Skin Lesion Segmentation Using Multiple Density Clustering Algorithm MDCUT And Region Growing

Skin lesion segmentation is a key step in a diagnosis system based on dermoscopic images. This paper proposes a method to detect the skin lesion accurately. The images are first cleansed to remove noise. Then, pertinent features are extracted from RGB, HSV and XYZ color spaces. Cluster analysis is u...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS) pp. 74 - 79
Main Authors Louhichi, Soumaya, Gzara, Mariem, Abdallah, Hanene Ben
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
DOI10.1109/ICIS.2018.8466531

Cover

Abstract Skin lesion segmentation is a key step in a diagnosis system based on dermoscopic images. This paper proposes a method to detect the skin lesion accurately. The images are first cleansed to remove noise. Then, pertinent features are extracted from RGB, HSV and XYZ color spaces. Cluster analysis is used for segmentation. We take advantage of the multiple density clustering algorithm MDCUT [1] to solve the problem of image segmentation using region growing. We demonstrate how MDCUT algorithm is used to automatically determine the needed parameters for region growing image segmentation. Experiments on medical skin lesion image and comparison with the ground truth segmentation results demonstrate the validity of our method.
AbstractList Skin lesion segmentation is a key step in a diagnosis system based on dermoscopic images. This paper proposes a method to detect the skin lesion accurately. The images are first cleansed to remove noise. Then, pertinent features are extracted from RGB, HSV and XYZ color spaces. Cluster analysis is used for segmentation. We take advantage of the multiple density clustering algorithm MDCUT [1] to solve the problem of image segmentation using region growing. We demonstrate how MDCUT algorithm is used to automatically determine the needed parameters for region growing image segmentation. Experiments on medical skin lesion image and comparison with the ground truth segmentation results demonstrate the validity of our method.
Author Abdallah, Hanene Ben
Louhichi, Soumaya
Gzara, Mariem
Author_xml – sequence: 1
  givenname: Soumaya
  surname: Louhichi
  fullname: Louhichi, Soumaya
  organization: MIRACL: Multimedia InforRmation systems and Advanced Computing Laboratory, Sfax, Tunisia
– sequence: 2
  givenname: Mariem
  surname: Gzara
  fullname: Gzara, Mariem
  organization: High School of Computer Science and Mathematics at the University of Monastir, Monastir, Tunisia
– sequence: 3
  givenname: Hanene Ben
  surname: Abdallah
  fullname: Abdallah, Hanene Ben
  organization: King Abdulaziz University, Jeddah, KSA
BookMark eNotj91KwzAcxSMo6OYeQLzJC3Tmo8mSy9LpLGwIdruUkbX_1GibjiZD9vZa3NXhcH7nwJmga997QOiBkjmlRD8VeVHOGaFqrlIpBadXaEIFV1IozcQtmoXwRQhhUqWa8jv0UX47j9cQXO9xCU0HPpo4ml1wvsGbUxvdsQW8BB9cPOO8PYUIw5hlbdMPLn52eLPMd1uc-Rq_QzOWV0P_84fcoxtr2gCzi05R-fK8zV-T9duqyLN14jSJCT0oUzGiaGWF5cTWICuTGrKQtaqEqfRCW8WASCoOxjBTK12DVdxazWvK-BQ9_q86ANgfB9eZ4by__Oe_cYZUHQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIS.2018.8466531
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538658925
9781538658925
EndPage 79
ExternalDocumentID 8466531
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i90t-1b8ac2081cf5f30fde6ca4a076d8c5ac979f82e0615baa2ad89def83ff93d123
IEDL.DBID RIE
IngestDate Wed Aug 27 02:53:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-1b8ac2081cf5f30fde6ca4a076d8c5ac979f82e0615baa2ad89def83ff93d123
PageCount 6
ParticipantIDs ieee_primary_8466531
PublicationCentury 2000
PublicationDate 2018-June
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June
PublicationDecade 2010
PublicationTitle 2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS)
PublicationTitleAbbrev ICIS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002684913
Score 1.7355793
Snippet Skin lesion segmentation is a key step in a diagnosis system based on dermoscopic images. This paper proposes a method to detect the skin lesion accurately....
SourceID ieee
SourceType Publisher
StartPage 74
SubjectTerms Clustering algorithms
density based clustering
dermoscopic images
Feature extraction
Image color analysis
Image segmentation
Lesions
MDCUT
region growing
segmentation
Shape
Skin
skin lesion
Title Skin Lesion Segmentation Using Multiple Density Clustering Algorithm MDCUT And Region Growing
URI https://ieeexplore.ieee.org/document/8466531
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ09q0PjOHjza0se23R5JEcGIMQIJF0P2MUUiFEPag_56d9qK0Xjw1my73c1Ok5nOfN83hFxFQjtaKLDcQCiL-YJhfVdb4MXSlSYkNaESoi0ewv6E3U2DaYNcb7kwAFCCz8DGy7KWr9eqwFRZ2_jKMEDS9I75zCqu1jafgqolZpW6cOk6cXuQDEaI3eJ2Pe9HA5XSf_T2yPBr5Qo28moXubTVxy9Rxv9ubZ8cfjP16OPWBx2QBmQt8owdteg9YCKMjmC-qvlFGS0BAnRYgwhpF9Hr-TtNlgXqJeC9znK-3izylxUddpPJmHYyTZ8AQcv01vyxm0cOyah3M076Vt1GwVrETm65kqMMI3dVGqS-k2oIlWDCiULNlTFQHMUp9wBDGymEJzSPNaTcT9PY18avHZFmts7gmFDJpJYx1xHjkvngmeDcc6R5tS9czRQ_IS08mNlbpZMxq8_k9O_hM7KLxqlgV-ekmW8KuDAOPpeXpWU_AZdpp9E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPOhJDRjf7sGjLX1s2-2RFBGUEiOQcDFkX0UiFEPag_56d9qK0Xjw1vS1zc7hm8583zcIXQdMWpIJZdgeEwZxGYH-rjSUE3Kb65RUp0rAthj6vQm5n3rTGrrZamGUUgX5TJlwWPTy5VrkUCpraaz0PRBN72jcJ16p1tpWVMC3RK9TtS5tK2z1o_4I2FvUrJ78MUKlQJDuPoq_1i6JI69mnnFTfPyyZfzvxx2g5rdWDz9uUegQ1VTaQM8wUwsPFJTC8EjNV5XCKMUFRQDHFY0Qd4C_nr3jaJmDYwJcay_n680ie1nhuBNNxridSvykgLaM7_Q_u76liUbd23HUM6pBCsYitDLD5hSMGKktEi9xrUQqXzDCrMCXVOgQhUGYUEdBcsMZc5ikoVQJdZMkdKVGtiNUT9epOkaYEy55SGVAKCeucnR67lhcv9pltiSCnqAGbMzsrXTKmFV7cvr36Su02xvHg9mgP3w4Q3sQqJKEdY7q2SZXFxruM35ZRPkTjxmrHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+ACIS+17th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=Skin+Lesion+Segmentation+Using+Multiple+Density+Clustering+Algorithm+MDCUT+And+Region+Growing&rft.au=Louhichi%2C+Soumaya&rft.au=Gzara%2C+Mariem&rft.au=Abdallah%2C+Hanene+Ben&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=74&rft.epage=79&rft_id=info:doi/10.1109%2FICIS.2018.8466531&rft.externalDocID=8466531