Long pattern estimation by conditional random field in data stream
Long sequential pattern mining is of great importance. Many different algorithms have been proposed to get accurate and time-costing result. Under the background of big data, we consider the trade-off between the accuracy demand and fast estimation priority of mining result. Thus in this paper we pr...
Saved in:
Published in | 2016 3rd International Conference on Systems and Informatics (ICSAI) pp. 1013 - 1017 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICSAI.2016.7811099 |
Cover
Loading…
Abstract | Long sequential pattern mining is of great importance. Many different algorithms have been proposed to get accurate and time-costing result. Under the background of big data, we consider the trade-off between the accuracy demand and fast estimation priority of mining result. Thus in this paper we proposed a method combining Conditional Random Field technique with pattern mining in order to get less accurate but more fast result. CRF has natural property of handling sequence problem. We carefully researched the model of CRF in sequence application and construct our stream model. To reduce the burden of heavy cost of CRF computation, combing with the features of stream mining model, we proposed a pruning method based the item duration. Our study shows that the estimation method can be effectively and fast under big data stream framework. |
---|---|
AbstractList | Long sequential pattern mining is of great importance. Many different algorithms have been proposed to get accurate and time-costing result. Under the background of big data, we consider the trade-off between the accuracy demand and fast estimation priority of mining result. Thus in this paper we proposed a method combining Conditional Random Field technique with pattern mining in order to get less accurate but more fast result. CRF has natural property of handling sequence problem. We carefully researched the model of CRF in sequence application and construct our stream model. To reduce the burden of heavy cost of CRF computation, combing with the features of stream mining model, we proposed a pruning method based the item duration. Our study shows that the estimation method can be effectively and fast under big data stream framework. |
Author | Weimin Ouyang Qinhua Huang |
Author_xml | – sequence: 1 surname: Qinhua Huang fullname: Qinhua Huang email: hqh@shupl.edu.cn organization: Dept. of Comput., Shanghai Univ. of Political Sci. & Law, Shanghai, China – sequence: 2 surname: Weimin Ouyang fullname: Weimin Ouyang email: oywm@shupl.edu.cn organization: Dept. of Comput., Shanghai Univ. of Political Sci. & Law, Shanghai, China |
BookMark | eNotj81OwzAQhI0EB1p4Abj4BRJsJ9t4jyXiJ1IkDvRereMNspTYVeJL3x4qehrNdxh9sxG3MUUW4kmrUmuFL137ve9Ko_SubOyF4I3YaFCoAIyGe_Hap_gjT5QzL1HymsNMOaQo3VkOKfpwKTTJhaJPsxwDT16GKD1lkmtemOYHcTfStPLjNbfi8P52aD-L_uuja_d9EVDlwhgzmsbpES2ytg5qr3xjcYe1rlVFWAHxYA04Y6Hx3imylRkAYLC1Qay24vl_NjDz8bT8iS7n4_VV9QvH8UXL |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSAI.2016.7811099 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1509055215 9781509055210 |
EndPage | 1017 |
ExternalDocumentID | 7811099 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i90t-222f27b1f989e18b54d0d7896941403a935aec825b2857ddb0a832c555c842993 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:27 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-222f27b1f989e18b54d0d7896941403a935aec825b2857ddb0a832c555c842993 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7811099 |
PublicationCentury | 2000 |
PublicationDate | 2016-Nov. |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2016 3rd International Conference on Systems and Informatics (ICSAI) |
PublicationTitleAbbrev | ICSAI |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6138593 |
Snippet | Long sequential pattern mining is of great importance. Many different algorithms have been proposed to get accurate and time-costing result. Under the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1013 |
SubjectTerms | Computational modeling Data mining Estimation Hidden Markov models Itemsets patterns sequence |
Title | Long pattern estimation by conditional random field in data stream |
URI | https://ieeexplore.ieee.org/document/7811099 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcf206eVDbxNzl4tF1_ZWmOOhybqAhO2G0kTSpFlo7RHvSvNy_tJooHb6UU2jS03_fyvp8XgCssMsapdKwT9zBk8DgToYeGRRWPEqxUodviaTR9Te4XdNGB6x0Lo7V25jPt46Gr5asyq3GpbIhUpI1outC1iVvDam05mIAPZ-OXmxmatUZ-e-GPHVOcYEz24XF7q8Yn8u7XlfSzz19dGP_7LAcw-EbzyPNOdA6ho00fbh9K80bWrlWmIdg3owESifwgNt9VRbPgR6wuqXJFnGuNFIagPZQgLSJWA5hP7ubjqddujuAVPKg8K-t5xGSY85Tr0L7sRAWKpRy51CSIBY-p0JlN_2SUUqaUDIT9djNKaZaiBMVH0DOl0cdAwsiGEUrlSugkYZxJwXL8R0Y0D_OIihPo4_CX66b9xbId-enfp89gD6egwfXOoVdtan1hdbuSl27CvgD-d5fa |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcfcx70pLKJv83Bo-36K0tz1OFYdRuCE3YbSZPKGGuHdAf9681Lu4niwVsphSYNzfcl7_t5AbjBJGMYS8s6cQdDBocz4TtoWFRhN8JMFbotxt3Ba_Q4pdMG3G5ZGK21NZ9pFy9tLl8V6Rq3yjpIRZqIZgd2je5Tv6K1NiSMxztJ7-UuQbtW160f_XFmipWM_gGMNi-rnCILd11KN_38VYfxv605hPY3nEeet7JzBA2dt-B-WORvZGWLZeYEK2dUSCKRH8SseNW82vIjRplUsSTWt0bmOUGDKEFeRCzbMOk_THoDpz4ewZlzr3SMsGcBk37GY65987kj5SkWcyRTIy8UPKRCp2YBKIOYMqWkJ8zfm1JK0xhFKDyGZl7k-gSIH5hAQqlMCR1FjDMpWIazZEAzPwuoOIUWdn-2qgpgzOqen_19-xr2BpPRcDZMxk_nsI_DUcF7F9As39f60qh4Ka_s4H0BHAmbIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+3rd+International+Conference+on+Systems+and+Informatics+%28ICSAI%29&rft.atitle=Long+pattern+estimation+by+conditional+random+field+in+data+stream&rft.au=Qinhua+Huang&rft.au=Weimin+Ouyang&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=1013&rft.epage=1017&rft_id=info:doi/10.1109%2FICSAI.2016.7811099&rft.externalDocID=7811099 |