Long pattern estimation by conditional random field in data stream

Long sequential pattern mining is of great importance. Many different algorithms have been proposed to get accurate and time-costing result. Under the background of big data, we consider the trade-off between the accuracy demand and fast estimation priority of mining result. Thus in this paper we pr...

Full description

Saved in:
Bibliographic Details
Published in2016 3rd International Conference on Systems and Informatics (ICSAI) pp. 1013 - 1017
Main Authors Qinhua Huang, Weimin Ouyang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2016
Subjects
Online AccessGet full text
DOI10.1109/ICSAI.2016.7811099

Cover

Loading…
Abstract Long sequential pattern mining is of great importance. Many different algorithms have been proposed to get accurate and time-costing result. Under the background of big data, we consider the trade-off between the accuracy demand and fast estimation priority of mining result. Thus in this paper we proposed a method combining Conditional Random Field technique with pattern mining in order to get less accurate but more fast result. CRF has natural property of handling sequence problem. We carefully researched the model of CRF in sequence application and construct our stream model. To reduce the burden of heavy cost of CRF computation, combing with the features of stream mining model, we proposed a pruning method based the item duration. Our study shows that the estimation method can be effectively and fast under big data stream framework.
AbstractList Long sequential pattern mining is of great importance. Many different algorithms have been proposed to get accurate and time-costing result. Under the background of big data, we consider the trade-off between the accuracy demand and fast estimation priority of mining result. Thus in this paper we proposed a method combining Conditional Random Field technique with pattern mining in order to get less accurate but more fast result. CRF has natural property of handling sequence problem. We carefully researched the model of CRF in sequence application and construct our stream model. To reduce the burden of heavy cost of CRF computation, combing with the features of stream mining model, we proposed a pruning method based the item duration. Our study shows that the estimation method can be effectively and fast under big data stream framework.
Author Weimin Ouyang
Qinhua Huang
Author_xml – sequence: 1
  surname: Qinhua Huang
  fullname: Qinhua Huang
  email: hqh@shupl.edu.cn
  organization: Dept. of Comput., Shanghai Univ. of Political Sci. & Law, Shanghai, China
– sequence: 2
  surname: Weimin Ouyang
  fullname: Weimin Ouyang
  email: oywm@shupl.edu.cn
  organization: Dept. of Comput., Shanghai Univ. of Political Sci. & Law, Shanghai, China
BookMark eNotj81OwzAQhI0EB1p4Abj4BRJsJ9t4jyXiJ1IkDvRereMNspTYVeJL3x4qehrNdxh9sxG3MUUW4kmrUmuFL137ve9Ko_SubOyF4I3YaFCoAIyGe_Hap_gjT5QzL1HymsNMOaQo3VkOKfpwKTTJhaJPsxwDT16GKD1lkmtemOYHcTfStPLjNbfi8P52aD-L_uuja_d9EVDlwhgzmsbpES2ytg5qr3xjcYe1rlVFWAHxYA04Y6Hx3imylRkAYLC1Qay24vl_NjDz8bT8iS7n4_VV9QvH8UXL
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSAI.2016.7811099
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509055215
9781509055210
EndPage 1017
ExternalDocumentID 7811099
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-222f27b1f989e18b54d0d7896941403a935aec825b2857ddb0a832c555c842993
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-222f27b1f989e18b54d0d7896941403a935aec825b2857ddb0a832c555c842993
PageCount 5
ParticipantIDs ieee_primary_7811099
PublicationCentury 2000
PublicationDate 2016-Nov.
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationTitle 2016 3rd International Conference on Systems and Informatics (ICSAI)
PublicationTitleAbbrev ICSAI
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6138593
Snippet Long sequential pattern mining is of great importance. Many different algorithms have been proposed to get accurate and time-costing result. Under the...
SourceID ieee
SourceType Publisher
StartPage 1013
SubjectTerms Computational modeling
Data mining
Estimation
Hidden Markov models
Itemsets
patterns
sequence
Title Long pattern estimation by conditional random field in data stream
URI https://ieeexplore.ieee.org/document/7811099
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcf206eVDbxNzl4tF1_ZWmOOhybqAhO2G0kTSpFlo7RHvSvNy_tJooHb6UU2jS03_fyvp8XgCssMsapdKwT9zBk8DgToYeGRRWPEqxUodviaTR9Te4XdNGB6x0Lo7V25jPt46Gr5asyq3GpbIhUpI1outC1iVvDam05mIAPZ-OXmxmatUZ-e-GPHVOcYEz24XF7q8Yn8u7XlfSzz19dGP_7LAcw-EbzyPNOdA6ho00fbh9K80bWrlWmIdg3owESifwgNt9VRbPgR6wuqXJFnGuNFIagPZQgLSJWA5hP7ubjqddujuAVPKg8K-t5xGSY85Tr0L7sRAWKpRy51CSIBY-p0JlN_2SUUqaUDIT9djNKaZaiBMVH0DOl0cdAwsiGEUrlSugkYZxJwXL8R0Y0D_OIihPo4_CX66b9xbId-enfp89gD6egwfXOoVdtan1hdbuSl27CvgD-d5fa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcfcx70pLKJv83Bo-36K0tz1OFYdRuCE3YbSZPKGGuHdAf9681Lu4niwVsphSYNzfcl7_t5AbjBJGMYS8s6cQdDBocz4TtoWFRhN8JMFbotxt3Ba_Q4pdMG3G5ZGK21NZ9pFy9tLl8V6Rq3yjpIRZqIZgd2je5Tv6K1NiSMxztJ7-UuQbtW160f_XFmipWM_gGMNi-rnCILd11KN_38VYfxv605hPY3nEeet7JzBA2dt-B-WORvZGWLZeYEK2dUSCKRH8SseNW82vIjRplUsSTWt0bmOUGDKEFeRCzbMOk_THoDpz4ewZlzr3SMsGcBk37GY65987kj5SkWcyRTIy8UPKRCp2YBKIOYMqWkJ8zfm1JK0xhFKDyGZl7k-gSIH5hAQqlMCR1FjDMpWIazZEAzPwuoOIUWdn-2qgpgzOqen_19-xr2BpPRcDZMxk_nsI_DUcF7F9As39f60qh4Ka_s4H0BHAmbIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+3rd+International+Conference+on+Systems+and+Informatics+%28ICSAI%29&rft.atitle=Long+pattern+estimation+by+conditional+random+field+in+data+stream&rft.au=Qinhua+Huang&rft.au=Weimin+Ouyang&rft.date=2016-11-01&rft.pub=IEEE&rft.spage=1013&rft.epage=1017&rft_id=info:doi/10.1109%2FICSAI.2016.7811099&rft.externalDocID=7811099