Image retrieval using both color and texture features
This paper has a further exploration and study of visual feature extraction. According to the HSV (Hue, Saturation, Value) color space, the work of color feature extraction is finished, the process is as follows: quantifying the color space in non-equal intervals, constructing one dimension feature...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 2228 - 2232 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2009.5212186 |
Cover
Loading…
Abstract | This paper has a further exploration and study of visual feature extraction. According to the HSV (Hue, Saturation, Value) color space, the work of color feature extraction is finished, the process is as follows: quantifying the color space in non-equal intervals, constructing one dimension feature vector and representing the color feature by cumulative histogram. Similarly, the work of texture feature extraction is obtained by using gray-level co-occurrence matrix (GLCM) or color co-occurrence matrix (CCM). Through the quantification of HSV color space, we combine color features and GLCM as well as CCM separately. Depending on the former, image retrieval based on multi-feature fusion is achieved by using normalized Euclidean distance classifier. Through the image retrieval experiment, indicate that the use of color features and texture based on CCM has obvious advantage. |
---|---|
AbstractList | This paper has a further exploration and study of visual feature extraction. According to the HSV (Hue, Saturation, Value) color space, the work of color feature extraction is finished, the process is as follows: quantifying the color space in non-equal intervals, constructing one dimension feature vector and representing the color feature by cumulative histogram. Similarly, the work of texture feature extraction is obtained by using gray-level co-occurrence matrix (GLCM) or color co-occurrence matrix (CCM). Through the quantification of HSV color space, we combine color features and GLCM as well as CCM separately. Depending on the former, image retrieval based on multi-feature fusion is achieved by using normalized Euclidean distance classifier. Through the image retrieval experiment, indicate that the use of color features and texture based on CCM has obvious advantage. |
Author | Fan-Hui Kong |
Author_xml | – sequence: 1 surname: Fan-Hui Kong fullname: Fan-Hui Kong organization: Dept. of Inf. Sci. & Technol., Heilongjiang Univ., Harbin, China |
BookMark | eNo1kM1Og0AUhcfYJpbKC-hmXgCce-eHmaUhWkkwbrpw1wxwp2IoGKBG394a69l8OYvvLE7EFv3QE2M3IFIA4e6K_LnMUxTCpRoBwZoLFoFCpWQmJF6y2GX2v6NcsBWCEQlI-bpk0cmzDsBpvGLxNL2LU5TGzMgV08XB74mPNI8tffqOH6e23_NqmN94PXTDyH3f8Jm-5uNIPJD_5XTNlsF3E8Vnrtn28WGbPyXly6bI78ukdWJOUFShNpmqKsAsSDS1CmQlZmCVCWChEb5x1hiyvqk9BB1s0F7qqkHQRss1u_2bbYlo9zG2Bz9-784PyB9xHkwc |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212186 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 2232 |
ExternalDocumentID | 5212186 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i90t-20bfc674bb127f326c4fe83271846f181d0ad9866e8adca1f5f8f5a35bd215653 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:20:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-20bfc674bb127f326c4fe83271846f181d0ad9866e8adca1f5f8f5a35bd215653 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5212186 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.5416856 |
Snippet | This paper has a further exploration and study of visual feature extraction. According to the HSV (Hue, Saturation, Value) color space, the work of color... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2228 |
SubjectTerms | CCM Content based retrieval Cybernetics Equations Feature extraction GLCM Humans Image color analysis Image retrieval Machine learning Quantization Space technology |
Title | Image retrieval using both color and texture features |
URI | https://ieeexplore.ieee.org/document/5212186 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH5qOzEVaBG3PDDiNml8JHNF1SKKGIrUrfKJECJFabLw67GdpAjEwBZnSRz75T3b3wFwE3OpI0USTAQXmLCEY0mIxTojNBIk2Fp7tMUjmz-T-zVdd-B2z4UxxgTwmRn5y3CWr7eq8ltlY88zjVPWha5buNVcrf1-ipcG542UVGhzt_AIhnmTmEXYLcXWLa8r4S4xtXJPTTtpCTVRNl5Mlw_TWsqyeeIP65WQeWZ9WLbvXANO3kZVKUfq85ec4387dQjDb44fetpnryPomPwY-q3JA2pifgB08e5-OagIzltuWiKPlH9B0o0w8orXBRK5Rh4_UhUGWROEQndDWM3uVtM5brwW8GsWlS5WpFWMEynjCbeupFPEGhfsLnMRZl0VoCOhs5QxkwqtRGypTS0VCZXa1QyMJifQy7e5OQUkhWGSGuOF8wiTcWoFyaymE8UljzN9BgP_ETYftZrGpun_-d-3L-CgPr_xANlL6JVFZa5cGVDK6zD-X5G8qTs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH4qZYCpQIu48cBI2qTxkcwVVQttxVCkbpVPhBApCsnCr8d2kiIQA1ucIYkTv7xn-zsAbiImVChxHGDOeIBpzAKBsQlUiknIsbe1dmiLBZ084fsVWbXgdsuF0Vp78Jnuu0O_l682snRLZQPHM40SugO79hI4rdha2xUVJw7OajEp32Z26uEt84YRDQM7GVs1zK6Y2dTUCD7V7bih1ITpYDqaz0aVmGV9zx_mKz73jDswb566gpy89stC9OXnL0HH_3brAHrfLD_0uM1fh9DS2RF0GpsHVEd9F8j0zf50UO69t-zARA4r_4yE_cbIaV7niGcKOQRJmWtktJcK_ejBcny3HE2C2m0heEnDwkaLMJIyLEQ0ZMYWdRIbbcPd5i5Mja0DVMhVmlCqE64kjwwxiSE8JkLZqoGS-Bja2SbTJ4AE11QQrZ10HqYiSgzHqVFkKJlgUapOoetewvq90tNY1_0_-_v0NexNlvPZejZdPJzDfrWb4-CyF9Au8lJf2qKgEFd-LHwBrWOsiw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Image+retrieval+using+both+color+and+texture+features&rft.au=Fan-Hui+Kong&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=4&rft.spage=2228&rft.epage=2232&rft_id=info:doi/10.1109%2FICMLC.2009.5212186&rft.externalDocID=5212186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |