A novel serial crime prediction model based on Bayesian learning theory

How to build affective mathematical models to understand the behaviors of serial crimes is an interesting research field in public security. Several theories have been proposed to handle this problem. In this paper, we introduce a novel serial crime prediction model using Bayesian learning theory. T...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 1757 - 1762
Main Authors Renjie Liao, Xueyao Wang, Lun Li, Zengchang Qin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2010
Subjects
Online AccessGet full text
ISBN9781424465262
1424465265
ISSN2160-133X
DOI10.1109/ICMLC.2010.5580971

Cover

Loading…
Abstract How to build affective mathematical models to understand the behaviors of serial crimes is an interesting research field in public security. Several theories have been proposed to handle this problem. In this paper, we introduce a novel serial crime prediction model using Bayesian learning theory. There are many potential factors affecting a serial offender's selection of the next crime site, we mainly studied the factors related to geographic information. For each factor, by using a discrete distance decay function which derives from the classical crime prediction theory "Journey to Crime", we create a geographic profilewhich is a probability distribution of being the next crime site on given geographical locations. The final prediction is made by combining all geographic profiles weighted by effect functions which can be adjusted adaptively based on Bayesian learning theory. By testing the model on a crime dataset of a serial crime happened in Gansu, China, we can successfully capture the offender's intentions and locate the neighborhood of the next crime scene.
AbstractList How to build affective mathematical models to understand the behaviors of serial crimes is an interesting research field in public security. Several theories have been proposed to handle this problem. In this paper, we introduce a novel serial crime prediction model using Bayesian learning theory. There are many potential factors affecting a serial offender's selection of the next crime site, we mainly studied the factors related to geographic information. For each factor, by using a discrete distance decay function which derives from the classical crime prediction theory "Journey to Crime", we create a geographic profilewhich is a probability distribution of being the next crime site on given geographical locations. The final prediction is made by combining all geographic profiles weighted by effect functions which can be adjusted adaptively based on Bayesian learning theory. By testing the model on a crime dataset of a serial crime happened in Gansu, China, we can successfully capture the offender's intentions and locate the neighborhood of the next crime scene.
Author Zengchang Qin
Xueyao Wang
Lun Li
Renjie Liao
Author_xml – sequence: 1
  surname: Renjie Liao
  fullname: Renjie Liao
  organization: Dept. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
– sequence: 2
  surname: Xueyao Wang
  fullname: Xueyao Wang
  organization: Dept. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
– sequence: 3
  surname: Lun Li
  fullname: Lun Li
  organization: Dept. of Mech. Eng. & Autom., Beihang Univ., Beijing, China
– sequence: 4
  surname: Zengchang Qin
  fullname: Zengchang Qin
  email: zengchang.qin@gmail.com
  organization: Dept. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
BookMark eNpVkM1Kw0AUhUesYK15Ad3MC6TO300yyxpsLUTcdOGuTDJ3dCSdlEkQ8vYO2I13c_g4cPi4d2QRhoCEPHC25pzpp3391tRrwRIDVEyX_Ipkuqy4EkoVIACu_3EhFmQpeMFyLuXHLcnG8ZulUyC4hiXZbWgYfrCnI0ZvetpFf0J6jmh9N_kh0NNgU9uaES1N-GxmHL0JtEcTgw-fdPrCIc735MaZfsTskity2L4c6te8ed_t602Te82mXDqOBlpI_tZ2hrdCdyUgOs0rI5UDWySzymrHi9Y5hFaI1nVSKQTXmUKuyOPfrEfE4znJmjgfL5-QvzjoUjk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2010.5580971
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424465255
1424465273
1424465257
9781424465279
EndPage 1762
ExternalDocumentID 5580971
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-3f1ea5b5201ddca1b29c75eef918a34f5d60458d9f16bffe5b22bfc344e5fca63
IEDL.DBID RIE
ISBN 9781424465262
1424465265
ISSN 2160-133X
IngestDate Wed Aug 27 03:02:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3f1ea5b5201ddca1b29c75eef918a34f5d60458d9f16bffe5b22bfc344e5fca63
PageCount 6
ParticipantIDs ieee_primary_5580971
PublicationCentury 2000
PublicationDate 2010-July
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationTitle 2010 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452195
ssj0000744891
Score 1.5273026
Snippet How to build affective mathematical models to understand the behaviors of serial crimes is an interesting research field in public security. Several theories...
SourceID ieee
SourceType Publisher
StartPage 1757
SubjectTerms Bayesian Learning Theory
Bayesian methods
Crime Prediction
Geographic Profiling
Hausdorff Distance
Kernel Function
Mixture of Gaussian Distribution
Title A novel serial crime prediction model based on Bayesian learning theory
URI https://ieeexplore.ieee.org/document/5580971
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWsS3PDCSNnbsJB6hohREEUORulX-OCMEaqsqRSq_HttJikAMbLkMcXKxdT7fvfcQukgyKYjMvQAx1REjhke5oFnkgl2qOWSWBCDt-DEdPbP7KZ820OUWCwMAofkMev4y1PLNQq_9UVmf89xTHjVR0yVuJVZre57iqcFJhTENduYSjyCYR0kaRy4Vm9a4rtRTwtd0T5VNa0BNLPp3g_HDoOz6qkb8Ib0SIs-wjcb1O5cNJ2-9daF6-vMXneN_P2oXdb8xfvhpG732UAPm-6hdizzgas130O0Vni8-4B2XcxVrrweAlytf4PE_FQctHeyjocHOvJYb8MBMXOlRvOCAldx00WR4MxmMokp9IXoVcRElloDkijs3GKMlUVTojANYQXKZMMtN6musRliSKmuBK0qV1QljwK2WaXKAWvPFHA4RFrGRwKyBnFlGdC6VBvcEyanxu5PkCHW8W2bLkl9jVnnk-O_bJ2inrOD7ltlT1CpWazhzG4NCnYcZ8QUha7Cm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cBI2jqxk3iEitJCUzEUqVvljzNCoLSqUqTy64mdpAjEwJbLkI-Lo2f77r2H0FUQCU5EbA2IfeVRopkXcz_ycrALFYPIEEekTcbh4Jk-TNm0hq43XBgAcM1n0LaHrpav52plt8o6jMVW8mgLbee4T3nB1trsqFhxcFKyTF0c5UsPZ5nnk7Dr5YuxacXsCq0ofCX4VMZ-Ranp8s6wl4x6Rd9Xec8f5isOe_oNlFRPXbScvLVXmWyrz1-Cjv99rT3U-mb54acNfu2jGqQHqFHZPODyr2-i-xuczj_gHRejFSvrCIAXS1visZ8VOzcdbPFQ4zy8FWuw1ExcOlK8YMeWXLfQpH836Q280n_Be-XdzAsMAcEky9OgtRJE-lxFDMBwEouAGqZDW2XV3JBQGgNM-r40KqAUmFEiDA5RPZ2ncIQw72oB1GiIqaFExUIqyK8gmK_t_CQ4Rk2bltmiUNiYlRk5-fv0JdoZTJLRbDQcP56i3aKebxtoz1A9W67gPJ8mZPLCjY4vnSSz9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+novel+serial+crime+prediction+model+based+on+Bayesian+learning+theory&rft.au=Renjie+Liao&rft.au=Xueyao+Wang&rft.au=Lun+Li&rft.au=Zengchang+Qin&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424465262&rft.issn=2160-133X&rft.volume=4&rft.spage=1757&rft.epage=1762&rft_id=info:doi/10.1109%2FICMLC.2010.5580971&rft.externalDocID=5580971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon