Transient feature extraction based on phase space fusion by partial-least-square regression analysis of sensor array signals
Pattern classification based on transient signal analysis provides an effective method for identification of dynamical systems. The partial-least-square regression (PLSR) is most commonly used to generate parametric representation of phase space defined by measured signals and their time derivatives...
Saved in:
Published in | 2011 International Conference on Emerging Trends in Electrical and Computer Technology pp. 676 - 680 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pattern classification based on transient signal analysis provides an effective method for identification of dynamical systems. The partial-least-square regression (PLSR) is most commonly used to generate parametric representation of phase space defined by measured signals and their time derivatives. The PLS component scores are interpreted as object features for pattern identification. In this paper, we consider sensor array transients, and propose PLSR based fusion of phase spaces of individual sensors into a single virtual phase space. Motivation for this approach comes from realizing that (i) multiplicity of array sensors encodes information about object diversity, and (ii) PLSR models object diversities in terms of small number of latent variables. The approach is validated through a case study of vapor identification by electronic nose based on surface-acoustic-wave (SAW) chemical sensor array. A comparison of results with and without fusion shows substantial improvement in vapor class separability after phase space fusion. |
---|---|
AbstractList | Pattern classification based on transient signal analysis provides an effective method for identification of dynamical systems. The partial-least-square regression (PLSR) is most commonly used to generate parametric representation of phase space defined by measured signals and their time derivatives. The PLS component scores are interpreted as object features for pattern identification. In this paper, we consider sensor array transients, and propose PLSR based fusion of phase spaces of individual sensors into a single virtual phase space. Motivation for this approach comes from realizing that (i) multiplicity of array sensors encodes information about object diversity, and (ii) PLSR models object diversities in terms of small number of latent variables. The approach is validated through a case study of vapor identification by electronic nose based on surface-acoustic-wave (SAW) chemical sensor array. A comparison of results with and without fusion shows substantial improvement in vapor class separability after phase space fusion. |
Author | Yadava, R D S Singh, P |
Author_xml | – sequence: 1 givenname: P surname: Singh fullname: Singh, P email: p8singh@gmail.com organization: Dept. of Phys., Banaras Hindu Univ., Varanasi, India – sequence: 2 givenname: R D S surname: Yadava fullname: Yadava, R D S email: ardius@gmail.com organization: Dept. of Phys., Banaras Hindu Univ., Varanasi, India |
BookMark | eNpFUMtOwzAQNAIkaOkXwME_kOJXEnxEUYFKlbjkXm2SdTEqTvC6EpH4eEKpxFxmVvM47IxdhD4gY3dSLKUU9n5drepVVS-VkHKZl4VQQp-xmTTKmNKqojj_P7S8YguidzGhKKyy9pp91xECeQyJO4R0iMjxK0Vok-8Db4Cw45MY3ibFaYAWuTvQ0Rv5ADF52Gd7BEoZfR5gqkfcRaRjBALsR_LEe8cJA_WRQ4wwcvK7yaIbdukmwsWJ56x-WtXVS7Z5fV5Xj5vMW5EyrfIWO2WcRNlI68A6YWwHrW3LFnNjrdaQ584ZrUBDI0H8hgrTYflQCq3n7PZv1iPidoj-A-K4PT1L_wAsjmPj |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICETECT.2011.5760203 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1424479266 9781424479269 1424479258 9781424479252 |
EndPage | 680 |
ExternalDocumentID | 5760203 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-325ced24f1e1b19fa9f049dac9c7ce549933a55ff432a3ab1a09fa964de787033 |
IEDL.DBID | RIE |
ISBN | 1424479231 9781424479238 |
IngestDate | Wed Aug 27 02:48:39 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-325ced24f1e1b19fa9f049dac9c7ce549933a55ff432a3ab1a09fa964de787033 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5760203 |
PublicationCentury | 2000 |
PublicationDate | 2011-March |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-March |
PublicationDecade | 2010 |
PublicationTitle | 2011 International Conference on Emerging Trends in Electrical and Computer Technology |
PublicationTitleAbbrev | ICETECT |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000669299 |
Score | 1.4695896 |
Snippet | Pattern classification based on transient signal analysis provides an effective method for identification of dynamical systems. The partial-least-square... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 676 |
SubjectTerms | Actuators Arrays electronic nose Electronic noses Feature extraction partial least square regression phase space fusion Polymers Surface acoustic waves Transient analysis Transient signal analysis |
Title | Transient feature extraction based on phase space fusion by partial-least-square regression analysis of sensor array signals |
URI | https://ieeexplore.ieee.org/document/5760203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyZALeItD4y4xHm1nqtWBamIIUjdKts5A6JKSpoORfx47pK0CMTAdnnIsqzTvXzfd4xde7GxYD0lYhtigtI3vjDgaaHlwFmaaD3wCOA8fYgnT-H9LJq12M0OCwMAVfMZ9Eis7vLT3K6pVIbJe0wXZ3tsDxO3Gqu1q6eg60RPr7bYLaLFk1tKp-Z50EDnpKdu74ajZDRMag7PZt0fA1Yq_zI-YNPtzuq2krfeujQ9-_GLtPG_Wz9k3W8kH3_c-agj1oKswz4rB0VASO6gIvbkaKKLGuLAya-lHIXlC0ocLQ6u4dar6tuGL0nX9EIsaOiPWL2jigEv4Lnup824blhOeO74CnPkvOC6KPSGU6cI6nqXJeNRMpyIZgqDeFVeKQI_spD6oZMgjVROK4dJRaqtsn0LlF0GgY4i58LA14E2Unv0UxymQLYgCI5ZO8szOGFcShdajB8sqkQIypp-qmRqIhVRUKHTU9ahg5sva56NeXNmZ3-_Pmf7dX2X-sEuWLss1nCJAUJprirN-AJYA7pK |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pSA8a3PXh0cbsv6JlAQIF4WBNupO1O1UhYXOCA8cc7s7tgNB68dR9pmmYy30w73zeM3biRNmBc6UQmwASlqT1Hg6scJVrWUEfrlksE5-Eo6j0F9-NwXGG3Wy4MAOTFZ9CgYX6Xn6RmRUdlmLxHdHG2w3YR90OvYGttT1QQPBHr5Ya9RcJ4YiPqVD63SvKccOVdv92JO-24UPEsZ_7RYiVHmO4BG27WVhSWvDVWS90wH79kG_-7-ENW_-by8cctSh2xCsxq7DOHKKJCcgu5tCdHJ50VJAdOyJZwHMxfcMTR5-AcdrXIv635nKxNTZ0ptf1xFu9oZMAzeC4qamdclTonPLV8gVlymnGVZWrNqVYErb3O4m4nbvecsg-D8yrdpeN7oYHEC6wAoYW0SlpMKxJlpGkaoPzS91UYWhv4nvKVFsqln6IgAfIGvn_MqrN0BieMC2EDgxGEQaMIQBrdTKRIdChDCitUcspqtHGTeaG0MSn37Ozv19dsrxcPB5NBf_RwzvaL016qDrtg1WW2gksMF5b6KreSLz_CvZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Emerging+Trends+in+Electrical+and+Computer+Technology&rft.atitle=Transient+feature+extraction+based+on+phase+space+fusion+by+partial-least-square+regression+analysis+of+sensor+array+signals&rft.au=Singh%2C+P&rft.au=Yadava%2C+R+D+S&rft.date=2011-03-01&rft.pub=IEEE&rft.isbn=9781424479238&rft.spage=676&rft.epage=680&rft_id=info:doi/10.1109%2FICETECT.2011.5760203&rft.externalDocID=5760203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479238/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479238/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479238/sc.gif&client=summon&freeimage=true |