Squashed entanglement and the two-way assisted capacities of a quantum channel
We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and output of a quantum channel, respectively. A new subadditivity inequality for the original squashed entanglement measure of Christandl and Wi...
Saved in:
Published in | 2014 IEEE International Symposium on Information Theory pp. 326 - 330 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and output of a quantum channel, respectively. A new subadditivity inequality for the original squashed entanglement measure of Christandl and Winter leads to the conclusion that the squashed entanglement of a quantum channel is an additive function of a tensor product of any two quantum channels. More importantly, this new subadditivity inequality, along with prior results of Christandl, Winter, et al., establishes the squashed entanglement of a quantum channel as an upper bound on the quantum communication capacity of any channel assisted by unlimited forward and backward classical communication. A similar proof establishes this quantity as an upper bound on the private capacity of a quantum channel assisted by unlimited forward and backward public classical communication. This latter result is relevant as a limitation on rates achievable in quantum key distribution. As an important application, we determine that these capacities can never exceed log((1 + η)=(1 - η)) for a pure-loss bosonic channel for which a fraction η of the input photons make it to the output on average. The best known lower bound on these capacities is equal to log(1=(1 - η)). Thus, in the high-loss regime for which η ≪ 1, this new upper bound demonstrates that the protocols corresponding to the above lower bound are nearly optimal. |
---|---|
AbstractList | We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and output of a quantum channel, respectively. A new subadditivity inequality for the original squashed entanglement measure of Christandl and Winter leads to the conclusion that the squashed entanglement of a quantum channel is an additive function of a tensor product of any two quantum channels. More importantly, this new subadditivity inequality, along with prior results of Christandl, Winter, et al., establishes the squashed entanglement of a quantum channel as an upper bound on the quantum communication capacity of any channel assisted by unlimited forward and backward classical communication. A similar proof establishes this quantity as an upper bound on the private capacity of a quantum channel assisted by unlimited forward and backward public classical communication. This latter result is relevant as a limitation on rates achievable in quantum key distribution. As an important application, we determine that these capacities can never exceed log((1 + η)=(1 - η)) for a pure-loss bosonic channel for which a fraction η of the input photons make it to the output on average. The best known lower bound on these capacities is equal to log(1=(1 - η)). Thus, in the high-loss regime for which η ≪ 1, this new upper bound demonstrates that the protocols corresponding to the above lower bound are nearly optimal. |
Author | Wilde, Mark M. Takeoka, Masahiro Guha, Saikat |
Author_xml | – sequence: 1 givenname: Masahiro surname: Takeoka fullname: Takeoka, Masahiro organization: Quantum ICT Lab., Nat. Inst. of Inf. & Commun. Technol., Koganei, Japan – sequence: 2 givenname: Saikat surname: Guha fullname: Guha, Saikat organization: Quantum Inf. Process. Group, Raytheon BBN Technol., Cambridge, MA, USA – sequence: 3 givenname: Mark M. surname: Wilde fullname: Wilde, Mark M. organization: Dept. of Phys. & Astron., Louisiana State Univ., Baton Rouge, LA, USA |
BookMark | eNo1kE9PwkAUxFeDiYB8AONlv0Drvu52_xwNUWxC9FDu5LV92Jp2QXYJ4dvbRDzN7zAzmcyMTfzeE2OPIFIA4Z6LstikmQCVamuUVfaGLZyxoIxzOVitbtk0g9wkFsBM_lm4_J7NQvgWQhopsin7KH9OGFpqOPmI_qunYQSOvuGxJR7P--SMF44hdCGOrhoPWHexo8D3O458TPt4GnjdovfUP7C7HfaBFleds_LtdbN8T9afq2L5sk46J2ICSHVTNeN8rW0lMRem0hlRDTJXVSYqZwCkImkcUqPINdY4q-tcAmpj5Zw9_bV2RLQ9HLsBj5ft9Qj5C6jJUeQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ISIT.2014.6874848 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781479951864 1479951862 |
EISSN | 2157-8117 |
EndPage | 330 |
ExternalDocumentID | 6874848 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
ID | FETCH-LOGICAL-i90t-1aecdbd201668b3a507b62eec1354b20b971134e379aed4e9d87986c531a6783 |
IEDL.DBID | RIE |
ISSN | 2157-8095 |
IngestDate | Wed Jun 26 19:23:40 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i90t-1aecdbd201668b3a507b62eec1354b20b971134e379aed4e9d87986c531a6783 |
PageCount | 5 |
ParticipantIDs | ieee_primary_6874848 |
PublicationCentury | 2000 |
PublicationDate | 2014-June |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-June |
PublicationDecade | 2010 |
PublicationTitle | 2014 IEEE International Symposium on Information Theory |
PublicationTitleAbbrev | ISIT |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0037302 |
Score | 1.579634 |
Snippet | We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 326 |
SubjectTerms | Entropy Mutual information Protocols Quantum entanglement Upper bound |
Title | Squashed entanglement and the two-way assisted capacities of a quantum channel |
URI | https://ieeexplore.ieee.org/document/6874848 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjxVbcU3e_Bo0qTZ7OMsllZoEVqht7KPqYqa-kgo-uudTVJF8eAthGzYzOzuN2S-b4aQs74ShiOyBAzhM2DAWaAjLTCQU9otteBOeKHweMKHN-xqns4b5PxLCwMAJfkMQn9Z5vLdyhb-V1mPS1_5UjZJUyhVabU2p26CK9VnDBDB_Kmr0jqDGUeqN5qOZp7ExcL6BT86qZRAMmiT8WYKFX_kISxyE9qPX9UZ_zvHbdL9luzR6y8w2iENyHZJe9OzgdZbuEMm05dCv92Bo540nt1W7HGqM0cxFKT5ehWs9TvFkNr731GLYGrLqqt0taSa4mhEqSfqBcMZPHbJdHA5uxgGdU-F4F5FeRBrsM44NAbn0iQao0HD-wA2TlJm-pFRIo4TBgm6ChwD5aRQklvcqRphLdkjrWyVwT6hUscR4EfZRACLDOBzyzTSsTQyxdVpD0jHG2fxXBXNWNR2Ofz79hHZ8g6qOFjHpJW_FnCCaJ-b09LNn0tXqdg |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GOMBpwIZ4kwNH2rVrmqZnxLTBNiFtSLtNeXiAgJZHqwl-PU7bDYE4cKuqpkpsJ58Vf7YJOevEkeKILA5D-HQYcOZIT0boyMXSzGXETWQThYcj3rtlV9NwWiPnq1wYACjIZ-DaxyKWb1Kd26uyNhe28qVYI-voVwteZmstz90AbdXGDBDD7Lkbh1UM0_fidn_cn1gaF3OrX_zopVJASbdBhstJlAySRzfPlKs_f9Vn_O8st0jrO2mP3qzgaJvUINkhjWXXBlpt4iYZjV9z-X4PhlraeHJX8sepTAxFZ5Bmi9RZyA-KTrW1AEM1wqku6q7SdE4lxdGIU8_Upgwn8NQi4-7l5KLnVF0VnIfYyxxfgjbKoDA4FyqQ6A8q3gHQfhAy1fFUHPl-wCBAZYFhEBsRxYJr3KsSgS3YJfUkTWCPUCF9D3BROoiAeQrwu3noSV8oEaJ96n3StMKZvZRlM2aVXA7-fn1KNnqT4WA26I-uD8mmVVbJyDoi9ewth2PE_kydFCr_AltyrSM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE+International+Symposium+on+Information+Theory&rft.atitle=Squashed+entanglement+and+the+two-way+assisted+capacities+of+a+quantum+channel&rft.au=Takeoka%2C+Masahiro&rft.au=Guha%2C+Saikat&rft.au=Wilde%2C+Mark+M.&rft.date=2014-06-01&rft.pub=IEEE&rft.issn=2157-8095&rft.eissn=2157-8117&rft.spage=326&rft.epage=330&rft_id=info:doi/10.1109%2FISIT.2014.6874848&rft.externalDocID=6874848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-8095&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-8095&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-8095&client=summon |