Sentiment Analysis Using Weighted Emoticons and SentiWordNet for Indonesian Language

The large number of internet users caused increasing the number of social media users. Twitter is one of social media that have a large number of users in Indonesia. As a social media, twitter allows users to share information via status in a tweet. Due to the limitations of the use of text is only...

Full description

Saved in:
Bibliographic Details
Published in2018 International Seminar on Application for Technology of Information and Communication pp. 234 - 238
Main Authors Maulidiah Elfajr, Nur, Sarno, Riyananto
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2018
Subjects
Online AccessGet full text
DOI10.1109/ISEMANTIC.2018.8549703

Cover

Abstract The large number of internet users caused increasing the number of social media users. Twitter is one of social media that have a large number of users in Indonesia. As a social media, twitter allows users to share information via status in a tweet. Due to the limitations of the use of text is only 280 characters, emoticons are commonly used in tweet. Emoticon can explain the condition or feeling which is described in a text-shaped punctuation mark. This paper will focus on creating emoticon dictionary and weighting of an emoticon. Emoticon dictionary contains a list of 384 emoticons describing a variety of feelings and emotions. The used dataset contains Indonesian language tweets from twitter API. We tried to analyze sentiment on existing datasets with reference scores in SentiWordNet. Weighting emoticons done under the assumption that the emoticons have more effect in a sentence than ordinary words. After that, we classify the results into three classes, namely sentiment positive, negative and neutral. We compared the results between the emoticon-based algorithm and without considering emoticons algorithm. Accuracy obtained on the emoticon-based using algorithm is 0.74.
AbstractList The large number of internet users caused increasing the number of social media users. Twitter is one of social media that have a large number of users in Indonesia. As a social media, twitter allows users to share information via status in a tweet. Due to the limitations of the use of text is only 280 characters, emoticons are commonly used in tweet. Emoticon can explain the condition or feeling which is described in a text-shaped punctuation mark. This paper will focus on creating emoticon dictionary and weighting of an emoticon. Emoticon dictionary contains a list of 384 emoticons describing a variety of feelings and emotions. The used dataset contains Indonesian language tweets from twitter API. We tried to analyze sentiment on existing datasets with reference scores in SentiWordNet. Weighting emoticons done under the assumption that the emoticons have more effect in a sentence than ordinary words. After that, we classify the results into three classes, namely sentiment positive, negative and neutral. We compared the results between the emoticon-based algorithm and without considering emoticons algorithm. Accuracy obtained on the emoticon-based using algorithm is 0.74.
Author Maulidiah Elfajr, Nur
Sarno, Riyananto
Author_xml – sequence: 1
  givenname: Nur
  surname: Maulidiah Elfajr
  fullname: Maulidiah Elfajr, Nur
  organization: Faculty of Information and Communication Technology Sepuluh Nopember Institute of Technology, Department of Informatics, Surabaya, Indonesia
– sequence: 2
  givenname: Riyananto
  surname: Sarno
  fullname: Sarno, Riyananto
  organization: Faculty of Information and Communication Technology Sepuluh Nopember Institute of Technology, Department of Informatics, Surabaya, Indonesia
BookMark eNotj9FOgzAYhWuiiW7uCUxMX2DY0lL6XxIylQTnBZhdLoX-YM0ohuLF3l6iuznn5suXc1bk2o8eCXnkLOKcwVNR7d6yfV3kUcy4jnQiIWXiiqx4IrRKpVbqlmxC-GKMxUoLCeKO1BX62Q1L0Myb0zm4QD-C8z09oOs_Z7R0N4yza0cfqPGW_vGHcbJ7nGk3TrTwdtkRnPG0NL7_MT3ek5vOnAJuLr0m1fOuzl-35ftLkWfl1gGbtzJpVSclb6xWDZhOtxYApVGpBoYppDEDwWNjEBrAjhmxMDwWSRsDt1qsycO_1SHi8Xtyg5nOx8tt8Qvm01Hp
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISEMANTIC.2018.8549703
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538674866
9781538674864
EndPage 238
ExternalDocumentID 8549703
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-45c6f441bd86b9af8cd99e4a67890e797209312aae9b9ef0a3af81235c291d83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-45c6f441bd86b9af8cd99e4a67890e797209312aae9b9ef0a3af81235c291d83
PageCount 5
ParticipantIDs ieee_primary_8549703
PublicationCentury 2000
PublicationDate 2018-September
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-September
PublicationDecade 2010
PublicationTitle 2018 International Seminar on Application for Technology of Information and Communication
PublicationTitleAbbrev ISEMANTIC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683493
Score 1.7252599
Snippet The large number of internet users caused increasing the number of social media users. Twitter is one of social media that have a large number of users in...
SourceID ieee
SourceType Publisher
StartPage 234
SubjectTerms Classification algorithms
Dictionaries
Emoticons
Google
Indonesian
Seminars
Sentiment Analysis
SentiWordNet
Twitter
Title Sentiment Analysis Using Weighted Emoticons and SentiWordNet for Indonesian Language
URI https://ieeexplore.ieee.org/document/8549703
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J734aMU3OXh0t_tIs5mjlJZWbBFaaW8l2cyCCFV0e_HXm8lu6wMP3pYlQ5ZMYB77fd8wdg0FArrIElgLEAilZaAS1IE2ziDNQEWayMnjiRw-irtFd9FgN1suDCJ68BmG9Oj_5duXfE2tso5yxUxG0p477ppVXK1tPyWRKhWQ1iTgOILOaNof305mox4BuFRYG_-YouKDyGCfjTfbV9iR53BdmjD_-KXM-N_vO2DtL7oef9gGokPWwNUR2_umNNhisymhgsicb2RIuEcL8LnvjaLlfYLluer4neuV5X793FWmEyy5S2z5iMZ-IFEu-X3d42yz6aA_6w2DeqBC8ARRGYhuLguX_hirpAFdqNz5B4WWRIbFDLIkgjROtEYwgEWkU7eGuLR5ArFV6TFrrtxOJ4wn1mihjHTpiRIgc4OQR4qEctCYGMQpa9HpLF8rxYxlfTBnf78-Z7vkoQq5dcGa5dsaL12oL82V9_EnqqKqlQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMgALjxbxxgMjSfNwHd-IqlYNNBFSg9qtsuOLhJAKgnTh12MnaXmIgc2KfIrlG-7h7_uOkGsoENBEFkdrAIcJyR0RoHSkMgZhBMKTlpycpHz8yO7m_XmL3Gy4MIhYgc_QtcvqLV-_5CvbKusJU8xEVtpzy8R91q_ZWpuOSsBFyCBsaMC-B714Okxu0yweWAiXcBvzH3NUqjAy2iPJ-gA1euTZXZXKzT9-aTP-94T7pPtF2KMPm1B0QFq4PCS737QGOySbWlyQNadrIRJa4QXorOqOoqZDC8wz9fE7lUtNq_0zU5umWFKT2tLYDv5AS7qkk6bL2SXT0TAbjJ1mpILzBF7psH7OC5MAKS24AlmI3HgImeSWDosRRIEHoR9IiaAAC0-GZo9l0-YB-FqER6S9NH86JjTQSjKhuElQBAOeK4TcE1YqB5XygZ2Qjr2dxWutmbFoLub0789XZHucJZPFJE7vz8iO9VaN4zon7fJthRcm8JfqsvL3J8fyreI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Seminar+on+Application+for+Technology+of+Information+and+Communication&rft.atitle=Sentiment+Analysis+Using+Weighted+Emoticons+and+SentiWordNet+for+Indonesian+Language&rft.au=Maulidiah+Elfajr%2C+Nur&rft.au=Sarno%2C+Riyananto&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=234&rft.epage=238&rft_id=info:doi/10.1109%2FISEMANTIC.2018.8549703&rft.externalDocID=8549703