Gene interaction networks boost genetic algorithm performance in biomarker discovery

In recent years, the advent of high-throughput techniques led to significant acceleration of biomarker discovery. In the same time, the popularity of machine learning methods grown in the field, mostly due to inherit analytical problems associated with the data resulting from these massively paralle...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM) pp. 144 - 149
Main Authors Moschopoulos, Charalampos, Popovic, Dusan, Langone, Rocco, Suykens, Johan, De Moor, Bart, Moreau, Yves
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the advent of high-throughput techniques led to significant acceleration of biomarker discovery. In the same time, the popularity of machine learning methods grown in the field, mostly due to inherit analytical problems associated with the data resulting from these massively parallelized experiments. However, learning algorithms are very often utilized in their basic form, hence sometimes failing to consider interactions that are present between biological subjects (i.e. genes). In this context, we propose a new methodology, based on genetic algorithms, that integrates prior information through a novel genetic operator. In this particular application, we rely on a biological knowledge that is captured by the gene interaction networks. We demonstrate the advantageous performance of our method compared to a simple genetic algorithm by testing it on several microarray datasets containing samples of tissue from cancer patients. The obtained results suggest that inclusion of biological knowledge into genetic algorithm in the form of this operator can boost its effectiveness in the biomarker discovery problem.
AbstractList In recent years, the advent of high-throughput techniques led to significant acceleration of biomarker discovery. In the same time, the popularity of machine learning methods grown in the field, mostly due to inherit analytical problems associated with the data resulting from these massively parallelized experiments. However, learning algorithms are very often utilized in their basic form, hence sometimes failing to consider interactions that are present between biological subjects (i.e. genes). In this context, we propose a new methodology, based on genetic algorithms, that integrates prior information through a novel genetic operator. In this particular application, we rely on a biological knowledge that is captured by the gene interaction networks. We demonstrate the advantageous performance of our method compared to a simple genetic algorithm by testing it on several microarray datasets containing samples of tissue from cancer patients. The obtained results suggest that inclusion of biological knowledge into genetic algorithm in the form of this operator can boost its effectiveness in the biomarker discovery problem.
Author Moreau, Yves
Suykens, Johan
Popovic, Dusan
De Moor, Bart
Langone, Rocco
Moschopoulos, Charalampos
Author_xml – sequence: 1
  givenname: Charalampos
  surname: Moschopoulos
  fullname: Moschopoulos, Charalampos
  email: cmoschop@esat.kuleuven.be
  organization: Dept. of Electr. Eng. (ESAT), KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Dusan
  surname: Popovic
  fullname: Popovic, Dusan
  email: dusan.popovic@esat.kuleuven.be
  organization: Dept. of Electr. Eng. (ESAT), KU Leuven, Leuven, Belgium
– sequence: 3
  givenname: Rocco
  surname: Langone
  fullname: Langone, Rocco
  email: rocco.langone@esat.kuleuven.be
  organization: Dept. of Electr. Eng. (ESAT), KU Leuven, Leuven, Belgium
– sequence: 4
  givenname: Johan
  surname: Suykens
  fullname: Suykens, Johan
  email: johan.suykens@esat.kuleuven.be
  organization: Dept. of Electr. Eng. (ESAT), KU Leuven, Leuven, Belgium
– sequence: 5
  givenname: Bart
  surname: De Moor
  fullname: De Moor, Bart
  email: bart.demoor@esat.kuleuven.be
  organization: Dept. of Electr. Eng. (ESAT), KU Leuven, Leuven, Belgium
– sequence: 6
  givenname: Yves
  surname: Moreau
  fullname: Moreau, Yves
  email: yves.moreau@esat.kuleuven.be
  organization: Dept. of Electr. Eng. (ESAT), KU Leuven, Leuven, Belgium
BookMark eNotj71OwzAUhY0EAy08AGLxCyRc_8SJR1SgRWrFkoGtsp3rYrWxK8cC9e0potMZjr6j78zIdUwRCXlgUDMG-mmzeNnUHJisW4CWA1yRGZOt1lKq9vOW9EuMSEMsmI0rIUUasfykvJ-oTWkqdHfuS3DUHHYph_I10iNmn_JoovsDqQ1pNHmPmQ5hcukb8-mO3HhzmPD-knPSv732i1W1_li-L57XVdBQKt4Y7ZvOmc4P6D0HMdjGMaU6oQElt0ODSiIKZbC13HvkA9cWGsmNUFyKOXn8nw2IuD3mcPY4bS8_xS_giE7s
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MCDM.2014.7007200
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 147994467X
9781479944675
EndPage 149
ExternalDocumentID 7007200
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-25a9f58ca8fdeff203db5c1668390e42bd5e64ee36ae7b2ffe2d29b0542a36243
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:41 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-25a9f58ca8fdeff203db5c1668390e42bd5e64ee36ae7b2ffe2d29b0542a36243
PageCount 6
ParticipantIDs ieee_primary_7007200
PublicationCentury 2000
PublicationDate 2014-Dec.
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationTitle 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)
PublicationTitleAbbrev MCDM
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5546857
Snippet In recent years, the advent of high-throughput techniques led to significant acceleration of biomarker discovery. In the same time, the popularity of machine...
SourceID ieee
SourceType Publisher
StartPage 144
SubjectTerms Biological cells
biomarker discovery
Cancer
Classification algorithms
Gene expression
gene interaction network
genetic algorithm
Genetic algorithms
microarray gene expression datasets
Title Gene interaction networks boost genetic algorithm performance in biomarker discovery
URI https://ieeexplore.ieee.org/document/7007200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwGMbD3MmTyiZ-k4NH27X5anuejiFUPEzYbeRTh9qNrj3oX2_etm4oHryV0JCSBN73bZ7fE4SumdJ-5zgZaMVlwGJDg1QoE1CtU6oiadKG8M4fxPSJ3c_5vIdutiyMtbYRn9kQHpuzfLPSNfwqGyXgcx35An3PF24tq9UdVMZRNsrHtzlotVjYvffjwpQmXkwOUP49UisTeQ3rSoX685cJ438_5RANd2QeftzGnCPUs8UAzcA7GoPxQ9liCrhoxd0b7HPoTYX9JgFWEcu351W5rF7e8XrHC_iOGCB80OmUGChdUHV-DNFscjcbT4PutoRgmUVVQLjMHE-1TJ2xzpGIGsV1LITPgCLLiDLcCmYtFdImijhniSGZ8hkbkT6IMXqM-sWqsCcIc02FBl8ykTBfP2mp0pgnsSISFLFJeooGMCGLdeuHsejm4uzv5nO0D4vSSkAuUL8qa3vpA3mlrpoV_ALPqqHF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT4MwGMabZR70pGYzftuDR2FQ2gLn6TJ1LB4w2W3pF7ro2MLYQf96-wJu0XjwRggNpG3yvKXP7ylC11QqO3My4SjJhEN9HTgRl9oJlIoC6QkdVYR3MubDZ_owYZMWutmwMMaYynxmXLis9vL1Qq3hV1kvhJxrzy7Qd6zuM7-mtZqtSt-Le0n_NgG3FnWbJ38cmVIpxmAfJd_vqo0ib-66lK76_BXD-N-POUDdLZuHnzaqc4haJu-gFNKjMUQ_FDWogPPa3r3CtopeldhOE6AVsXh_WRSz8nWOl1tiwDbEgOGDU6fAwOmCr_Oji9LBXdofOs15Cc4s9kqHMBFnLFIiyrTJMuIFWjLlc25rIM9QIjUznBoTcGFCSbLMEE1iaWs2IqyM0eAItfNFbo4RZirgCpLJeEjtCkoJGfks9CUR4IkNoxPUgQ6ZLutEjGnTF6d_375Cu8M0GU1H9-PHM7QHA1QbQs5RuyzW5sLKeikvq9H8Am7LpQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+Symposium+on+Computational+Intelligence+in+Multi-Criteria+Decision-Making+%28MCDM%29&rft.atitle=Gene+interaction+networks+boost+genetic+algorithm+performance+in+biomarker+discovery&rft.au=Moschopoulos%2C+Charalampos&rft.au=Popovic%2C+Dusan&rft.au=Langone%2C+Rocco&rft.au=Suykens%2C+Johan&rft.date=2014-12-01&rft.pub=IEEE&rft.spage=144&rft.epage=149&rft_id=info:doi/10.1109%2FMCDM.2014.7007200&rft.externalDocID=7007200