Cooperative multi-ant colony pseudo-parallel optimization algorithm

On account of the premature and stagnation of traditional ant colony algorithm, this paper proposes a cooperative multi-ant colony pseudo-parallel optimization algorithm, drawing lessons from the idea of the exclusion model and fitness sharing model of genetic algorithm. The algorithm makes multiple...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on Information and Automation pp. 1269 - 1274
Main Authors Liqiang Liu, Yang Song, Yuntao Dai
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2010
Subjects
Online AccessGet full text
ISBN1424457017
9781424457014
DOI10.1109/ICINFA.2010.5512118

Cover

Abstract On account of the premature and stagnation of traditional ant colony algorithm, this paper proposes a cooperative multi-ant colony pseudo-parallel optimization algorithm, drawing lessons from the idea of the exclusion model and fitness sharing model of genetic algorithm. The algorithm makes multiple sub-ant colonies run different instance models of ant algorithm independently and concurrently, and realizes the historical experience synthesis of each sub-colony through the interaction of the pheromone, to ensure the guidance and diversity of pheromone distribution. Through the cooperation of the ants in each sub-colony and between sub-colonies, the algorithm achieves the collaborative optimization of ant colony at two levels, thus it improves the ability of optimization and the stability. Algorithm performance test shows that, the algorithm has a better ability of global optimization than the traditional ant colony algorithm.
AbstractList On account of the premature and stagnation of traditional ant colony algorithm, this paper proposes a cooperative multi-ant colony pseudo-parallel optimization algorithm, drawing lessons from the idea of the exclusion model and fitness sharing model of genetic algorithm. The algorithm makes multiple sub-ant colonies run different instance models of ant algorithm independently and concurrently, and realizes the historical experience synthesis of each sub-colony through the interaction of the pheromone, to ensure the guidance and diversity of pheromone distribution. Through the cooperation of the ants in each sub-colony and between sub-colonies, the algorithm achieves the collaborative optimization of ant colony at two levels, thus it improves the ability of optimization and the stability. Algorithm performance test shows that, the algorithm has a better ability of global optimization than the traditional ant colony algorithm.
Author Liqiang Liu
Yuntao Dai
Yang Song
Author_xml – sequence: 1
  surname: Liqiang Liu
  fullname: Liqiang Liu
  email: llq9842222@126.com
  organization: Coll. of Autom., Harbin Eng. Univ., Harbin, China
– sequence: 2
  surname: Yang Song
  fullname: Yang Song
  organization: Coll. of Autom., Harbin Eng. Univ., Harbin, China
– sequence: 3
  surname: Yuntao Dai
  fullname: Yuntao Dai
  email: peach0040@126.com
  organization: Coll. of Sci., Harbin Eng. Univ., Harbin, China
BookMark eNo1UM1Kw0AYXNGCpvYJeskLpH7ftz_JHkuwNlD00ntZsxtd2WRDkgr16Q1Y5zLMMAzDJOyui51jbI2wQQT9VJXV6267IZgNKZEQixu20nmBgoSQOQh5y5J_gfmCJQSgtQAgcc9W4_gFM4QkAvXAyjLG3g1m8t8ubc9h8pnpprSOIXaXtB_d2casN4MJwYU09pNv_c-cjl1qwkcc_PTZPrJFY8LoVldesuPu-Vjus8PbS1VuD5nXMGUCkZSworagOEHOSUgNJAsuLOp6Hoyc89q-A6EiZQvSTa2caaRSVrqcL9n6r9Y750794FszXE7XD_gvhURO-w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICINFA.2010.5512118
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424457045
1424457041
9781424457021
1424457025
EndPage 1274
ExternalDocumentID 5512118
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-411264d4cd06320732459025834d19c4241333cdb021626d829fc6eaf566d5e73
IEDL.DBID RIE
ISBN 1424457017
9781424457014
IngestDate Wed Aug 27 02:44:33 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009940024
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-411264d4cd06320732459025834d19c4241333cdb021626d829fc6eaf566d5e73
PageCount 6
ParticipantIDs ieee_primary_5512118
PublicationCentury 2000
PublicationDate 2010-June
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-June
PublicationDecade 2010
PublicationTitle 2010 International Conference on Information and Automation
PublicationTitleAbbrev ICINFA
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452206
Score 1.4604874
Snippet On account of the premature and stagnation of traditional ant colony algorithm, this paper proposes a cooperative multi-ant colony pseudo-parallel optimization...
SourceID ieee
SourceType Publisher
StartPage 1269
SubjectTerms Algorithm design and analysis
Ant colony algorithm
Ant colony optimization
Automation
Cities and towns
Collaboration
Cooperative
Educational institutions
Genetic algorithms
Heuristic algorithms
Multi-ant colony
Optimization
Testing
Traveling salesman problems
Title Cooperative multi-ant colony pseudo-parallel optimization algorithm
URI https://ieeexplore.ieee.org/document/5512118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPbSdYeLSItzIw4jaPixOPKKKiSFQMRepWxfEFKtKmKskAnx47SctDDGxJhsg6O7nz3f1_BrhyEz2xUiHjPEgZYuoyIYXHfBliLBHNlsV0W4z53RPeT_1pC663WhgiqprPqG8uq1q-ypPSpMoG2rvr_UrYhrZeZrVWa5tPqdDgNt9ot_xAL7UN0qm5x4Y65NhiMIpG4-FN3drVvPbH-SqVexnuwcNmYHVXyWu_LGQ_-fjFbPzvyPeh9yXksx63LuoAWrQ8hN1vDMIuRFGer6jmf1tVeyHTxrYMzHr5bq3eqFQ5M4DwLKPMyvUfZtFIN604e87X8-Jl0YPJ8HYS3bHmZAU2F3bB0OiGUGGidIDi6o_cRUNx8UMPlSMSNLU2z0uU1AGA3vCo0BVpwilOdeynfAq8I-gs8yUdg6VSrhyDwHH9GLnkgmwpRUpVLBc4dAJdY43ZqmZnzBpDnP79-Ax26uq8yXKcQ6dYl3ShnX4hL6vZ_gTWiaZI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPpQzAwqMg3mRgxG0eFyceUUTVQlsxFKlbFccOVKRJVZIBPj12kpaHGNiSDJF1dnLnu_v_DHBtR2piuUBCqRcTxNgmjDOHuNzHkCPqLYvuthjR3hPeT9xJA27WWhgpZdl8Jtv6sqzliywqdKqso7y72q_4G7Cp_D66lVprnVEp4eAmXam3XE8tthXUqb7HmjtkmazTD_qj7m3V3FW_-McJK6WD6e7CcDW0qq_ktV3kvB19_KI2_nfse3D4JeUzHtdOah8aMj2AnW8UwhYEQZYtZEUAN8oGQ6LMbWicdfpuLN5kITKiEeFJIhMjU_-YeS3eNMLkOVvO8pf5IYy7d-OgR-qzFciMmTlBrRxCgZFQIYqtPnMbNcfF9R0UFotQV9scJxJchQBqyyN8m8URlWGsoj_hSs85gmaapfIYDBFTYWkIju2GSDll0uScxbKM5jxLnkBLW2O6qOgZ09oQp38_voKt3ng4mA76o4cz2K5q9TrncQ7NfFnICxUC5PyynPlPwhOplQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Information+and+Automation&rft.atitle=Cooperative+multi-ant+colony+pseudo-parallel+optimization+algorithm&rft.au=Liqiang+Liu&rft.au=Yang+Song&rft.au=Yuntao+Dai&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424457014&rft.spage=1269&rft.epage=1274&rft_id=info:doi/10.1109%2FICINFA.2010.5512118&rft.externalDocID=5512118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424457014/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424457014/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424457014/sc.gif&client=summon&freeimage=true