Apply word vectors for sentiment analysis of APP reviews

Vector representations for language have been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Sentiment Analysis. In particular, we target three sub-tasks namely sentiment wo...

Full description

Saved in:
Bibliographic Details
Published in2016 3rd International Conference on Systems and Informatics (ICSAI) pp. 1062 - 1066
Main Authors Xian Fan, Xiaoge Li, Feihong Du, Xin Li, Mian Wei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vector representations for language have been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Sentiment Analysis. In particular, we target three sub-tasks namely sentiment words extraction, polarity of sentiment words detection, and text sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. Vector representations has been used to compute various vector-based features and conduct systematically experiments to demonstrate their effectiveness. Using simple vector based features, we achieve F1 85.77%, the recall 85.20%, and the accuracy 86.35% for text sentiment analysis of APP reviews.
AbstractList Vector representations for language have been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Sentiment Analysis. In particular, we target three sub-tasks namely sentiment words extraction, polarity of sentiment words detection, and text sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. Vector representations has been used to compute various vector-based features and conduct systematically experiments to demonstrate their effectiveness. Using simple vector based features, we achieve F1 85.77%, the recall 85.20%, and the accuracy 86.35% for text sentiment analysis of APP reviews.
Author Xian Fan
Feihong Du
Mian Wei
Xiaoge Li
Xin Li
Author_xml – sequence: 1
  surname: Xian Fan
  fullname: Xian Fan
  organization: Sch. of Comput. Sci. & Technol., Xi'an Univ. of Posts & Telecommun., Xian, China
– sequence: 2
  surname: Xiaoge Li
  fullname: Xiaoge Li
  organization: Sch. of Comput. Sci. & Technol., Xi'an Univ. of Posts & Telecommun., Xian, China
– sequence: 3
  surname: Feihong Du
  fullname: Feihong Du
  organization: Sch. of Comput. Sci. & Technol., Xi'an Univ. of Posts & Telecommun., Xian, China
– sequence: 4
  surname: Xin Li
  fullname: Xin Li
  organization: Sch. of Comput. Sci. & Technol., Xi'an Univ. of Posts & Telecommun., Xian, China
– sequence: 5
  surname: Mian Wei
  fullname: Mian Wei
  organization: Sch. of Comput. Sci. & Technol., Tulane Univ., New Orleans, LA, USA
BookMark eNotj8tqwzAURFVoFk3aH0g3-gG7kq5Uy0tj-jAEGmj2QZauQOBYRjIJ_vsaGgbmwCwOzJY8jnFEQvaclZyz-q1rf5uuFIy_l5Xm66QfyJYrVjOlBFdPRDfTNCz0FpOjV7RzTJn6mGjGcQ6XtagZzbDkkGn0tDkeacJrwFt-Jhtvhowvd-7I6fPj1H4Xh5-vrm0ORajZXEhthUVXW3BOARNYK1mhW2OF74WTVksDUlrDpFG8rwAE771X4EADM7Ajr__agIjnKYWLScv5_gX-AOgTQ4w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSAI.2016.7811108
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1509055215
9781509055210
EndPage 1066
ExternalDocumentID 7811108
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-48c2ced9c3dd5302e9547ededec2fb2d4c84a344ca04a51b73321bff53d3830a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-48c2ced9c3dd5302e9547ededec2fb2d4c84a344ca04a51b73321bff53d3830a3
PageCount 5
ParticipantIDs ieee_primary_7811108
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle 2016 3rd International Conference on Systems and Informatics (ICSAI)
PublicationTitleAbbrev ICSAI
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.78317
Snippet Vector representations for language have been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the...
SourceID ieee
SourceType Publisher
StartPage 1062
SubjectTerms Buildings
Computer science
Feature extraction
Mathematical model
Mobile communication
polarity of sentiment words detection
Sentiment analysis
sentiment words extraction
Training
vector representations
Title Apply word vectors for sentiment analysis of APP reviews
URI https://ieeexplore.ieee.org/document/7811108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LSwMxEMaH2pOnqq34JgePZruP7CPHUixWqBSs0FvJTLIgQiu6VfSvN8luK4oH2UtYFrIkLDNfdn7fAFyWsSY0ecSLEpGLUhJHG2W4Jps_UxQb6VmYyV128yBu5-m8BVdbFsYY44vPTOCG_l--XtHaHZX1HRUZObJ3xwq3mtXacDCh7I-H94OxK9bKgubBHx1TfMAYdWCymaquE3kK1hUG9PnLhfG_77IHvW80j023QWcfWmZ5AJ1NbwbWfKpdKFx6-cHerbZkb_5k_pXZ_JQ51sgb-jPV2JGwVckG0ylrfEl7MBtdz4Y3vOmSwB9lWHFRUExGS0q0dh2AjExFbrS9KC4x1oIKoRIhSIVCpRHmSRJHWJZpoq04DVVyCO3lammOgGUhSrL6gZR36SPEVGIWqsxqTJWjPIauW4fFc-2DsWiW4OTv26ew6_ai5vbOoF29rM25DeAVXvid-wKylZ2_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LSwMxEMaHUg96qtqKb3PwaLb7yD5yLMXSalsKVuitJJMsiNAW3Sr615tktxXFg-wlLAtZEpZvJju_bwCu81Ch1GlAs1xKynKOVBqVoQpN_IxBqLljYUbjpP_I7mbxrAY3WxZGa-2Kz7Rnh-5fvlri2h6VtS0VGViyd8fofhyUtNaGhPF5e9B96AxsuVbiVY_-6JniJKPXgNFmsrJS5NlbF9LDz18-jP99m31ofcN5ZLKVnQOo6cUhNDbdGUj1sTYhswHmB3k32SV5c2fzr8REqMTSRs7Sn4jKkIQsc9KZTEjlTNqCae922u3Tqk8CfeJ-QVmGIWrFMVLK9gDSPGapVubCMJehYpgxETGGwmciDmQaRWEg8zyOlElPfREdQX2xXOhjIIkvOZoMAoXz6UMpYy4TXyQmyxSp5CfQtOswX5VOGPNqCU7_vn0Fu_3paDgfDsb3Z7Bn96Wk-M6hXrys9YWR80Jeul38Ah6UoQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+3rd+International+Conference+on+Systems+and+Informatics+%28ICSAI%29&rft.atitle=Apply+word+vectors+for+sentiment+analysis+of+APP+reviews&rft.au=Xian+Fan&rft.au=Xiaoge+Li&rft.au=Feihong+Du&rft.au=Xin+Li&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=1062&rft.epage=1066&rft_id=info:doi/10.1109%2FICSAI.2016.7811108&rft.externalDocID=7811108