An Improved Adaptive Document Image Binarization Method

Document image binarization is the basis of Optical Character Recognition (OCR). For B. Gatos' adaptive binarization method exists the shortcomings, we propose an improved adaptive document image binarization method which consists of four steps. The first step is dedicated to a denoising proced...

Full description

Saved in:
Bibliographic Details
Published in2009 2nd International Congress on Image and Signal Processing pp. 1 - 5
Main Authors Shuang-fei Zhou, Chun-ping Liu, Zhi-ming Cui, Sheng-rong Gong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2009
Subjects
Online AccessGet full text
ISBN1424441293
9781424441297
DOI10.1109/CISP.2009.5302270

Cover

Loading…
Abstract Document image binarization is the basis of Optical Character Recognition (OCR). For B. Gatos' adaptive binarization method exists the shortcomings, we propose an improved adaptive document image binarization method which consists of four steps. The first step is dedicated to a denoising procedure using a low-pass Wiener filter based on local statistics. In the second step, we use a first rough estimation of foreground regions using binarization method based on the Laplacian-Gauss algorithm. As a third step, we compute the background surface of the image by interpolating neighboring background intensities into the foreground areas that result from the previous step. In the fourth step, we proceed to the final binarization by combining information from the calculated background surface and the original image, and accomplish final binary. The method has good robustness for uneven illumination, using the algorithm extract foreground regions, it will get fewer lost strokes and can be effective to retain the edge information. The experimental results show that the improved method has better characteristics than other four kinds of typical document image binarization methods.
AbstractList Document image binarization is the basis of Optical Character Recognition (OCR). For B. Gatos' adaptive binarization method exists the shortcomings, we propose an improved adaptive document image binarization method which consists of four steps. The first step is dedicated to a denoising procedure using a low-pass Wiener filter based on local statistics. In the second step, we use a first rough estimation of foreground regions using binarization method based on the Laplacian-Gauss algorithm. As a third step, we compute the background surface of the image by interpolating neighboring background intensities into the foreground areas that result from the previous step. In the fourth step, we proceed to the final binarization by combining information from the calculated background surface and the original image, and accomplish final binary. The method has good robustness for uneven illumination, using the algorithm extract foreground regions, it will get fewer lost strokes and can be effective to retain the edge information. The experimental results show that the improved method has better characteristics than other four kinds of typical document image binarization methods.
Author Shuang-fei Zhou
Chun-ping Liu
Zhi-ming Cui
Sheng-rong Gong
Author_xml – sequence: 1
  surname: Shuang-fei Zhou
  fullname: Shuang-fei Zhou
  organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China
– sequence: 2
  surname: Chun-ping Liu
  fullname: Chun-ping Liu
  organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China
– sequence: 3
  surname: Zhi-ming Cui
  fullname: Zhi-ming Cui
  organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China
– sequence: 4
  surname: Sheng-rong Gong
  fullname: Sheng-rong Gong
  organization: Sch. of Comput. Sci. & Technol., Soochow Univ., Suzhou, China
BookMark eNo9j9tKxDAURSM6oB3nA8SX_kDrObk0zWOtt8KIgvM-ZJITDdgLbR3Qr1dx8GmzWZsFO2EnXd8RYxcIOSKYq7p5ec45gMmVAM41HLEEJZdSokB1_F-4EQuW_A4NoOD6lK2mKe6AF0oZpdUZ01WXNu0w9nvyaeXtMMc9pTe9-2ipm3-QfaX0OnZ2jF92jn2XPtL81vtztgj2faLVIZdsc3e7qR-y9dN9U1frLBqYM_TKaeE8p7J0CoQOhREhgOOukAWiVJykBycthZLvVOENEUpfYlDaGy2W7PJPG4loO4yxtePn9nBafAO5A0mz
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CISP.2009.5302270
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 1424441315
9781424441310
EndPage 5
ExternalDocumentID 5302270
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-1d5c73cd2e88c5037f693ff0c2c64611452e4d0c4aef82b56d9ee14d81f57d973
IEDL.DBID RIE
ISBN 1424441293
9781424441297
IngestDate Wed Aug 27 02:26:05 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009901327
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-1d5c73cd2e88c5037f693ff0c2c64611452e4d0c4aef82b56d9ee14d81f57d973
PageCount 5
ParticipantIDs ieee_primary_5302270
PublicationCentury 2000
PublicationDate 2009-Oct.
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-Oct.
PublicationDecade 2000
PublicationTitle 2009 2nd International Congress on Image and Signal Processing
PublicationTitleAbbrev CISP
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026559575
Score 1.4700178
Snippet Document image binarization is the basis of Optical Character Recognition (OCR). For B. Gatos' adaptive binarization method exists the shortcomings, we propose...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Character recognition
Lighting
Noise reduction
Optical character recognition software
Optical filters
Robustness
Rough surfaces
Statistics
Surface roughness
Wiener filter
Title An Improved Adaptive Document Image Binarization Method
URI https://ieeexplore.ieee.org/document/5302270
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA61p55cWnEnB49OO0vWY62WKlQKVuitTJIXEGEqMr34600ymYriwdssEDKZkPe95fseQtfWYQRBiU6UD98TCzoRrCwTv4GU1yNjgSg8f2KzF_K4oqsOutlxYQAgFJ_B0F-GXL7Z6K0PlY18h5ucOwd9zzluDVer3Ts5c9DYQY-Wu0W8HWslneI9j1nNLJWjycPzolGrjIP-6K4SjMt0H83baTU1JW_Dba2G-vOXYuN_532ABt80PrzYGahD1IHqCPU8vGzUmfuIjyvchBXA4LEp3_3hh-_iiO6VO23wrafsRromnoeO0wO0nN4vJ7MktlJIXmVaJ5mhmhfa5CCEpmnBLZOFtanONSPMuUQ0B2JSTUqwIleUGQmQESMyS7mRvDhG3WpTwQnClqSlAxGFUFQSyazU3CdynBeVibIo1Snq-wVYvzdiGev47Wd_Pz5HvZCeCdVxF6hbf2zh0ln5Wl2F3_sFxSWhLw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAGP0o9WBPLq24m4NH02aZ9VirpdWmFKzQW0lmARHSIsnFX-_MJKkoHrxlgWEyGeZ923sfwK02NgLDSPiZDd8jrYTPSJr6dgNlVo-MOKJwMieTV_S0wqsW3O24MEopV3ym-vbS5fLlRpQ2VDawHW4iahz0PYP7iFdsrWb3RMQYx8b4aNhbyCJZI-pU39M6rxkGfDCaviwqvcp62B_9VRy8jA8gaSZWVZW898si64vPX5qN_535IfS-iXzeYgdRR9BS-TF0rIFZ6TN3gQ5zrwosKOkNZbq1x5_3UI9oXpnzxru3pN2asOklrud0D5bjx-Vo4tfNFPw3HhR-KLGgsZCRYkzgIKaa8FjrQESCIGKcIhwpJAOBUqVZlGEiuVIhkizUmEpO4xNo55tcnYKnUZAaMyJmGeaIE80Ftakc40eFLI3T7Ay6dgHW20ouY11_-_nfj29gf7JMZuvZdP58AR2XrHG1cpfQLj5KdWUwv8iu3a_-AnPMpH8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+2nd+International+Congress+on+Image+and+Signal+Processing&rft.atitle=An+Improved+Adaptive+Document+Image+Binarization+Method&rft.au=Shuang-fei+Zhou&rft.au=Chun-ping+Liu&rft.au=Zhi-ming+Cui&rft.au=Sheng-rong+Gong&rft.date=2009-10-01&rft.pub=IEEE&rft.isbn=9781424441297&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FCISP.2009.5302270&rft.externalDocID=5302270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424441297/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424441297/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424441297/sc.gif&client=summon&freeimage=true