEAtnNGg-Wi81LMyfKCDYh4-OknpX48XD-Jf5kNRKA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICARSC.2018.8374163
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538652213
1538652218
EndPage 77
ExternalDocumentID 8374163
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-4a640025a306b6a5b2c4d4db529e640c6d3f4a977b3052178b00afb860a23fd43
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:34 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-4a640025a306b6a5b2c4d4db529e640c6d3f4a977b3052178b00afb860a23fd43
PageCount 7
ParticipantIDs ieee_primary_8374163
PublicationCentury 2000
PublicationDate 2018-April
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationTitle 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC)
PublicationTitleAbbrev ICARSC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9665588
Snippet We introduce a novel method for odometry estimation using convolutional neural networks from 3D LiDAR scans. The original sparse data are encoded into 2D...
SourceID ieee
SourceType Publisher
StartPage 71
SubjectTerms Convolutional neural networks
Estimation
Laser radar
Measurement by laser beam
Real-time systems
Sensors
Three-dimensional displays
Title CNN for IMU assisted odometry estimation using velodyne LiDAR
URI https://ieeexplore.ieee.org/document/8374163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp7UgPF3evBox-i6sh08kCkBI8QgJNzI2r4aYhyEjAP-9bbbxGg8eGvaJm332rzvdd_3CnDDlBYKpaIhMk65tQONeGAoSsO039GKaXcPORqLwYw_zsN5DW73WhhELMhn6Lli8S9fr9TWXZW1bTDl8EMd6nablVqtKpFQx4_bw6Q3eUkcWyvyqp4_nkwpPEb_EEZfY5VEkTdvm0tPffxKw_jfyRxB61ubR573XucYapg14S4Zj4mFn2Q4mhELh53tNLER5zvmmx1xmTRKiSJxPPdX4ohCepcheVre9yYtmPYfpsmAVg8j0GXs55Sngjusklq4L0UaSqa45lqGLEbbooQODE8tsJOBk-Z2I3u0UiMj4acsMJoHJ9DIVhmeAulaxGZEHJgoZFywWEoubbCsWexrFGjOoOlWvliXqS8W1aLP_66-gAP39UtiyyU08s0Wr6zPzuV1YaxP0ECXyg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHN0bXle3ggUwJKFsMQsKNrO2rIUYwZBzwr7fdpkbjwVvTNmmbl-Z97_X7XgGuqFRcopBOgJQ5zNjBCZmvHRSaKq-tJFU2D5mkvD9h99NgWoPrLy0MIhbkM3Rts3jLV0u5tqmylgmmLH7Ygm3j91lQqrWqUkJtL2oN4u7oKbZ8rdCt5v74NKXwGb09SD5XK6kiL-46F658_1WI8b_b2YfmtzqPPH75nQOo4aIBN3GaEgNAySCZEAOIrfUUMTHnK-arDbG1NEqRIrFM92diqUJqs0AynN92R00Y9-7Gcd-pvkZw5pGXOyzjzKKVzAB-wbNAUMkUUyKgEZoRyZWvWWagnfCtOLcTmsuVaRFyL6O-Vsw_hPpiucAjIB2D2TSPfB0GlHEaCcGECZcVjTyFHPUxNOzJZ29l8YtZdeiTv7svYac_Toaz4SB9OIVda4mS5nIG9Xy1xnPjwXNxURjuA_aamxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Autonomous+Robot+Systems+and+Competitions+%28ICARSC%29&rft.atitle=CNN+for+IMU+assisted+odometry+estimation+using+velodyne+LiDAR&rft.au=Velas%2C+Martin&rft.au=Spanel%2C+Michal&rft.au=Hradis%2C+Michal&rft.au=Herout%2C+Adam&rft.date=2018-04-01&rft.pub=IEEE&rft.spage=71&rft.epage=77&rft_id=info:doi/10.1109%2FICARSC.2018.8374163&rft.externalDocID=8374163