Impact of Various Kernels on Support Vector Machine Classification Performance for Treating Wart Disease

This study displays the impacts of different types of Kernel functions for improving the learning capacity of Support Vector Machine (SVM) in treating two common types of warts (plantar and common warts). The impacts of four Kernel functions of (SVM): Normalized Polynomial Kernel (NP), Polynomial Ke...

Full description

Saved in:
Bibliographic Details
Published in2018 International Conference on Artificial Intelligence and Data Processing (IDAP) pp. 1 - 6
Main Authors TALABANI, Hardi, AVCI, Engin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2018
Subjects
Online AccessGet full text
DOI10.1109/IDAP.2018.8620876

Cover

Abstract This study displays the impacts of different types of Kernel functions for improving the learning capacity of Support Vector Machine (SVM) in treating two common types of warts (plantar and common warts). The impacts of four Kernel functions of (SVM): Normalized Polynomial Kernel (NP), Polynomial Kernel (PK), Radial Basis Function Kernel (RBF), and Pearson VII function based Universal Kernel (PUK) have been examined On two sets of data called "Cryotherapy" and "Immunotherapy". Which are universally regarded as the best two methods to treat wart disease using Weka workbench. The first dataset called "Cryotherapy" consists of information about 90 patients and contains 7 features. The second dataset called "Immunotherapy" consists of information about 90 patients and contains 8 features. For presenting classification performance impacts each of Accuracy, precision, sensitivity, F-measure and confusion matrix for each kernel has been utilized. According to the results obtained, it was found that each of PUK and RBF performs best classification performance on "Cryotherapy" dataset with 97.77% accuracy whereas each of PK and PUK performs best classification performance on "Immunotherapy" dataset with 81.11% accuracy.
AbstractList This study displays the impacts of different types of Kernel functions for improving the learning capacity of Support Vector Machine (SVM) in treating two common types of warts (plantar and common warts). The impacts of four Kernel functions of (SVM): Normalized Polynomial Kernel (NP), Polynomial Kernel (PK), Radial Basis Function Kernel (RBF), and Pearson VII function based Universal Kernel (PUK) have been examined On two sets of data called "Cryotherapy" and "Immunotherapy". Which are universally regarded as the best two methods to treat wart disease using Weka workbench. The first dataset called "Cryotherapy" consists of information about 90 patients and contains 7 features. The second dataset called "Immunotherapy" consists of information about 90 patients and contains 8 features. For presenting classification performance impacts each of Accuracy, precision, sensitivity, F-measure and confusion matrix for each kernel has been utilized. According to the results obtained, it was found that each of PUK and RBF performs best classification performance on "Cryotherapy" dataset with 97.77% accuracy whereas each of PK and PUK performs best classification performance on "Immunotherapy" dataset with 81.11% accuracy.
Author AVCI, Engin
TALABANI, Hardi
Author_xml – sequence: 1
  givenname: Hardi
  surname: TALABANI
  fullname: TALABANI, Hardi
  organization: Faculty of Technology, Firat University, Elazig, Turkey
– sequence: 2
  givenname: Engin
  surname: AVCI
  fullname: AVCI, Engin
  organization: Faculty of Technology, Firat University, Elazig, Turkey
BookMark eNotj09LAzEUxCPowVY_gHjJF-ia7Cbbl2Np_bNYseBSj-Vt-mIDbbIk24Pf3gV7moH5zcBM2HWIgRh7kKKQUpinZrXYFKWQUEBdCpjXV2widQV1DXPQt-zQnHq0A4-ObzH5eM78nVKgY-Yx8K9z38c08C3ZISb-gfbgA_HlEXP2zlsc_EhtKLmYThgs8dHwNtEYhB_-jWN35TNhpjt24_CY6f6iU9a-PLfLt9n687VZLtYzb8Qwk0pLQI1CVLUSxgKQsqQ6I6TWuDdQqVKYUjvXmU6pfQkKrdOAtoOuFLaassf_WU9Euz75E6bf3eV79QfqElQZ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IDAP.2018.8620876
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538668785
9781538668788
EndPage 6
ExternalDocumentID 8620876
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-14518a5a0036409c88e4ce4b90155ad983420925ffb9b44d284acf58acb8b20c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:30 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-14518a5a0036409c88e4ce4b90155ad983420925ffb9b44d284acf58acb8b20c3
PageCount 6
ParticipantIDs ieee_primary_8620876
PublicationCentury 2000
PublicationDate 2018-Sept.
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-Sept.
PublicationDecade 2010
PublicationTitle 2018 International Conference on Artificial Intelligence and Data Processing (IDAP)
PublicationTitleAbbrev IDAP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7115878
Snippet This study displays the impacts of different types of Kernel functions for improving the learning capacity of Support Vector Machine (SVM) in treating two...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification algorithms
confusion matrix
Cryotherapy
Diseases
Immune system
immunotherapy
Kernel
Machine learning algorithms
normalized polynomial kernel
performance comparison
polynomial kernel
PUK kernel
RBF kernel
Support vector machines
Wart disease
weka
Title Impact of Various Kernels on Support Vector Machine Classification Performance for Treating Wart Disease
URI https://ieeexplore.ieee.org/document/8620876
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3bmAkaZrYjT0iStWCijqU0q2yHRsQUoKqZOHXc3ZCKxADm2VZSuSz_O58794RcsWsynSWSgxLdBRQyvAeNAmGKppnGQIstV6nYPY4nDzR-xVbtcj1thbGGOPJZyZ0Q5_LzwpduaeyPnrfTkGtTdp4zOparSZROYhEfzq6mTuuFg-bdT8apni8GO-T2feXaprIe1iVKtSfv0QY__srB6S3q8yD-RZzDknL5F3yOvWljlBYWGLoi7E8PJhNjqgHRQ6ubyf62LD07_Mw8-xJA74bpuMJedPAfFdAADiAhXcm8xd4xrMFozqN0yOL8d3idhI0HRSCNxGVgevCyyWTTnQG4zjNuaHaUOV8ACYzwRMaRyJm1iqhKM0QqqS2jEutuIojnRyRTl7k5phAOpBKJ4mO06Glwlpp0oGhUqWCJWhsfkK6bpPWH7VGxrrZn9O_p8_InjNUzdU6J51yU5kLBPdSXXqrfgFjEKhf
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSkBozf7sGjLaXdpdujEQkIJRwqciP7qcakNaRc_PXObitE48HbpmnSZqfpm7fzZh5CN9QIJVXMgZbIwCOEwn9QR0BVJFMKAJYYN6cgnfaGT-RxQRcNdLvphdFaO_GZ9u3S1fJVIdf2qKwD2bedoLaDdgH3Ca26tepSZTdIOqP-3cyqtZhf3_nDMsUhxuAApd_PqoQi7_66FL78_DWG8b8vc4ja2948PNugzhFq6LyFXkeu2REXBs-B_AKbx2O9ygH3cJFj69wJWTaeuxN6nDr9pMbOD9MqhVxw8GzbQoBhgTOXTuYv-Bm-LtyvCjltlA0esvuhV3soeG9JUHrWh5dxyu3YGWBykjFNpCbCZgGUq4RFJAySkBojEkGIArDi0lDGpWAiDGR0jJp5kesThOMuFzKKZBj3DEmM4TruasJFnNAIws1OUctu0vKjmpKxrPfn7O_L12hvmKWT5WQ0HZ-jfRu0Srl1gZrlaq0vAepLceUi_AVfMqus
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Conference+on+Artificial+Intelligence+and+Data+Processing+%28IDAP%29&rft.atitle=Impact+of+Various+Kernels+on+Support+Vector+Machine+Classification+Performance+for+Treating+Wart+Disease&rft.au=TALABANI%2C+Hardi&rft.au=AVCI%2C+Engin&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIDAP.2018.8620876&rft.externalDocID=8620876