Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams

In this work, we introduce a new algorithm for analyzing a diagram, which contains visual and textual information in an Abstract and integrated way. Whereas diagrams contain richer information compared with individual image-based or language-based data, proper solutions for automatically understandi...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 4167 - 4175
Main Authors Kim, Daesik, Yoo, YoungJoon, Kim, Jeesoo, Lee, Sangkuk, Kwak, Nojun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we introduce a new algorithm for analyzing a diagram, which contains visual and textual information in an Abstract and integrated way. Whereas diagrams contain richer information compared with individual image-based or language-based data, proper solutions for automatically understanding them have not been proposed due to their innate characteristics of multi-modality and arbitrariness of layouts. To tackle this problem, we propose a unified diagram-parsing network for generating knowledge from diagrams based on an object detector and a recurrent neural network designed for a graphical structure. Specifically, we propose a dynamic graph-generation network that is based on dynamic memory and graph theory. We explore the dynamics of information in a diagram with activation of gates in gated recurrent unit (GRU) cells. On publicly available diagram datasets, our model demonstrates a state-of-the-art result that outperforms other baselines. Moreover, further experiments on question answering shows potentials of the proposed method for various applications.
AbstractList In this work, we introduce a new algorithm for analyzing a diagram, which contains visual and textual information in an Abstract and integrated way. Whereas diagrams contain richer information compared with individual image-based or language-based data, proper solutions for automatically understanding them have not been proposed due to their innate characteristics of multi-modality and arbitrariness of layouts. To tackle this problem, we propose a unified diagram-parsing network for generating knowledge from diagrams based on an object detector and a recurrent neural network designed for a graphical structure. Specifically, we propose a dynamic graph-generation network that is based on dynamic memory and graph theory. We explore the dynamics of information in a diagram with activation of gates in gated recurrent unit (GRU) cells. On publicly available diagram datasets, our model demonstrates a state-of-the-art result that outperforms other baselines. Moreover, further experiments on question answering shows potentials of the proposed method for various applications.
Author Lee, Sangkuk
Kwak, Nojun
Kim, Daesik
Yoo, YoungJoon
Kim, Jeesoo
Author_xml – sequence: 1
  givenname: Daesik
  surname: Kim
  fullname: Kim, Daesik
– sequence: 2
  givenname: YoungJoon
  surname: Yoo
  fullname: Yoo, YoungJoon
– sequence: 3
  givenname: Jeesoo
  surname: Kim
  fullname: Kim, Jeesoo
– sequence: 4
  givenname: Sangkuk
  surname: Lee
  fullname: Lee, Sangkuk
– sequence: 5
  givenname: Nojun
  surname: Kwak
  fullname: Kwak, Nojun
BookMark eNo9jE1Lw0AUAFdRsNaePXjZP5D6sp9vvUmrVSxWSvFaXpLXGk02ZVMo_feCiqeBGZhLcRa7yEJc5zDOcwi3k_e35VhBjmMAo_FEjILH3Gp0zigIp2KgrLeZB28vxKjvPwFAOdRo7EAspsdIbV3KWaLdh5xx5ET7uovylfeHLn3d_bu4lUtufiI18iV2h4arLctN6lo5rWmbqO2vxPmGmp5HfxyK1ePDavKUzRez58n9PKsD7DNlNOeWbIVcFY5CSeTQFMa7QimN2rIKlXMlmdI7DACFRgrEqCsqUFk9FDe_25qZ17tUt5SOa7QerXb6Gw8iUN8
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00438
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538664209
1538664208
EISSN 2575-7075
EndPage 4175
ExternalDocumentID 8578536
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IH
6IL
6IN
AAJGR
ABLEC
ABQGA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i90t-243e15a5d8edb6a9caa684b476b223835e29d66ca4c768900b38a9ae83dab8253
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:20 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-243e15a5d8edb6a9caa684b476b223835e29d66ca4c768900b38a9ae83dab8253
PageCount 9
ParticipantIDs ieee_primary_8578536
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssib052007398
ssib042469789
Score 2.2425156
Snippet In this work, we introduce a new algorithm for analyzing a diagram, which contains visual and textual information in an Abstract and integrated way. Whereas...
SourceID ieee
SourceType Publisher
StartPage 4167
SubjectTerms Detectors
Image edge detection
Knowledge engineering
Layout
Recurrent neural networks
Visualization
Title Dynamic Graph Generation Network: Generating Relational Knowledge from Diagrams
URI https://ieeexplore.ieee.org/document/8578536
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED21nZgAtYhveWAkbT4cx2ZtKRWopUIFdavs2EEVKK0gXfj1-OKkVIiBzbrJ8kW-d8577wCujJQIpLlHM20bFEOlJy2K8Iyw1YCllMUJaofHEzZ6pvfzeN6A660WxhhTks9MF5flv3y9Sjf4VNbj6MwSsSY0EyGcVqv-dmho-7wd53R0E0pqazu8lUPGI07jyt0n8EWv_zJ9Qm4Xkikp6lN2xquU1WW4D-N6X45U8tbdFKqbfv2ybPzvxg-g86PjI9NthTqEhsnb8DhwQ-jJHXpVE-c7jekhE0cJv9nG8ldSk-XkO3mon98IalLIYCmR2fXZgdnwdtYfedVYBW8p_MILaWSCWMaaG62YFKmUjFNFE6YsVLCAzIRC2zRJmtpWRPi-ijhaePNIS2X7yegIWvkqN8dAhFYZw4ZNM0XTALFFFmipkyyMQxs5gTaexWLtjDMW1TGc_h0-gz3MhuNhnUOr-NiYC1vxC3VZpvobPTmpXA
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRtPlwHJu1pRT6QYUK6lbZsVNVoBRBuvDr8SVNqRADm3WT5Yt875z33gFcGSkRSHOHJto2KIZKR1oU4RhhqwGLKQsj1A4Phqz7TB8m4aQC12stjDEmJ5-ZBi7zf_l6ES_xqazJ0ZklYFuwbXE1Z4Vaq_x6qG87vQ3vdPQTikpzO7yXfcYDTsOVv4_nimbrZfSE7C6kU1JUqGwMWMnrS2cPBuXOClrJa2OZqUb89cu08b9b34f6j5KPjNY16gAqJq3BY7sYQ0_u0K2aFM7TmCAyLEjhN-tYOiMlXU6-kV75AEdQlULac4ncrs86jDu341bXWQ1WcObCzRyfBsYLZai50YpJEUvJOFU0YsqCBQvJjC-0TZSksW1GhOuqgKOJNw-0VLajDA6hmi5ScwREaJUwbNk0UzT2EF0knpY6SvzQt5FjqOFZTN8L64zp6hhO_g5fwk53POhP-_fD3insYmYKVtYZVLOPpTm39T9TF3navwFJHqyn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Dynamic+Graph+Generation+Network%3A+Generating+Relational+Knowledge+from+Diagrams&rft.au=Kim%2C+Daesik&rft.au=Yoo%2C+YoungJoon&rft.au=Kim%2C+Jeesoo&rft.au=Lee%2C+Sangkuk&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2575-7075&rft.spage=4167&rft.epage=4175&rft_id=info:doi/10.1109%2FCVPR.2018.00438&rft.externalDocID=8578536