Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams
In this work, we introduce a new algorithm for analyzing a diagram, which contains visual and textual information in an Abstract and integrated way. Whereas diagrams contain richer information compared with individual image-based or language-based data, proper solutions for automatically understandi...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 4167 - 4175 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we introduce a new algorithm for analyzing a diagram, which contains visual and textual information in an Abstract and integrated way. Whereas diagrams contain richer information compared with individual image-based or language-based data, proper solutions for automatically understanding them have not been proposed due to their innate characteristics of multi-modality and arbitrariness of layouts. To tackle this problem, we propose a unified diagram-parsing network for generating knowledge from diagrams based on an object detector and a recurrent neural network designed for a graphical structure. Specifically, we propose a dynamic graph-generation network that is based on dynamic memory and graph theory. We explore the dynamics of information in a diagram with activation of gates in gated recurrent unit (GRU) cells. On publicly available diagram datasets, our model demonstrates a state-of-the-art result that outperforms other baselines. Moreover, further experiments on question answering shows potentials of the proposed method for various applications. |
---|---|
AbstractList | In this work, we introduce a new algorithm for analyzing a diagram, which contains visual and textual information in an Abstract and integrated way. Whereas diagrams contain richer information compared with individual image-based or language-based data, proper solutions for automatically understanding them have not been proposed due to their innate characteristics of multi-modality and arbitrariness of layouts. To tackle this problem, we propose a unified diagram-parsing network for generating knowledge from diagrams based on an object detector and a recurrent neural network designed for a graphical structure. Specifically, we propose a dynamic graph-generation network that is based on dynamic memory and graph theory. We explore the dynamics of information in a diagram with activation of gates in gated recurrent unit (GRU) cells. On publicly available diagram datasets, our model demonstrates a state-of-the-art result that outperforms other baselines. Moreover, further experiments on question answering shows potentials of the proposed method for various applications. |
Author | Lee, Sangkuk Kwak, Nojun Kim, Daesik Yoo, YoungJoon Kim, Jeesoo |
Author_xml | – sequence: 1 givenname: Daesik surname: Kim fullname: Kim, Daesik – sequence: 2 givenname: YoungJoon surname: Yoo fullname: Yoo, YoungJoon – sequence: 3 givenname: Jeesoo surname: Kim fullname: Kim, Jeesoo – sequence: 4 givenname: Sangkuk surname: Lee fullname: Lee, Sangkuk – sequence: 5 givenname: Nojun surname: Kwak fullname: Kwak, Nojun |
BookMark | eNo9jE1Lw0AUAFdRsNaePXjZP5D6sp9vvUmrVSxWSvFaXpLXGk02ZVMo_feCiqeBGZhLcRa7yEJc5zDOcwi3k_e35VhBjmMAo_FEjILH3Gp0zigIp2KgrLeZB28vxKjvPwFAOdRo7EAspsdIbV3KWaLdh5xx5ET7uovylfeHLn3d_bu4lUtufiI18iV2h4arLctN6lo5rWmbqO2vxPmGmp5HfxyK1ePDavKUzRez58n9PKsD7DNlNOeWbIVcFY5CSeTQFMa7QimN2rIKlXMlmdI7DACFRgrEqCsqUFk9FDe_25qZ17tUt5SOa7QerXb6Gw8iUN8 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00438 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538664209 1538664208 |
EISSN | 2575-7075 |
EndPage | 4175 |
ExternalDocumentID | 8578536 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IG 6IH 6IL 6IN AAJGR ABLEC ABQGA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i90t-243e15a5d8edb6a9caa684b476b223835e29d66ca4c768900b38a9ae83dab8253 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:20 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-243e15a5d8edb6a9caa684b476b223835e29d66ca4c768900b38a9ae83dab8253 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8578536 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssib052007398 ssib042469789 |
Score | 2.2425156 |
Snippet | In this work, we introduce a new algorithm for analyzing a diagram, which contains visual and textual information in an Abstract and integrated way. Whereas... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4167 |
SubjectTerms | Detectors Image edge detection Knowledge engineering Layout Recurrent neural networks Visualization |
Title | Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams |
URI | https://ieeexplore.ieee.org/document/8578536 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgAtYhveWAkbT4cx2ZtKRWopUIFdavs2EEVKK0gXfj1-OKkVIiBzbrJ8kW-d8577wCujJQIpLlHM20bFEOlJy2K8Iyw1YCllMUJaofHEzZ6pvfzeN6A660WxhhTks9MF5flv3y9Sjf4VNbj6MwSsSY0EyGcVqv-dmho-7wd53R0E0pqazu8lUPGI07jyt0n8EWv_zJ9Qm4Xkikp6lN2xquU1WW4D-N6X45U8tbdFKqbfv2ybPzvxg-g86PjI9NthTqEhsnb8DhwQ-jJHXpVE-c7jekhE0cJv9nG8ldSk-XkO3mon98IalLIYCmR2fXZgdnwdtYfedVYBW8p_MILaWSCWMaaG62YFKmUjFNFE6YsVLCAzIRC2zRJmtpWRPi-ijhaePNIS2X7yegIWvkqN8dAhFYZw4ZNM0XTALFFFmipkyyMQxs5gTaexWLtjDMW1TGc_h0-gz3MhuNhnUOr-NiYC1vxC3VZpvobPTmpXA |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRtPlwHJu1pRT6QYUK6lbZsVNVoBRBuvDr8SVNqRADm3WT5Yt875z33gFcGSkRSHOHJto2KIZKR1oU4RhhqwGLKQsj1A4Phqz7TB8m4aQC12stjDEmJ5-ZBi7zf_l6ES_xqazJ0ZklYFuwbXE1Z4Vaq_x6qG87vQ3vdPQTikpzO7yXfcYDTsOVv4_nimbrZfSE7C6kU1JUqGwMWMnrS2cPBuXOClrJa2OZqUb89cu08b9b34f6j5KPjNY16gAqJq3BY7sYQ0_u0K2aFM7TmCAyLEjhN-tYOiMlXU6-kV75AEdQlULac4ncrs86jDu341bXWQ1WcObCzRyfBsYLZai50YpJEUvJOFU0YsqCBQvJjC-0TZSksW1GhOuqgKOJNw-0VLajDA6hmi5ScwREaJUwbNk0UzT2EF0knpY6SvzQt5FjqOFZTN8L64zp6hhO_g5fwk53POhP-_fD3insYmYKVtYZVLOPpTm39T9TF3navwFJHqyn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Dynamic+Graph+Generation+Network%3A+Generating+Relational+Knowledge+from+Diagrams&rft.au=Kim%2C+Daesik&rft.au=Yoo%2C+YoungJoon&rft.au=Kim%2C+Jeesoo&rft.au=Lee%2C+Sangkuk&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2575-7075&rft.spage=4167&rft.epage=4175&rft_id=info:doi/10.1109%2FCVPR.2018.00438&rft.externalDocID=8578536 |