Sentiment Analysis Using Weighted Emoticons and SentiWordNet for Indonesian Language
The large number of internet users caused increasing the number of social media users. Twitter is one of social media that have a large number of users in Indonesia. As a social media, twitter allows users to share information via status in a tweet. Due to the limitations of the use of text is only...
Saved in:
Published in | 2018 International Seminar on Application for Technology of Information and Communication pp. 234 - 238 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ISEMANTIC.2018.8549703 |
Cover
Abstract | The large number of internet users caused increasing the number of social media users. Twitter is one of social media that have a large number of users in Indonesia. As a social media, twitter allows users to share information via status in a tweet. Due to the limitations of the use of text is only 280 characters, emoticons are commonly used in tweet. Emoticon can explain the condition or feeling which is described in a text-shaped punctuation mark. This paper will focus on creating emoticon dictionary and weighting of an emoticon. Emoticon dictionary contains a list of 384 emoticons describing a variety of feelings and emotions. The used dataset contains Indonesian language tweets from twitter API. We tried to analyze sentiment on existing datasets with reference scores in SentiWordNet. Weighting emoticons done under the assumption that the emoticons have more effect in a sentence than ordinary words. After that, we classify the results into three classes, namely sentiment positive, negative and neutral. We compared the results between the emoticon-based algorithm and without considering emoticons algorithm. Accuracy obtained on the emoticon-based using algorithm is 0.74. |
---|---|
AbstractList | The large number of internet users caused increasing the number of social media users. Twitter is one of social media that have a large number of users in Indonesia. As a social media, twitter allows users to share information via status in a tweet. Due to the limitations of the use of text is only 280 characters, emoticons are commonly used in tweet. Emoticon can explain the condition or feeling which is described in a text-shaped punctuation mark. This paper will focus on creating emoticon dictionary and weighting of an emoticon. Emoticon dictionary contains a list of 384 emoticons describing a variety of feelings and emotions. The used dataset contains Indonesian language tweets from twitter API. We tried to analyze sentiment on existing datasets with reference scores in SentiWordNet. Weighting emoticons done under the assumption that the emoticons have more effect in a sentence than ordinary words. After that, we classify the results into three classes, namely sentiment positive, negative and neutral. We compared the results between the emoticon-based algorithm and without considering emoticons algorithm. Accuracy obtained on the emoticon-based using algorithm is 0.74. |
Author | Maulidiah Elfajr, Nur Sarno, Riyananto |
Author_xml | – sequence: 1 givenname: Nur surname: Maulidiah Elfajr fullname: Maulidiah Elfajr, Nur organization: Faculty of Information and Communication Technology Sepuluh Nopember Institute of Technology, Department of Informatics, Surabaya, Indonesia – sequence: 2 givenname: Riyananto surname: Sarno fullname: Sarno, Riyananto organization: Faculty of Information and Communication Technology Sepuluh Nopember Institute of Technology, Department of Informatics, Surabaya, Indonesia |
BookMark | eNotj9FOgzAYhWuiiW7uCUxMX2DY0lL6XxIylQTnBZhdLoX-YM0ohuLF3l6iuznn5suXc1bk2o8eCXnkLOKcwVNR7d6yfV3kUcy4jnQiIWXiiqx4IrRKpVbqlmxC-GKMxUoLCeKO1BX62Q1L0Myb0zm4QD-C8z09oOs_Z7R0N4yza0cfqPGW_vGHcbJ7nGk3TrTwdtkRnPG0NL7_MT3ek5vOnAJuLr0m1fOuzl-35ftLkWfl1gGbtzJpVSclb6xWDZhOtxYApVGpBoYppDEDwWNjEBrAjhmxMDwWSRsDt1qsycO_1SHi8Xtyg5nOx8tt8Qvm01Hp |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISEMANTIC.2018.8549703 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1538674866 9781538674864 |
EndPage | 238 |
ExternalDocumentID | 8549703 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-45c6f441bd86b9af8cd99e4a67890e797209312aae9b9ef0a3af81235c291d83 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:51:39 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-45c6f441bd86b9af8cd99e4a67890e797209312aae9b9ef0a3af81235c291d83 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8549703 |
PublicationCentury | 2000 |
PublicationDate | 2018-September |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-September |
PublicationDecade | 2010 |
PublicationTitle | 2018 International Seminar on Application for Technology of Information and Communication |
PublicationTitleAbbrev | ISEMANTIC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683493 |
Score | 1.7252599 |
Snippet | The large number of internet users caused increasing the number of social media users. Twitter is one of social media that have a large number of users in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 234 |
SubjectTerms | Classification algorithms Dictionaries Emoticons Indonesian Seminars Sentiment Analysis SentiWordNet |
Title | Sentiment Analysis Using Weighted Emoticons and SentiWordNet for Indonesian Language |
URI | https://ieeexplore.ieee.org/document/8549703 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J734aMU3OXh0t_tIs5mjlJZWbBFaaW8l2cyCCFV0e_HXm8lu6wMP3pYlQ5ZMYB77fd8wdg0FArrIElgLEAilZaAS1IE2ziDNQEWayMnjiRw-irtFd9FgN1suDCJ68BmG9Oj_5duXfE2tso5yxUxG0p477ppVXK1tPyWRKhWQ1iTgOILOaNof305mox4BuFRYG_-YouKDyGCfjTfbV9iR53BdmjD_-KXM-N_vO2DtL7oef9gGokPWwNUR2_umNNhisymhgsicb2RIuEcL8LnvjaLlfYLluer4neuV5X793FWmEyy5S2z5iMZ-IFEu-X3d42yz6aA_6w2DeqBC8ARRGYhuLguX_hirpAFdqNz5B4WWRIbFDLIkgjROtEYwgEWkU7eGuLR5ArFV6TFrrtxOJ4wn1mihjHTpiRIgc4OQR4qEctCYGMQpa9HpLF8rxYxlfTBnf78-Z7vkoQq5dcGa5dsaL12oL82V9_EnqqKqlQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjSfNwHd-IqlYNNBFSg9qtsuOLhJAKgnTh12MnaXmIgc2KfIrlG-7h7_uOkGsoENBEFkdrAIcJyR0RoHSkMgZhBMKTlpycpHz8yO7m_XmL3Gy4MIhYgc_QtcvqLV-_5CvbKusJU8xEVtpzy8R91q_ZWpuOSsBFyCBsaMC-B714Okxu0yweWAiXcBvzH3NUqjAy2iPJ-gA1euTZXZXKzT9-aTP-94T7pPtF2KMPm1B0QFq4PCS737QGOySbWlyQNadrIRJa4QXorOqOoqZDC8wz9fE7lUtNq_0zU5umWFKT2tLYDv5AS7qkk6bL2SXT0TAbjJ1mpILzBF7psH7OC5MAKS24AlmI3HgImeSWDosRRIEHoR9IiaAAC0-GZo9l0-YB-FqER6S9NH86JjTQSjKhuElQBAOeK4TcE1YqB5XygZ2Qjr2dxWutmbFoLub0789XZHucJZPFJE7vz8iO9VaN4zon7fJthRcm8JfqsvL3J8fyreI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Seminar+on+Application+for+Technology+of+Information+and+Communication&rft.atitle=Sentiment+Analysis+Using+Weighted+Emoticons+and+SentiWordNet+for+Indonesian+Language&rft.au=Maulidiah+Elfajr%2C+Nur&rft.au=Sarno%2C+Riyananto&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=234&rft.epage=238&rft_id=info:doi/10.1109%2FISEMANTIC.2018.8549703&rft.externalDocID=8549703 |