Automatic Feature Localization in Thermal Images for Facial Expression Recognition

We propose an unsupervised Local and Global feature extraction paradigm to approach the problem of facial expression recognition in thermal images. Starting from local, low-level features computed at interest point locations, our approach combines the localization of facial features with the holisti...

Full description

Saved in:
Bibliographic Details
Published inIEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops p. 14
Main Authors Trujillo, L., Olague, G., Hammoud, R., Hernandez, B.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose an unsupervised Local and Global feature extraction paradigm to approach the problem of facial expression recognition in thermal images. Starting from local, low-level features computed at interest point locations, our approach combines the localization of facial features with the holistic approach. The detailed steps are as follows: First, face localization using bi-modal thresholding is accomplished in order to localize facial features by way of a novel interest point detection and clustering approach. Second, we compute representative Eigenfeatures for feature extraction. Third, facial expression classification is made with a Support Vector Machine Committiee. Finally, the experiments over the IRIS data-set show that automation was achieved with good feature localization and classification performance.
AbstractList We propose an unsupervised Local and Global feature extraction paradigm to approach the problem of facial expression recognition in thermal images. Starting from local, low-level features computed at interest point locations, our approach combines the localization of facial features with the holistic approach. The detailed steps are as follows: First, face localization using bi-modal thresholding is accomplished in order to localize facial features by way of a novel interest point detection and clustering approach. Second, we compute representative Eigenfeatures for feature extraction. Third, facial expression classification is made with a Support Vector Machine Committiee. Finally, the experiments over the IRIS data-set show that automation was achieved with good feature localization and classification performance.
Author Olague, G.
Hernandez, B.
Hammoud, R.
Trujillo, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Trujillo
  fullname: Trujillo, L.
  organization: CICESE, Ensenada, BC, Mexico
– sequence: 2
  givenname: G.
  surname: Olague
  fullname: Olague, G.
– sequence: 3
  givenname: R.
  surname: Hammoud
  fullname: Hammoud, R.
– sequence: 4
  givenname: B.
  surname: Hernandez
  fullname: Hernandez, B.
BookMark eNotjM1Kw0AYRQesYK1dunIzL5D4zf9kWUJjCwGlBLdlMvmmjuSnJC2oT2-Lru7lcO69J7N-6JGQRwYpY5A95-9vu5QDqFQydUOWmbFgdKa41mBmZM6ZhsQosHdkOU2fAMDAKpWJOdmtzqehc6foaYHudB6RloN3bfy5sKGnsafVB46da-m2cwecaBhGWjgfL2T9dRxxmq7eDv1w6ON180Bug2snXP7nglTFuso3Sfn6ss1XZRKtlklTN0ZI6w0ELkWwQQkuQXgGl6ZYzRCBN7UBGRq0hnMUvq6ZtIE3rNYgFuTp7zYi4v44xs6N33umtBKQiV-dVlFD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CVPR.2005.415
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EndPage 14
ExternalDocumentID 1565309
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i864-dbd7348c70f243f8f532403c10f5351b1ee02db704fde8722e3cbb148f2d1b603
IEDL.DBID RIE
ISBN 9780769526607
0769526608
ISSN 2160-7508
IngestDate Wed Aug 27 02:47:37 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i864-dbd7348c70f243f8f532403c10f5351b1ee02db704fde8722e3cbb148f2d1b603
PageCount 1
ParticipantIDs ieee_primary_1565309
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085593
ssib030419966
Score 1.3393737
Snippet We propose an unsupervised Local and Global feature extraction paradigm to approach the problem of facial expression recognition in thermal images. Starting...
SourceID ieee
SourceType Publisher
StartPage 14
SubjectTerms Data mining
Face detection
Face recognition
Facial features
Feature extraction
Humans
Image analysis
Image recognition
Information analysis
Support vector machines
Title Automatic Feature Localization in Thermal Images for Facial Expression Recognition
URI https://ieeexplore.ieee.org/document/1565309
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QkydUMP5ODx4tdF23lqMhEDViCEHDjdC1TYi6GdgS41_va7eBMR68dTssW_f63vde3_cVoeulAM8LMIAITS3hxoZEqSAmHBaeoMLKxBOFx0_x3TN_mEfzBrrZcmGMMb75zHTd0O_l6ywpXKmsB7lGFDq23h4kbiVXq7YdyMqDLXT39RXXgOU1d1kQUwKBUZZZez-CmERlJb5TX4ud_mZv8DKZltUW7k7L_XHqig86oxYa169b9pq8dotcdZOvX0qO__2eA9TZ0fvwZBu4DlHDpEeoVeFRXK32TRtNb4s885Ku2CHFYm3wowt9FXUTr1IMVgae_Q3fv4Nf2mBAwHi0dFV4PPysWmxTPK2blLK0g2aj4WxwR6ozGMhKxpxopZ38TSKoZTy00kZewC8JKIyiQAXGUKaVoNxqIwVjJkzgX3NpmQ5UTMNj1Eyz1JwgbIxQgseQEGvGlZFOaZ6FCe3Dk8WS2VPUdjO0-ChVNhbV5Jz9ffsc7XsRVV8MuUDNfF2YS4AHubrydvENCxCyxQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSECsbf9uDRQtd16zgaAkEFQggaboSubULUzQBLjH-9r90Gxnjw1u2wbN3re997fd9XhG4XAjwvwAAiFDWEa-MTKb2QcFh4ggoTxY4oPByF_Wf-OAtmFXS35cJorV3zmW7aodvLV2mc2VJZC3KNwLdsvT2I-4GXs7VK64G83NuCd1dhsS1YTnWXeSElEBqjPG9vBxCVaFTI75TXYqfA2eq8jCd5vYXb83J_nLviwk6vhoblC-fdJq_NbCOb8dcvLcf_ftEhauwIfni8DV1HqKKTY1QrECku1vu6jib32SZ1oq7YYsVspfHABr-CvImXCQY7A9_-hh_ewTOtMWBg3FvYOjzufhZNtgmelG1KadJA01532umT4hQGsoxCTpRUVgAnFtQw7pvIBE7CL_YojAJPelpTpqSg3CgdCca0H8Pf5pFhypMh9U9QNUkTfYqw1kIKHkJKrBiXOrJa88yPaRueLBbMnKG6naH5R66zMS8m5_zv2zdovz8dDuaDh9HTBTpwkqquNHKJqptVpq8ALGzktbORb5XDtg4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+workshops&rft.atitle=Automatic+Feature+Localization+in+Thermal+Images+for+Facial+Expression+Recognition&rft.au=Trujillo%2C+L.&rft.au=Olague%2C+G.&rft.au=Hammoud%2C+R.&rft.au=Hernandez%2C+B.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769526607&rft.issn=2160-7508&rft.spage=14&rft.epage=14&rft_id=info:doi/10.1109%2FCVPR.2005.415&rft.externalDocID=1565309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-7508&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-7508&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-7508&client=summon