Skin Lesion Segmentation Using Multiple Density Clustering Algorithm MDCUT And Region Growing
Skin lesion segmentation is a key step in a diagnosis system based on dermoscopic images. This paper proposes a method to detect the skin lesion accurately. The images are first cleansed to remove noise. Then, pertinent features are extracted from RGB, HSV and XYZ color spaces. Cluster analysis is u...
Saved in:
Published in | 2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS) pp. 74 - 79 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICIS.2018.8466531 |
Cover
Abstract | Skin lesion segmentation is a key step in a diagnosis system based on dermoscopic images. This paper proposes a method to detect the skin lesion accurately. The images are first cleansed to remove noise. Then, pertinent features are extracted from RGB, HSV and XYZ color spaces. Cluster analysis is used for segmentation. We take advantage of the multiple density clustering algorithm MDCUT [1] to solve the problem of image segmentation using region growing. We demonstrate how MDCUT algorithm is used to automatically determine the needed parameters for region growing image segmentation. Experiments on medical skin lesion image and comparison with the ground truth segmentation results demonstrate the validity of our method. |
---|---|
AbstractList | Skin lesion segmentation is a key step in a diagnosis system based on dermoscopic images. This paper proposes a method to detect the skin lesion accurately. The images are first cleansed to remove noise. Then, pertinent features are extracted from RGB, HSV and XYZ color spaces. Cluster analysis is used for segmentation. We take advantage of the multiple density clustering algorithm MDCUT [1] to solve the problem of image segmentation using region growing. We demonstrate how MDCUT algorithm is used to automatically determine the needed parameters for region growing image segmentation. Experiments on medical skin lesion image and comparison with the ground truth segmentation results demonstrate the validity of our method. |
Author | Abdallah, Hanene Ben Louhichi, Soumaya Gzara, Mariem |
Author_xml | – sequence: 1 givenname: Soumaya surname: Louhichi fullname: Louhichi, Soumaya organization: MIRACL: Multimedia InforRmation systems and Advanced Computing Laboratory, Sfax, Tunisia – sequence: 2 givenname: Mariem surname: Gzara fullname: Gzara, Mariem organization: High School of Computer Science and Mathematics at the University of Monastir, Monastir, Tunisia – sequence: 3 givenname: Hanene Ben surname: Abdallah fullname: Abdallah, Hanene Ben organization: King Abdulaziz University, Jeddah, KSA |
BookMark | eNotj91KwzAcxSMo6OYeQLzJC3Tmo8mSy9LpLGwIdruUkbX_1GibjiZD9vZa3NXhcH7nwJmga997QOiBkjmlRD8VeVHOGaFqrlIpBadXaEIFV1IozcQtmoXwRQhhUqWa8jv0UX47j9cQXO9xCU0HPpo4ml1wvsGbUxvdsQW8BB9cPOO8PYUIw5hlbdMPLn52eLPMd1uc-Rq_QzOWV0P_84fcoxtr2gCzi05R-fK8zV-T9duqyLN14jSJCT0oUzGiaGWF5cTWICuTGrKQtaqEqfRCW8WASCoOxjBTK12DVdxazWvK-BQ9_q86ANgfB9eZ4by__Oe_cYZUHQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICIS.2018.8466531 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1538658925 9781538658925 |
EndPage | 79 |
ExternalDocumentID | 8466531 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i90t-1b8ac2081cf5f30fde6ca4a076d8c5ac979f82e0615baa2ad89def83ff93d123 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:53:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-1b8ac2081cf5f30fde6ca4a076d8c5ac979f82e0615baa2ad89def83ff93d123 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8466531 |
PublicationCentury | 2000 |
PublicationDate | 2018-June |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-June |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE ACIS 17th International Conference on Computer and Information Science (ICIS) |
PublicationTitleAbbrev | ICIS |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002684913 |
Score | 1.7355793 |
Snippet | Skin lesion segmentation is a key step in a diagnosis system based on dermoscopic images. This paper proposes a method to detect the skin lesion accurately.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 74 |
SubjectTerms | Clustering algorithms density based clustering dermoscopic images Feature extraction Image color analysis Image segmentation Lesions MDCUT region growing segmentation Shape Skin skin lesion |
Title | Skin Lesion Segmentation Using Multiple Density Clustering Algorithm MDCUT And Region Growing |
URI | https://ieeexplore.ieee.org/document/8466531 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ09q0PjOHjza0se23R5JEcGIMQIJF0P2MUUiFEPag_56d9qK0Xjw1my73c1Ok5nOfN83hFxFQjtaKLDcQCiL-YJhfVdb4MXSlSYkNaESoi0ewv6E3U2DaYNcb7kwAFCCz8DGy7KWr9eqwFRZ2_jKMEDS9I75zCqu1jafgqolZpW6cOk6cXuQDEaI3eJ2Pe9HA5XSf_T2yPBr5Qo28moXubTVxy9Rxv9ubZ8cfjP16OPWBx2QBmQt8owdteg9YCKMjmC-qvlFGS0BAnRYgwhpF9Hr-TtNlgXqJeC9znK-3izylxUddpPJmHYyTZ8AQcv01vyxm0cOyah3M076Vt1GwVrETm65kqMMI3dVGqS-k2oIlWDCiULNlTFQHMUp9wBDGymEJzSPNaTcT9PY18avHZFmts7gmFDJpJYx1xHjkvngmeDcc6R5tS9czRQ_IS08mNlbpZMxq8_k9O_hM7KLxqlgV-ekmW8KuDAOPpeXpWU_AZdpp9E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPOhJDRjf7sGjLX1s2-2RFBGUEiOQcDFkX0UiFEPag_56d9qK0Xjw1vS1zc7hm8583zcIXQdMWpIJZdgeEwZxGYH-rjSUE3Kb65RUp0rAthj6vQm5n3rTGrrZamGUUgX5TJlwWPTy5VrkUCpraaz0PRBN72jcJ16p1tpWVMC3RK9TtS5tK2z1o_4I2FvUrJ78MUKlQJDuPoq_1i6JI69mnnFTfPyyZfzvxx2g5rdWDz9uUegQ1VTaQM8wUwsPFJTC8EjNV5XCKMUFRQDHFY0Qd4C_nr3jaJmDYwJcay_n680ie1nhuBNNxridSvykgLaM7_Q_u76liUbd23HUM6pBCsYitDLD5hSMGKktEi9xrUQqXzDCrMCXVOgQhUGYUEdBcsMZc5ikoVQJdZMkdKVGtiNUT9epOkaYEy55SGVAKCeucnR67lhcv9pltiSCnqAGbMzsrXTKmFV7cvr36Su02xvHg9mgP3w4Q3sQqJKEdY7q2SZXFxruM35ZRPkTjxmrHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+ACIS+17th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=Skin+Lesion+Segmentation+Using+Multiple+Density+Clustering+Algorithm+MDCUT+And+Region+Growing&rft.au=Louhichi%2C+Soumaya&rft.au=Gzara%2C+Mariem&rft.au=Abdallah%2C+Hanene+Ben&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=74&rft.epage=79&rft_id=info:doi/10.1109%2FICIS.2018.8466531&rft.externalDocID=8466531 |