Handwriting Recognition Using Eccentricity and Metric Feature Extraction Based on K-Nearest Neighbors

The process of handwriting recognition aims to digitize handwriting without having to retype handwriting. This study proposes the extraction of Eccentricity and roundness features based on K-Nearest Neighbors (KNN) to recognize handwriting. To maximize the process of recognition is done several stag...

Full description

Saved in:
Bibliographic Details
Published in2018 International Seminar on Application for Technology of Information and Communication pp. 411 - 416
Main Authors Hari Rachmawanto, Eko, Rambu Anarqi, Galang, Moses Setiadi, De Rosal Ignatius, Atika Sari, Christy
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2018
Subjects
Online AccessGet full text
DOI10.1109/ISEMANTIC.2018.8549804

Cover

Loading…
Abstract The process of handwriting recognition aims to digitize handwriting without having to retype handwriting. This study proposes the extraction of Eccentricity and roundness features based on K-Nearest Neighbors (KNN) to recognize handwriting. To maximize the process of recognition is done several stages of preprocessing stages such as thresholding, noise filtering, and cropping stage to take every character on handwriting image. Each image that has been through the preprocessing process is further extracted features. Eccentricity and metric are the features of the extracted form of each image to be recognized. After obtained the two features are then carried out the training process to group the feature form on each type of letter. Next, KNN is used to classify each letter character. Based on the results of testing the proposed method for recognition of handwriting characters obtained an accuracy of 85.38%.
AbstractList The process of handwriting recognition aims to digitize handwriting without having to retype handwriting. This study proposes the extraction of Eccentricity and roundness features based on K-Nearest Neighbors (KNN) to recognize handwriting. To maximize the process of recognition is done several stages of preprocessing stages such as thresholding, noise filtering, and cropping stage to take every character on handwriting image. Each image that has been through the preprocessing process is further extracted features. Eccentricity and metric are the features of the extracted form of each image to be recognized. After obtained the two features are then carried out the training process to group the feature form on each type of letter. Next, KNN is used to classify each letter character. Based on the results of testing the proposed method for recognition of handwriting characters obtained an accuracy of 85.38%.
Author Hari Rachmawanto, Eko
Atika Sari, Christy
Rambu Anarqi, Galang
Moses Setiadi, De Rosal Ignatius
Author_xml – sequence: 1
  givenname: Eko
  surname: Hari Rachmawanto
  fullname: Hari Rachmawanto, Eko
  organization: Computer Science Faculty Dian, Department of Informatics Engineering, Nuswantoro University, Semarang, Indonesia
– sequence: 2
  givenname: Galang
  surname: Rambu Anarqi
  fullname: Rambu Anarqi, Galang
  organization: Computer Science Faculty Dian, Department of Informatics Engineering, Nuswantoro University, Semarang, Indonesia
– sequence: 3
  givenname: De Rosal Ignatius
  surname: Moses Setiadi
  fullname: Moses Setiadi, De Rosal Ignatius
  organization: Computer Science Faculty Dian, Department of Informatics Engineering, Nuswantoro University, Semarang, Indonesia
– sequence: 4
  givenname: Christy
  surname: Atika Sari
  fullname: Atika Sari, Christy
  organization: Computer Science Faculty Dian, Department of Informatics Engineering, Nuswantoro University, Semarang, Indonesia
BookMark eNotUNtKAzEUjKCgrf0CQfIDW88m2ezuYy3bC7YVtD6XXM7WiGYliWj_3q32aeYMM8NhBuTcdx4Juc1hnOdQ3y2fm_Vks11OxwzyalwVoq5AnJFBXvBKlqKS8pKMYnwDACYrLmp-RXChvP0OLjm_p09our3veefpSzwqjTHoU3DGpQPtnXSNx4vOUKWvgLT5SUGZv8C9imhpTx6yDaqAMdENuv2r7kK8Jheteo84OuGQbGfNdrrIVo_z5XSyylwNKeOoGbQlCFnUMldW1JpJzUxhWqmgRalBSS5R9M8zDbq0BriwmnFroWUlH5Kb_1qHiLvP4D5UOOxOQ_Bfr_lYZQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISEMANTIC.2018.8549804
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538674866
9781538674864
EndPage 416
ExternalDocumentID 8549804
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-3eb20f70465961ad49b26b2c5cf6a0fe6b0a636e46832b0b7dc034db23dd0f273
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3eb20f70465961ad49b26b2c5cf6a0fe6b0a636e46832b0b7dc034db23dd0f273
PageCount 6
ParticipantIDs ieee_primary_8549804
PublicationCentury 2000
PublicationDate 2018-September
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-September
PublicationDecade 2010
PublicationTitle 2018 International Seminar on Application for Technology of Information and Communication
PublicationTitleAbbrev ISEMANTIC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683493
Score 1.7435653
Snippet The process of handwriting recognition aims to digitize handwriting without having to retype handwriting. This study proposes the extraction of Eccentricity...
SourceID ieee
SourceType Publisher
StartPage 411
SubjectTerms Classification
Classification algorithms
Eccentricity
Feature extraction
Handwriting recognition
Image segmentation
KNN
Measurement
Roundness
Testing
Training data
Title Handwriting Recognition Using Eccentricity and Metric Feature Extraction Based on K-Nearest Neighbors
URI https://ieeexplore.ieee.org/document/8549804
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA5zJ7342MQ3OXi0W9qmaXLU0bEpLaITdht5yhA62VoU_3qTtpsPPHgLbUrKL4HfI9_3_QC4jIRPmW_TEsxd6UazwBMUSc8YoiTlNoRWjo2cZmT0hG-n0bQFrjZcGK11BT7TPTes7vLVQpauVNanNpmhTvxzyx6zmqu1qacEhIaYhQ0J2EesP35M0utsMh44ABftNR__6KJSOZHhLkjXy9fYkZdeWYie_PilzPjf_9sD3S-6HrzfOKJ90NL5Adj5pjTYAXrEc_XmBIzyZ_iwBg0tclhBBmAiK5DmXNqYHNqZMHWNtiR0AWK51DB5L5Y1AwLeWLenoB3ceZnTv10VMHPlVXuWVl0wGSaTwchrOix4c4YKL7RpNTKxTZEjRnyuMBMBEYGMpCEcGU0E4iQkGlvbBgKJWEkUYiWCUClkbOBzCNr5ItdHADJtXwundRpzjLVv0yATGsbjOIp0ROkx6Dh7zV5rDY1ZY6qTvx-fgm23ZzWW6wy0i2Wpz63zL8RFteuft7-wKQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsNAFB2KLtSNj1Z8OwuXJp0kk8nMUktLapsgGqG7knlEipBKm6D49c4kaX3gwt2QBww3A_fcm3POBeDK5w5lji5LcGpaN4q5FqdIWFlGpKCphtDSqJGjmIRP-G7iT1rgeq2FUUpV5DNlm2X1L1_ORWlaZV2qixlqzD83dd7Hfq3WWndUXEI9zLxGBuwg1h0-9qObOBn2DIWL2s3rP-aoVGlksAui1QZq9siLXRbcFh-_vBn_u8M90PkS7MH7dSraBy2VH4Cdb16DbaDCNJdvxsIof4YPK9rQPIcVaQD2RUXTnAmNyqF-EkZm1JaABiKWCwX778Wi1kDAW534JNSLkRUbB9xlAWPTYNWnadkByaCf9EKrmbFgzRgqLE8X1igLdJHsM-KkEjPuEu4KX2QkRZkiHKXEIwrr2Loc8UAK5GHJXU9KlGnocwg28nmujgBkSt_mxu00SDFWji6EMi9jaRD4vvIpPQZtE6_pa-2iMW1CdfL35UuwFSbReDoexqNTsG2-X83sOgMbxaJU5xoKFPyiOgGfHcKzdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Seminar+on+Application+for+Technology+of+Information+and+Communication&rft.atitle=Handwriting+Recognition+Using+Eccentricity+and+Metric+Feature+Extraction+Based+on+K-Nearest+Neighbors&rft.au=Hari+Rachmawanto%2C+Eko&rft.au=Rambu+Anarqi%2C+Galang&rft.au=Moses+Setiadi%2C+De+Rosal+Ignatius&rft.au=Atika+Sari%2C+Christy&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=411&rft.epage=416&rft_id=info:doi/10.1109%2FISEMANTIC.2018.8549804&rft.externalDocID=8549804