Using SVM to design facial expression recognition for shape and texture features

This paper presents a novel facial emotion recognition (FER) technique, based on support vector machine (SVM), to recognize the facial emotion expression. Here it is called the FERS technique. First, a face detection method, which combines the Haar-like features (HFs) method with the self quotient i...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 2697 - 2704
Main Authors Hung-Hsu Tsai, Yen-Shou Lai, Yi-Cheng Zhang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2010
Subjects
Online AccessGet full text
ISBN9781424465262
1424465265
ISSN2160-133X
DOI10.1109/ICMLC.2010.5580938

Cover

Abstract This paper presents a novel facial emotion recognition (FER) technique, based on support vector machine (SVM), to recognize the facial emotion expression. Here it is called the FERS technique. First, a face detection method, which combines the Haar-like features (HFs) method with the self quotient image (SQI) filter, is used in the FERS technique to accurately locate the face region of an image. It can improve the detection rate due to the use of the SQI filter to overcome the insufficient light and shade light. Subsequently, angular radial transform (ART), discrete cosine transform (DCT) and Gabor filter (GF) are employed in the procedure of facial expression feature extraction. An SVM is trained and then utilized to recognize the facial expression for a queried face image. Finally, experimental results show that the recognition performance of the FERS technique can be better than that of other existing methods.
AbstractList This paper presents a novel facial emotion recognition (FER) technique, based on support vector machine (SVM), to recognize the facial emotion expression. Here it is called the FERS technique. First, a face detection method, which combines the Haar-like features (HFs) method with the self quotient image (SQI) filter, is used in the FERS technique to accurately locate the face region of an image. It can improve the detection rate due to the use of the SQI filter to overcome the insufficient light and shade light. Subsequently, angular radial transform (ART), discrete cosine transform (DCT) and Gabor filter (GF) are employed in the procedure of facial expression feature extraction. An SVM is trained and then utilized to recognize the facial expression for a queried face image. Finally, experimental results show that the recognition performance of the FERS technique can be better than that of other existing methods.
Author Yen-Shou Lai
Hung-Hsu Tsai
Yi-Cheng Zhang
Author_xml – sequence: 1
  surname: Hung-Hsu Tsai
  fullname: Hung-Hsu Tsai
  organization: Dept. of Inf. Manage., Nat. Formosa Univ., Huwei, Taiwan
– sequence: 2
  surname: Yen-Shou Lai
  fullname: Yen-Shou Lai
  organization: Shin-Guang Elementary Sch., Yulin, Taiwan
– sequence: 3
  surname: Yi-Cheng Zhang
  fullname: Yi-Cheng Zhang
  organization: Dept. of Inf. Manage., Nat. Formosa Univ., Huwei, Taiwan
BookMark eNpVkM1OAjEUhWvEREReQDd9gcH29ofp0kwUSSCaiMYduXZuxxrskOmY4NsLkY1n851vcxbngg1Sm4ixKykmUgp3M6-Wi2oCYu_GlMKp8oSN3bSUGrS2Bow5_ecWBmwI0opCKvV2zsY5f4p9tAHpzJA9veSYGv78uuR9y2vKsUk8oI-44bTbdpRzbBPvyLdNiv2hh7bj-QO3xDHVvKdd_90RD4QH5kt2FnCTaXzkiK3u71bVQ7F4nM2r20URnegLcOCUlIgCtUOPgMp6GSAoR1ZO1ZQgeO-1gxJrlLWjug6WZKmtegeFasSu_2YjEa23XfzC7md9vET9ApkDVUc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2010.5580938
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424465255
1424465273
1424465257
9781424465279
EndPage 2704
ExternalDocumentID 5580938
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-2929311aa0a49aca2a36c1f2f39e61737e2fccc4928ada1d9eddf6e18463b23a3
IEDL.DBID RIE
ISBN 9781424465262
1424465265
ISSN 2160-133X
IngestDate Wed Aug 27 03:02:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-2929311aa0a49aca2a36c1f2f39e61737e2fccc4928ada1d9eddf6e18463b23a3
PageCount 8
ParticipantIDs ieee_primary_5580938
PublicationCentury 2000
PublicationDate 2010-July
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationTitle 2010 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452195
ssj0000744891
Score 1.5585419
Snippet This paper presents a novel facial emotion recognition (FER) technique, based on support vector machine (SVM), to recognize the facial emotion expression. Here...
SourceID ieee
SourceType Publisher
StartPage 2697
SubjectTerms Discrete cosine transforms
Face
Face detection
Face recognition
Feature extraction
Subspace constraints
Support vector machines
Title Using SVM to design facial expression recognition for shape and texture features
URI https://ieeexplore.ieee.org/document/5580938
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhJG9tpEs8VVUEEVaKgbtUlPguElFZtsvDrsZ0HAjGw2VkusR3dw9_3HSE3KUtFIFF50ngPLxAKvDQNmadirnnE0YT8lo2cPIXzl-BhNVl1yG3LhUFEBz7DkR26u3y1yUpbKhtPJrFJwOMu6ZpjVnG12nqKlQZnNcfUzSOTeLiGeZyFvmdSsVXD6wqtJHwj91TPeUOo8eX4fpo8TivUV23xR-sV53lmfZI071wBTj5GZZGOss9fco7__ahDMvzm-NFF672OSAfzY9JvmjzQ-p8fkIUDFdDn14QWG6oc4INqsJV2asxVMNqctkAkMzZxMN2_wRYp5IpaaEm5Q6rRaYjuh2Q5u1tO517dhsF7l37hcRNACcYAfAgkZMBBhBnTXAuJJvwREXKdZVkgeQwKmDIbr3SIJnMMRcoFiBPSyzc5nhLKQLPIWMOJ9IM0QqkVaNAaEXgWMzwjA7s-620ltLGul-b878cX5KC6yrfY2UvSK3YlXpkIoUiv3dH4Ao1JtZw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZKGWAqp7jxwEhKbOfyXIFaaBASBXWrXuJngZDSCpKFX4_tHAjEwGZneY4T6x3-vu8RcpGxTAQSlSeN9_ACocDLsoh5KuGaxxxNyG_ZyOl9NH4KbufhvEcuOy4MIjrwGQ7t0N3lq2Ve2VLZVRgmJgFP1si68ftBWLO1uoqKFQdnDcvUzWOTeriWeZxFvmeSsXnL7IqsKHwr-NTMeUup8eXVZJRORzXuq7H5o_mK8z03A5K2q64hJ2_DqsyG-ecvQcf_vtYW2ftm-dGHzn9tkx4WO2TQtnmgzanfJQ8OVkAfn1NaLqlykA-qwdbaqTFXA2kL2kGRzNhEwvTjBVZIoVDUgkuqd6QanYroxx6Z3VzPRmOvacTgvUq_9LgJoQRjAD4EEnLgIKKcaa6FRBMAiRi5zvM8kDwBBUyZT690hCZ3jETGBYh90i-WBR4QykCz2FjDUPpBFqPUCjRojQg8Txgekl27P4tVLbWxaLbm6O_H52RjPEuni-nk_u6YbNYX-xZJe0L65XuFpyZeKLMz95t8AUNvuOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Using+SVM+to+design+facial+expression+recognition+for+shape+and+texture+features&rft.au=Hung-Hsu+Tsai&rft.au=Yen-Shou+Lai&rft.au=Yi-Cheng+Zhang&rft.date=2010-07-01&rft.pub=IEEE&rft.isbn=9781424465262&rft.issn=2160-133X&rft.volume=5&rft.spage=2697&rft.epage=2704&rft_id=info:doi/10.1109%2FICMLC.2010.5580938&rft.externalDocID=5580938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon