Adaptive Sampling using Non-linear EKF with Mobile Robotic Wireless Sensor Nodes

The use of robotics in distributed monitoring applications requires mobile wireless sensors that are deployed efficiently. Efficiency can be defined in multiple ways, such as in terms of the amount of energy expenditure, communication bandwidth or information content. A very important aspect of mobi...

Full description

Saved in:
Bibliographic Details
Published in2006 9th International Conference on Control, Automation, Robotics and Vision pp. 1 - 6
Main Authors Popa, D.O., Mysorewala, M.F., Lewis, F.L.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of robotics in distributed monitoring applications requires mobile wireless sensors that are deployed efficiently. Efficiency can be defined in multiple ways, such as in terms of the amount of energy expenditure, communication bandwidth or information content. A very important aspect of mobile sensor deployment includes sampling algorithms at location most likely to yield useful information about a field variable of interest. In this paper, we use inexpensive mobile robot nodes built in our lab (ARRI-Bots) as wireless sensor deployment agents, and we use them to demonstrate information efficient algorithms (e.g., "adaptive sampling"). Each mobile robot node is characterized by sensor measurement noise in addition to localization uncertainty. We use the extended Kalman filter (EKF) to derive quantitative information measures for sampling locations most likely to yield optimal information about the sampled field distribution. We present simulation and experimental results using this approach
AbstractList The use of robotics in distributed monitoring applications requires mobile wireless sensors that are deployed efficiently. Efficiency can be defined in multiple ways, such as in terms of the amount of energy expenditure, communication bandwidth or information content. A very important aspect of mobile sensor deployment includes sampling algorithms at location most likely to yield useful information about a field variable of interest. In this paper, we use inexpensive mobile robot nodes built in our lab (ARRI-Bots) as wireless sensor deployment agents, and we use them to demonstrate information efficient algorithms (e.g., "adaptive sampling"). Each mobile robot node is characterized by sensor measurement noise in addition to localization uncertainty. We use the extended Kalman filter (EKF) to derive quantitative information measures for sampling locations most likely to yield optimal information about the sampled field distribution. We present simulation and experimental results using this approach
Author Lewis, F.L.
Mysorewala, M.F.
Popa, D.O.
Author_xml – sequence: 1
  givenname: D.O.
  surname: Popa
  fullname: Popa, D.O.
  organization: Autom. & Robotics Res. Inst., Univ. of Texas at Arlington, Fort Worth, TX
– sequence: 2
  givenname: M.F.
  surname: Mysorewala
  fullname: Mysorewala, M.F.
  organization: Autom. & Robotics Res. Inst., Univ. of Texas at Arlington, Fort Worth, TX
– sequence: 3
  givenname: F.L.
  surname: Lewis
  fullname: Lewis, F.L.
  organization: Autom. & Robotics Res. Inst., Univ. of Texas at Arlington, Fort Worth, TX
BookMark eNotTktOwzAUtARI0NILwMYXSHmO7TheVlELiPJRW8GyspNnMErjKA4gbo8RzGI-ixnNhBx3oUNCLhjMGQN9dVstNtXzPAco5lxIkPqITJjIhQAuGD8lsxjfIYFrwRg_I0-LxvSj_0S6NYe-9d0r_Yi__BC6LEU0A13ereiXH9_ofbC-RboJNoy-pi9-wBZjpFvsYhhSpcF4Tk6caSPO_nVKdqvlrrrJ1o_X6d068xrGLG8EKmmVZpbLBkpwjhdFqVgtQSiR18rZ5BBKl74mVwtsGpMXFrXlTvEpufyb9Yi47wd_MMP3XjAJuSz5D5cRTiI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICARCV.2006.345059
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 6
ExternalDocumentID 4150258
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-2d4e75b791b35d080ff366871c504742c7fb504e08f003504c4edda26be9b3f73
IEDL.DBID RIE
ISBN 1424403413
9781424403417
IngestDate Wed Jun 26 19:28:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-2d4e75b791b35d080ff366871c504742c7fb504e08f003504c4edda26be9b3f73
PageCount 6
ParticipantIDs ieee_primary_4150258
PublicationCentury 2000
PublicationDate 2006-Dec.
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-Dec.
PublicationDecade 2000
PublicationTitle 2006 9th International Conference on Control, Automation, Robotics and Vision
PublicationTitleAbbrev ICARCV
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000394113
Score 1.4173498
Snippet The use of robotics in distributed monitoring applications requires mobile wireless sensors that are deployed efficiently. Efficiency can be defined in...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptive Sampling
Chemical and biological sensors
Field Distribution Monitoring
Kalman Filter
Mobile robots
Monitoring
Robot sensing systems
Robotics and automation
Sampling methods
Sea measurements
Sensor fusion
Sensor phenomena and characterization
Wireless sensor networks
Title Adaptive Sampling using Non-linear EKF with Mobile Robotic Wireless Sensor Nodes
URI https://ieeexplore.ieee.org/document/4150258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na8IwGA7qabvsQ8e-yWHHVdMmaZujiLIPFFE3vEmTvJWx0Yqrl_36JWl1MnbYLS0UQlLez-d5XoTuIFRxCjwwN5Byj2nOPQlx4gELNIQiTmKHdh-OwocX9jTn8xq633FhAMCBz6Btl66Xr3O1saWyjnE2xkXHdVSPhCi5Wrt6CqGC-W6MoONuEWudt5JO1XO0Jc0Q0XnsdSe917IZQRl3WqV741WcdxkcoeF2XyWo5L29KWRbff2SbPzvxo9R64fHh8c7D3WCapCdosM9CcImGnd1srImD08TCy7PlthC4Zd4lGeeDUGTNe4_D7Ct1-JhLo0RwZNc5uZ_wxY5-2EsJZ6aXDhfm080fLbQbNCf9R68asqC9yZI4QWaQcRlJHxJuTbxY5rSMDRplOKEmbxZRak0KyBx6rqQTDHQOglCCULSNKJnqJHlGZwjLAM_DIyvC4BGTOlQUtBMSogSQaSk6gI17dEsVqWOxqI6lcu_X1-hg6AaEkT8a9Qo1hu4MQFAIW_dzX8DUn2row
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-3YNHC2330fZIiASEEgJouJFud0qMpiVYLv56d7cFifHgbdukyWa7mW8e33yD0APw2E-AueoPJMyikjFLgB9ZQF0JPPAj37DdwyHvvtDnGZtV0OO2FwYADPkMGnppavkyi9c6VdZUYKMg2t9D-8qv9nnRrbXNqNgkoI4ZJGi6t2xtnzeiTuWzt2mbsYNmr90at1-LcgShzKiV7gxYMfjSOUbhZmcFreS9sc5FI_76Jdr4362foPpPJx8ebTHqFFUgPUNHOyKENTRqyWipjR6eRJpeni6wJsMv8DBLLe2ERiv81O9gnbHFYSaUGcHjTGTqxmHNnf1QthJPVDScrdQnEj7raNp5mra7VjlnwXoL7NxyJQWPCS9wBGFSeZBJQjhXgVTMbKoi59hLhFqB7SemDkljClJGLhcQCJJ45BxV0yyFC4SF63BXoZ0LxKOx5IKApEKAFwW2ECS-RDV9NPNloaQxL0_l6u_X9-igOw0H80Fv2L9Gh245Msh2blA1X63hVrkDubgzt-AbgHWu7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2006+9th+International+Conference+on+Control%2C+Automation%2C+Robotics+and+Vision&rft.atitle=Adaptive+Sampling+using+Non-linear+EKF+with+Mobile+Robotic+Wireless+Sensor+Nodes&rft.au=Popa%2C+D.O.&rft.au=Mysorewala%2C+M.F.&rft.au=Lewis%2C+F.L.&rft.date=2006-12-01&rft.pub=IEEE&rft.isbn=9781424403417&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICARCV.2006.345059&rft.externalDocID=4150258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424403417/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424403417/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424403417/sc.gif&client=summon&freeimage=true