Squashed entanglement and the two-way assisted capacities of a quantum channel

We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and output of a quantum channel, respectively. A new subadditivity inequality for the original squashed entanglement measure of Christandl and Wi...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE International Symposium on Information Theory pp. 326 - 330
Main Authors Takeoka, Masahiro, Guha, Saikat, Wilde, Mark M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and output of a quantum channel, respectively. A new subadditivity inequality for the original squashed entanglement measure of Christandl and Winter leads to the conclusion that the squashed entanglement of a quantum channel is an additive function of a tensor product of any two quantum channels. More importantly, this new subadditivity inequality, along with prior results of Christandl, Winter, et al., establishes the squashed entanglement of a quantum channel as an upper bound on the quantum communication capacity of any channel assisted by unlimited forward and backward classical communication. A similar proof establishes this quantity as an upper bound on the private capacity of a quantum channel assisted by unlimited forward and backward public classical communication. This latter result is relevant as a limitation on rates achievable in quantum key distribution. As an important application, we determine that these capacities can never exceed log((1 + η)=(1 - η)) for a pure-loss bosonic channel for which a fraction η of the input photons make it to the output on average. The best known lower bound on these capacities is equal to log(1=(1 - η)). Thus, in the high-loss regime for which η ≪ 1, this new upper bound demonstrates that the protocols corresponding to the above lower bound are nearly optimal.
AbstractList We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and output of a quantum channel, respectively. A new subadditivity inequality for the original squashed entanglement measure of Christandl and Winter leads to the conclusion that the squashed entanglement of a quantum channel is an additive function of a tensor product of any two quantum channels. More importantly, this new subadditivity inequality, along with prior results of Christandl, Winter, et al., establishes the squashed entanglement of a quantum channel as an upper bound on the quantum communication capacity of any channel assisted by unlimited forward and backward classical communication. A similar proof establishes this quantity as an upper bound on the private capacity of a quantum channel assisted by unlimited forward and backward public classical communication. This latter result is relevant as a limitation on rates achievable in quantum key distribution. As an important application, we determine that these capacities can never exceed log((1 + η)=(1 - η)) for a pure-loss bosonic channel for which a fraction η of the input photons make it to the output on average. The best known lower bound on these capacities is equal to log(1=(1 - η)). Thus, in the high-loss regime for which η ≪ 1, this new upper bound demonstrates that the protocols corresponding to the above lower bound are nearly optimal.
Author Wilde, Mark M.
Takeoka, Masahiro
Guha, Saikat
Author_xml – sequence: 1
  givenname: Masahiro
  surname: Takeoka
  fullname: Takeoka, Masahiro
  organization: Quantum ICT Lab., Nat. Inst. of Inf. & Commun. Technol., Koganei, Japan
– sequence: 2
  givenname: Saikat
  surname: Guha
  fullname: Guha, Saikat
  organization: Quantum Inf. Process. Group, Raytheon BBN Technol., Cambridge, MA, USA
– sequence: 3
  givenname: Mark M.
  surname: Wilde
  fullname: Wilde, Mark M.
  organization: Dept. of Phys. & Astron., Louisiana State Univ., Baton Rouge, LA, USA
BookMark eNo1kE9PwkAUxFeDiYB8AONlv0Drvu52_xwNUWxC9FDu5LV92Jp2QXYJ4dvbRDzN7zAzmcyMTfzeE2OPIFIA4Z6LstikmQCVamuUVfaGLZyxoIxzOVitbtk0g9wkFsBM_lm4_J7NQvgWQhopsin7KH9OGFpqOPmI_qunYQSOvuGxJR7P--SMF44hdCGOrhoPWHexo8D3O458TPt4GnjdovfUP7C7HfaBFleds_LtdbN8T9afq2L5sk46J2ICSHVTNeN8rW0lMRem0hlRDTJXVSYqZwCkImkcUqPINdY4q-tcAmpj5Zw9_bV2RLQ9HLsBj5ft9Qj5C6jJUeQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISIT.2014.6874848
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479951864
1479951862
EISSN 2157-8117
EndPage 330
ExternalDocumentID 6874848
Genre orig-research
GroupedDBID 6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i90t-1aecdbd201668b3a507b62eec1354b20b971134e379aed4e9d87986c531a6783
IEDL.DBID RIE
ISSN 2157-8095
IngestDate Wed Jun 26 19:23:40 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-1aecdbd201668b3a507b62eec1354b20b971134e379aed4e9d87986c531a6783
PageCount 5
ParticipantIDs ieee_primary_6874848
PublicationCentury 2000
PublicationDate 2014-June
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-June
PublicationDecade 2010
PublicationTitle 2014 IEEE International Symposium on Information Theory
PublicationTitleAbbrev ISIT
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037302
Score 1.579634
Snippet We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and...
SourceID ieee
SourceType Publisher
StartPage 326
SubjectTerms Entropy
Mutual information
Protocols
Quantum entanglement
Upper bound
Title Squashed entanglement and the two-way assisted capacities of a quantum channel
URI https://ieeexplore.ieee.org/document/6874848
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjxVbcU3e_Bo0qTZ7OMsllZoEVqht7KPqYqa-kgo-uudTVJF8eAthGzYzOzuN2S-b4aQs74ShiOyBAzhM2DAWaAjLTCQU9otteBOeKHweMKHN-xqns4b5PxLCwMAJfkMQn9Z5vLdyhb-V1mPS1_5UjZJUyhVabU2p26CK9VnDBDB_Kmr0jqDGUeqN5qOZp7ExcL6BT86qZRAMmiT8WYKFX_kISxyE9qPX9UZ_zvHbdL9luzR6y8w2iENyHZJe9OzgdZbuEMm05dCv92Bo540nt1W7HGqM0cxFKT5ehWs9TvFkNr731GLYGrLqqt0taSa4mhEqSfqBcMZPHbJdHA5uxgGdU-F4F5FeRBrsM44NAbn0iQao0HD-wA2TlJm-pFRIo4TBgm6ChwD5aRQklvcqRphLdkjrWyVwT6hUscR4EfZRACLDOBzyzTSsTQyxdVpD0jHG2fxXBXNWNR2Ofz79hHZ8g6qOFjHpJW_FnCCaJ-b09LNn0tXqdg
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GOMBpwIZ4kwNH2rVrmqZnxLTBNiFtSLtNeXiAgJZHqwl-PU7bDYE4cKuqpkpsJ58Vf7YJOevEkeKILA5D-HQYcOZIT0boyMXSzGXETWQThYcj3rtlV9NwWiPnq1wYACjIZ-DaxyKWb1Kd26uyNhe28qVYI-voVwteZmstz90AbdXGDBDD7Lkbh1UM0_fidn_cn1gaF3OrX_zopVJASbdBhstJlAySRzfPlKs_f9Vn_O8st0jrO2mP3qzgaJvUINkhjWXXBlpt4iYZjV9z-X4PhlraeHJX8sepTAxFZ5Bmi9RZyA-KTrW1AEM1wqku6q7SdE4lxdGIU8_Upgwn8NQi4-7l5KLnVF0VnIfYyxxfgjbKoDA4FyqQ6A8q3gHQfhAy1fFUHPl-wCBAZYFhEBsRxYJr3KsSgS3YJfUkTWCPUCF9D3BROoiAeQrwu3noSV8oEaJ96n3StMKZvZRlM2aVXA7-fn1KNnqT4WA26I-uD8mmVVbJyDoi9ewth2PE_kydFCr_AltyrSM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Symposium+on+Information+Theory&rft.atitle=Squashed+entanglement+and+the+two-way+assisted+capacities+of+a+quantum+channel&rft.au=Takeoka%2C+Masahiro&rft.au=Guha%2C+Saikat&rft.au=Wilde%2C+Mark+M.&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=2157-8095&rft.eissn=2157-8117&rft.spage=326&rft.epage=330&rft_id=info:doi/10.1109%2FISIT.2014.6874848&rft.externalDocID=6874848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-8095&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-8095&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-8095&client=summon