A novel serial crime prediction model based on Bayesian learning theory
How to build affective mathematical models to understand the behaviors of serial crimes is an interesting research field in public security. Several theories have been proposed to handle this problem. In this paper, we introduce a novel serial crime prediction model using Bayesian learning theory. T...
Saved in:
Published in | 2010 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 1757 - 1762 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424465262 1424465265 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2010.5580971 |
Cover
Loading…
Abstract | How to build affective mathematical models to understand the behaviors of serial crimes is an interesting research field in public security. Several theories have been proposed to handle this problem. In this paper, we introduce a novel serial crime prediction model using Bayesian learning theory. There are many potential factors affecting a serial offender's selection of the next crime site, we mainly studied the factors related to geographic information. For each factor, by using a discrete distance decay function which derives from the classical crime prediction theory "Journey to Crime", we create a geographic profilewhich is a probability distribution of being the next crime site on given geographical locations. The final prediction is made by combining all geographic profiles weighted by effect functions which can be adjusted adaptively based on Bayesian learning theory. By testing the model on a crime dataset of a serial crime happened in Gansu, China, we can successfully capture the offender's intentions and locate the neighborhood of the next crime scene. |
---|---|
AbstractList | How to build affective mathematical models to understand the behaviors of serial crimes is an interesting research field in public security. Several theories have been proposed to handle this problem. In this paper, we introduce a novel serial crime prediction model using Bayesian learning theory. There are many potential factors affecting a serial offender's selection of the next crime site, we mainly studied the factors related to geographic information. For each factor, by using a discrete distance decay function which derives from the classical crime prediction theory "Journey to Crime", we create a geographic profilewhich is a probability distribution of being the next crime site on given geographical locations. The final prediction is made by combining all geographic profiles weighted by effect functions which can be adjusted adaptively based on Bayesian learning theory. By testing the model on a crime dataset of a serial crime happened in Gansu, China, we can successfully capture the offender's intentions and locate the neighborhood of the next crime scene. |
Author | Zengchang Qin Xueyao Wang Lun Li Renjie Liao |
Author_xml | – sequence: 1 surname: Renjie Liao fullname: Renjie Liao organization: Dept. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China – sequence: 2 surname: Xueyao Wang fullname: Xueyao Wang organization: Dept. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China – sequence: 3 surname: Lun Li fullname: Lun Li organization: Dept. of Mech. Eng. & Autom., Beihang Univ., Beijing, China – sequence: 4 surname: Zengchang Qin fullname: Zengchang Qin email: zengchang.qin@gmail.com organization: Dept. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China |
BookMark | eNpVkM1Kw0AUhUesYK15Ad3MC6TO300yyxpsLUTcdOGuTDJ3dCSdlEkQ8vYO2I13c_g4cPi4d2QRhoCEPHC25pzpp3391tRrwRIDVEyX_Ipkuqy4EkoVIACu_3EhFmQpeMFyLuXHLcnG8ZulUyC4hiXZbWgYfrCnI0ZvetpFf0J6jmh9N_kh0NNgU9uaES1N-GxmHL0JtEcTgw-fdPrCIc735MaZfsTskity2L4c6te8ed_t602Te82mXDqOBlpI_tZ2hrdCdyUgOs0rI5UDWySzymrHi9Y5hFaI1nVSKQTXmUKuyOPfrEfE4znJmjgfL5-QvzjoUjk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2010.5580971 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781424465255 1424465273 1424465257 9781424465279 |
EndPage | 1762 |
ExternalDocumentID | 5580971 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-3f1ea5b5201ddca1b29c75eef918a34f5d60458d9f16bffe5b22bfc344e5fca63 |
IEDL.DBID | RIE |
ISBN | 9781424465262 1424465265 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 03:02:56 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-3f1ea5b5201ddca1b29c75eef918a34f5d60458d9f16bffe5b22bfc344e5fca63 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5580971 |
PublicationCentury | 2000 |
PublicationDate | 2010-July |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-July |
PublicationDecade | 2010 |
PublicationTitle | 2010 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452195 ssj0000744891 |
Score | 1.5273026 |
Snippet | How to build affective mathematical models to understand the behaviors of serial crimes is an interesting research field in public security. Several theories... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1757 |
SubjectTerms | Bayesian Learning Theory Bayesian methods Crime Prediction Geographic Profiling Hausdorff Distance Kernel Function Mixture of Gaussian Distribution |
Title | A novel serial crime prediction model based on Bayesian learning theory |
URI | https://ieeexplore.ieee.org/document/5580971 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkwFWsS3PDCSNnbsJB6hohREEUORulX-OCMEaqsqRSq_HttJikAMbLkMcXKxdT7fvfcQukgyKYjMvQAx1REjhke5oFnkgl2qOWSWBCDt-DEdPbP7KZ820OUWCwMAofkMev4y1PLNQq_9UVmf89xTHjVR0yVuJVZre57iqcFJhTENduYSjyCYR0kaRy4Vm9a4rtRTwtd0T5VNa0BNLPp3g_HDoOz6qkb8Ib0SIs-wjcb1O5cNJ2-9daF6-vMXneN_P2oXdb8xfvhpG732UAPm-6hdizzgas130O0Vni8-4B2XcxVrrweAlytf4PE_FQctHeyjocHOvJYb8MBMXOlRvOCAldx00WR4MxmMokp9IXoVcRElloDkijs3GKMlUVTojANYQXKZMMtN6musRliSKmuBK0qV1QljwK2WaXKAWvPFHA4RFrGRwKyBnFlGdC6VBvcEyanxu5PkCHW8W2bLkl9jVnnk-O_bJ2inrOD7ltlT1CpWazhzG4NCnYcZ8QUha7Cm |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAq0CK-8cBI2jqxk3iEitJCUzEUqVvljzNCoLSqUqTy64mdpAjEwJbLkI-Lo2f77r2H0FUQCU5EbA2IfeVRopkXcz_ycrALFYPIEEekTcbh4Jk-TNm0hq43XBgAcM1n0LaHrpav52plt8o6jMVW8mgLbee4T3nB1trsqFhxcFKyTF0c5UsPZ5nnk7Dr5YuxacXsCq0ofCX4VMZ-Ranp8s6wl4x6Rd9Xec8f5isOe_oNlFRPXbScvLVXmWyrz1-Cjv99rT3U-mb54acNfu2jGqQHqFHZPODyr2-i-xuczj_gHRejFSvrCIAXS1visZ8VOzcdbPFQ4zy8FWuw1ExcOlK8YMeWXLfQpH836Q280n_Be-XdzAsMAcEky9OgtRJE-lxFDMBwEouAGqZDW2XV3JBQGgNM-r40KqAUmFEiDA5RPZ2ncIQw72oB1GiIqaFExUIqyK8gmK_t_CQ4Rk2bltmiUNiYlRk5-fv0JdoZTJLRbDQcP56i3aKebxtoz1A9W67gPJ8mZPLCjY4vnSSz9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=A+novel+serial+crime+prediction+model+based+on+Bayesian+learning+theory&rft.au=Renjie+Liao&rft.au=Xueyao+Wang&rft.au=Lun+Li&rft.au=Zengchang+Qin&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424465262&rft.issn=2160-133X&rft.volume=4&rft.spage=1757&rft.epage=1762&rft_id=info:doi/10.1109%2FICMLC.2010.5580971&rft.externalDocID=5580971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |