Transient feature extraction based on phase space fusion by partial-least-square regression analysis of sensor array signals

Pattern classification based on transient signal analysis provides an effective method for identification of dynamical systems. The partial-least-square regression (PLSR) is most commonly used to generate parametric representation of phase space defined by measured signals and their time derivatives...

Full description

Saved in:
Bibliographic Details
Published in2011 International Conference on Emerging Trends in Electrical and Computer Technology pp. 676 - 680
Main Authors Singh, P, Yadava, R D S
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pattern classification based on transient signal analysis provides an effective method for identification of dynamical systems. The partial-least-square regression (PLSR) is most commonly used to generate parametric representation of phase space defined by measured signals and their time derivatives. The PLS component scores are interpreted as object features for pattern identification. In this paper, we consider sensor array transients, and propose PLSR based fusion of phase spaces of individual sensors into a single virtual phase space. Motivation for this approach comes from realizing that (i) multiplicity of array sensors encodes information about object diversity, and (ii) PLSR models object diversities in terms of small number of latent variables. The approach is validated through a case study of vapor identification by electronic nose based on surface-acoustic-wave (SAW) chemical sensor array. A comparison of results with and without fusion shows substantial improvement in vapor class separability after phase space fusion.
AbstractList Pattern classification based on transient signal analysis provides an effective method for identification of dynamical systems. The partial-least-square regression (PLSR) is most commonly used to generate parametric representation of phase space defined by measured signals and their time derivatives. The PLS component scores are interpreted as object features for pattern identification. In this paper, we consider sensor array transients, and propose PLSR based fusion of phase spaces of individual sensors into a single virtual phase space. Motivation for this approach comes from realizing that (i) multiplicity of array sensors encodes information about object diversity, and (ii) PLSR models object diversities in terms of small number of latent variables. The approach is validated through a case study of vapor identification by electronic nose based on surface-acoustic-wave (SAW) chemical sensor array. A comparison of results with and without fusion shows substantial improvement in vapor class separability after phase space fusion.
Author Yadava, R D S
Singh, P
Author_xml – sequence: 1
  givenname: P
  surname: Singh
  fullname: Singh, P
  email: p8singh@gmail.com
  organization: Dept. of Phys., Banaras Hindu Univ., Varanasi, India
– sequence: 2
  givenname: R D S
  surname: Yadava
  fullname: Yadava, R D S
  email: ardius@gmail.com
  organization: Dept. of Phys., Banaras Hindu Univ., Varanasi, India
BookMark eNpFUMtOwzAQNAIkaOkXwME_kOJXEnxEUYFKlbjkXm2SdTEqTvC6EpH4eEKpxFxmVvM47IxdhD4gY3dSLKUU9n5drepVVS-VkHKZl4VQQp-xmTTKmNKqojj_P7S8YguidzGhKKyy9pp91xECeQyJO4R0iMjxK0Vok-8Db4Cw45MY3ibFaYAWuTvQ0Rv5ADF52Gd7BEoZfR5gqkfcRaRjBALsR_LEe8cJA_WRQ4wwcvK7yaIbdukmwsWJ56x-WtXVS7Z5fV5Xj5vMW5EyrfIWO2WcRNlI68A6YWwHrW3LFnNjrdaQ584ZrUBDI0H8hgrTYflQCq3n7PZv1iPidoj-A-K4PT1L_wAsjmPj
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICETECT.2011.5760203
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424479266
9781424479269
1424479258
9781424479252
EndPage 680
ExternalDocumentID 5760203
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-325ced24f1e1b19fa9f049dac9c7ce549933a55ff432a3ab1a09fa964de787033
IEDL.DBID RIE
ISBN 1424479231
9781424479238
IngestDate Wed Aug 27 02:48:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-325ced24f1e1b19fa9f049dac9c7ce549933a55ff432a3ab1a09fa964de787033
PageCount 5
ParticipantIDs ieee_primary_5760203
PublicationCentury 2000
PublicationDate 2011-March
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-March
PublicationDecade 2010
PublicationTitle 2011 International Conference on Emerging Trends in Electrical and Computer Technology
PublicationTitleAbbrev ICETECT
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669299
Score 1.4695896
Snippet Pattern classification based on transient signal analysis provides an effective method for identification of dynamical systems. The partial-least-square...
SourceID ieee
SourceType Publisher
StartPage 676
SubjectTerms Actuators
Arrays
electronic nose
Electronic noses
Feature extraction
partial least square regression
phase space fusion
Polymers
Surface acoustic waves
Transient analysis
Transient signal analysis
Title Transient feature extraction based on phase space fusion by partial-least-square regression analysis of sensor array signals
URI https://ieeexplore.ieee.org/document/5760203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyZALeItD4y4xHm1nqtWBamIIUjdKts5A6JKSpoORfx47pK0CMTAdnnIsqzTvXzfd4xde7GxYD0lYhtigtI3vjDgaaHlwFmaaD3wCOA8fYgnT-H9LJq12M0OCwMAVfMZ9Eis7vLT3K6pVIbJe0wXZ3tsDxO3Gqu1q6eg60RPr7bYLaLFk1tKp-Z50EDnpKdu74ajZDRMag7PZt0fA1Yq_zI-YNPtzuq2krfeujQ9-_GLtPG_Wz9k3W8kH3_c-agj1oKswz4rB0VASO6gIvbkaKKLGuLAya-lHIXlC0ocLQ6u4dar6tuGL0nX9EIsaOiPWL2jigEv4Lnup824blhOeO74CnPkvOC6KPSGU6cI6nqXJeNRMpyIZgqDeFVeKQI_spD6oZMgjVROK4dJRaqtsn0LlF0GgY4i58LA14E2Unv0UxymQLYgCI5ZO8szOGFcShdajB8sqkQIypp-qmRqIhVRUKHTU9ahg5sva56NeXNmZ3-_Pmf7dX2X-sEuWLss1nCJAUJprirN-AJYA7pK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD3pSA8a3PXh0cbsv6JlAQIF4WBNupO1O1UhYXOCA8cc7s7tgNB68dR9pmmYy30w73zeM3biRNmBc6UQmwASlqT1Hg6scJVrWUEfrlksE5-Eo6j0F9-NwXGG3Wy4MAOTFZ9CgYX6Xn6RmRUdlmLxHdHG2w3YR90OvYGttT1QQPBHr5Ya9RcJ4YiPqVD63SvKccOVdv92JO-24UPEsZ_7RYiVHmO4BG27WVhSWvDVWS90wH79kG_-7-ENW_-by8cctSh2xCsxq7DOHKKJCcgu5tCdHJ50VJAdOyJZwHMxfcMTR5-AcdrXIv635nKxNTZ0ptf1xFu9oZMAzeC4qamdclTonPLV8gVlymnGVZWrNqVYErb3O4m4nbvecsg-D8yrdpeN7oYHEC6wAoYW0SlpMKxJlpGkaoPzS91UYWhv4nvKVFsqln6IgAfIGvn_MqrN0BieMC2EDgxGEQaMIQBrdTKRIdChDCitUcspqtHGTeaG0MSn37Ozv19dsrxcPB5NBf_RwzvaL016qDrtg1WW2gksMF5b6KreSLz_CvZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Emerging+Trends+in+Electrical+and+Computer+Technology&rft.atitle=Transient+feature+extraction+based+on+phase+space+fusion+by+partial-least-square+regression+analysis+of+sensor+array+signals&rft.au=Singh%2C+P&rft.au=Yadava%2C+R+D+S&rft.date=2011-03-01&rft.pub=IEEE&rft.isbn=9781424479238&rft.spage=676&rft.epage=680&rft_id=info:doi/10.1109%2FICETECT.2011.5760203&rft.externalDocID=5760203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479238/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479238/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424479238/sc.gif&client=summon&freeimage=true