Analysis of nonlinear and non-stationary signal to extract the features using Hilbert Huang transform

Human emotion recognition is a hot research topic in medical and engineering field to provide interface between users and computers. A novel technique for Feature Extraction (FE) has been presented here. This method is feasible for analyzing the nonlinear and non-stationary signals like electrocardi...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE International Conference on Computational Intelligence and Computing Research pp. 1 - 4
Main Authors Paithane, A. N., Bormane, D. S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2014
Subjects
Online AccessGet full text
ISBN1479939749
9781479939749
DOI10.1109/ICCIC.2014.7238497

Cover

Abstract Human emotion recognition is a hot research topic in medical and engineering field to provide interface between users and computers. A novel technique for Feature Extraction (FE) has been presented here. This method is feasible for analyzing the nonlinear and non-stationary signals like electrocardiogram signal (ECG), Electromyogram (EMG) etc. We have used electrocardiogram signal as an input, each signal has important functions, which has been extracted by applying empirical decomposition method. These functions are used to extract the features using fission and fusion process. The features extracted from every IMF are used to compose feature vector. The extracted features are useful to recognize human emotions from ECG signal. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques. We evaluated the algorithm on Augsburg University Database; the manually annotated database.
AbstractList Human emotion recognition is a hot research topic in medical and engineering field to provide interface between users and computers. A novel technique for Feature Extraction (FE) has been presented here. This method is feasible for analyzing the nonlinear and non-stationary signals like electrocardiogram signal (ECG), Electromyogram (EMG) etc. We have used electrocardiogram signal as an input, each signal has important functions, which has been extracted by applying empirical decomposition method. These functions are used to extract the features using fission and fusion process. The features extracted from every IMF are used to compose feature vector. The extracted features are useful to recognize human emotions from ECG signal. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques. We evaluated the algorithm on Augsburg University Database; the manually annotated database.
Author Bormane, D. S.
Paithane, A. N.
Author_xml – sequence: 1
  givenname: A. N.
  surname: Paithane
  fullname: Paithane, A. N.
  email: ajaypaithane@yahoo.co.in
  organization: Rajarshi Shahu Coll. of Eng., Pune, India
– sequence: 2
  givenname: D. S.
  surname: Bormane
  fullname: Bormane, D. S.
  email: bdattatray@yahoo.com
  organization: Rajarshi Shahu Coll. of Eng., Pune, India
BookMark eNo1kFFLwzAUhSPqg5v7A_qSP9DaNGnT-ziK2sLAl72Pu-ZmBrpUkhTcv7fifDp8cPg4nBW785Mnxp5EkQtRwEvftn2bl4VQuS5lo0DfsA3oRigNIEFX9S1b_YOCB0Zbj-MlusgnyxfZ6Dxh4OjNL2UxYXKTx3Dh0Z2WKk8Tp-8UcEg8fRK3hGkOFPkcnT_xzo1HCol3My601Hy0Uzg_snuLY6TNNdds__a6b7ts9_Het9td5qBImRKNqqHGemgMyXLQVBg1KJDCCiyhgqOF0hgwukEj0Ropa1KkAQtdVpWUa_b8p3VEdPgK7rwMP1yPkD8QVFci
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIC.2014.7238497
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479939756
1479939757
EndPage 4
ExternalDocumentID 7238497
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-4184696a6c8de32c7e0d4c4931f1a2959bf92dd9d78ad3afd336e4e79a0725533
IEDL.DBID RIE
ISBN 1479939749
9781479939749
IngestDate Wed Jun 26 19:20:57 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-4184696a6c8de32c7e0d4c4931f1a2959bf92dd9d78ad3afd336e4e79a0725533
PageCount 4
ParticipantIDs ieee_primary_7238497
PublicationCentury 2000
PublicationDate 2014-Dec.
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationTitle 2014 IEEE International Conference on Computational Intelligence and Computing Research
PublicationTitleAbbrev ICCIC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6606132
Snippet Human emotion recognition is a hot research topic in medical and engineering field to provide interface between users and computers. A novel technique for...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data mining
Electrocardiogram (ECG)
Electrocardiography
Emotion recognition
Empirical mode decomposition
Feature extraction
Fission
Fusion
Mathematical model
Mean Frequency (MNF) Emotion Detection
Title Analysis of nonlinear and non-stationary signal to extract the features using Hilbert Huang transform
URI https://ieeexplore.ieee.org/document/7238497
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJmjhOXM8RVYpUxFCkbtXZPqMK1KI2GeDXYydNeYiBLRdZ0cmPfGf7u-8IuYlSw5TMRkGm3XLjYCEAmdogQuXAWghE5c8hpw9Z8cTv5-m8Q273uTCIWJPPMPSP9V2-WevKH5UNfYEsLkWXdN00-5arJRzIurhYthJOrd0myURyOMnzSe6ZXDzcfeVHOZUaTcaHZNr60ZBIXsKqVKH--CXR-F9Hj8jgK2-PPu4R6Zh0cNUn2OqO0LWlq0YZAzYUVsZbwba5i4fNO_VcDnil5Zq6P7bPnqIuOqQWa-3PLfUU-WdaLL0qVkmLCpxVtnHvgMzGd7O8CHbFFYKljMqAu51dJjPI9MhgwrTAyHDNZRLbGJhMpbKSGSONGIFJwJokyZCjkBAJtwtJkhPSc07iKaFSKYvMNcQYOLMZoE6RYRoDRswqfUb6vocWb418xmLXOed_v74gB36UGsbIJemVmwqvHO6X6roe8E8WkK48
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI0tRx7HqOqFJoK4Yidav8cUYVqEVtMsCvx06a8iEGtlwURSdbyTvb771D6CZKDFGC9QKm3edGpZWBFIkNIlAOrDkHUH4fcjRm2RO9nybTBrrdamEAoCSfQegvy7N8s9SF3yrr-AZZVPAdtOtwnybf1FrcwayrjEVt4lTHtUwmEp1Bmg5Sz-Wi4eY9PxqqlHjSP0CjOpOKRvISFrkK9ccvk8b_pnqI2l_KPfy4xaQj1IBFC0HtPIKXFi8qbwy5wnJhfBSsq9N4uXrHns0hX3G-xO6f7fVT2NWH2ELp_rnGniT_jLO598XKcVZIF-V15dtGk_7dJM2CTXuFYC6iPKBubccEk0z3DMREc4gM1VTEXduVRCRCWUGMEYb3pImlNXHMgAIXMuJuHRLHx6jpkoQThIVSFoh7ELqSEssk6AQIJF0JEbFKn6KWH6HZW2WgMdsMztnft6_RXjYZDWfDwfjhHO37Gav4Ixeoma8KuHRVQK6uysn_BGRJsYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Conference+on+Computational+Intelligence+and+Computing+Research&rft.atitle=Analysis+of+nonlinear+and+non-stationary+signal+to+extract+the+features+using+Hilbert+Huang+transform&rft.au=Paithane%2C+A.+N.&rft.au=Bormane%2C+D.+S.&rft.date=2014-12-01&rft.pub=IEEE&rft.isbn=1479939749&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICCIC.2014.7238497&rft.externalDocID=7238497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479939749/sc.gif&client=summon&freeimage=true