Zero-Shot Co-Salient Object Detection Framework
Co-salient Object Detection (CoSOD) endeavors to replicate the human visual system's capacity to recognize common and salient objects within a collection of images. Despite recent advancements in deep learning models, these models still rely on training with well-annotated CoSOD datasets. The e...
Saved in:
Published in | ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 4010 - 4014 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Co-salient Object Detection (CoSOD) endeavors to replicate the human visual system's capacity to recognize common and salient objects within a collection of images. Despite recent advancements in deep learning models, these models still rely on training with well-annotated CoSOD datasets. The exploration of training-free zero-shot CoSOD frameworks has been limited. In this paper, taking inspiration from the zero-shot transfer capabilities of foundational computer vision models, we introduce the first zero-shot CoSOD framework that harnesses these models without any training process. To achieve this, we introduce two novel components in our proposed framework: the group prompt generation (GPG) module and the co-saliency map generation (CMP) module. We evaluate the framework's performance on widely-used datasets and observe impressive results. Our approach surpasses existing unsupervised methods and even outperforms fully supervised methods developed before 2020, while remaining competitive with some fully supervised methods developed before 2022. |
---|---|
AbstractList | Co-salient Object Detection (CoSOD) endeavors to replicate the human visual system's capacity to recognize common and salient objects within a collection of images. Despite recent advancements in deep learning models, these models still rely on training with well-annotated CoSOD datasets. The exploration of training-free zero-shot CoSOD frameworks has been limited. In this paper, taking inspiration from the zero-shot transfer capabilities of foundational computer vision models, we introduce the first zero-shot CoSOD framework that harnesses these models without any training process. To achieve this, we introduce two novel components in our proposed framework: the group prompt generation (GPG) module and the co-saliency map generation (CMP) module. We evaluate the framework's performance on widely-used datasets and observe impressive results. Our approach surpasses existing unsupervised methods and even outperforms fully supervised methods developed before 2020, while remaining competitive with some fully supervised methods developed before 2022. |
Author | Tang, Lv Li, Shaozi Luo, Zhiming Xiao, Haoke Li, Bo |
Author_xml | – sequence: 1 givenname: Haoke surname: Xiao fullname: Xiao, Haoke email: hk.xiao.me@gmail.com organization: Institute of Artificial Intelligence, Xiamen University,Xiamen,China – sequence: 2 givenname: Lv surname: Tang fullname: Tang, Lv email: lvtang@vivo.com organization: Vivo Mobile Communication Co., Ltd,Shanghai,China – sequence: 3 givenname: Bo surname: Li fullname: Li, Bo email: libra@vivo.com organization: Vivo Mobile Communication Co., Ltd,Shanghai,China – sequence: 4 givenname: Zhiming surname: Luo fullname: Luo, Zhiming email: zhiming.luo@xmu.edu.cn organization: Institute of Artificial Intelligence, Xiamen University,Xiamen,China – sequence: 5 givenname: Shaozi surname: Li fullname: Li, Shaozi email: szlig@xmu.edu.cn organization: Institute of Artificial Intelligence, Xiamen University,Xiamen,China |
BookMark | eNo1j8FKw0AURUdRsK39AxfxA5K-mXmTebOUaLVQaCFdiJsyY14wtU0kCYh_3wF1deAsLudOxVXbtSzEvYRMSnCLVfFQllskJJMpUJhJQCQgvBBzZx1pAzoKIy_FRGnrUung9UZMh-EAAGSRJmLxxn2Xlh_dmBSR_thwOyabcOD3MXnkMaLp2mTZ-xN_d_3nrbiu_XHg-R9nYrd82hUv6XrzHHvWaWMVpmSlJKcCV97mqNmoUDlXO20q1Cog5UHlyngw0WkyTCZg0BC10qHO9Uzc_c42zLz_6puT73_2___0GXCCRUQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP48485.2024.10448084 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350344851 |
EISSN | 2379-190X |
EndPage | 4014 |
ExternalDocumentID | 10448084 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI JC5 M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i724-8711892beda7643e52bd99f935d432b486b2625a05f93385e85b4b306b223bf63 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 07 05:30:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i724-8711892beda7643e52bd99f935d432b486b2625a05f93385e85b4b306b223bf63 |
OpenAccessLink | https://doi.org/10.1109/icassp48485.2024.10448084 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10448084 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-14 |
PublicationDateYYYYMMDD | 2024-04-14 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.3017302 |
Snippet | Co-salient Object Detection (CoSOD) endeavors to replicate the human visual system's capacity to recognize common and salient objects within a collection of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4010 |
SubjectTerms | Computational modeling Computer vision Foundational Computer Vision Model Image recognition Object detection Signal processing Training Visualization Zero-shot Co-saliency Detection |
Title | Zero-Shot Co-Salient Object Detection Framework |
URI | https://ieeexplore.ieee.org/document/10448084 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sD6IXXxXfRPCatElmk92jVEsVrIVWKF5KJplFERIp6cVf7yR9-ADB0y4L-2IfM9_OzLcAV1ZbTK0m16SygzHk1DVE1q1sQNZHRlXzdD8Mov4T3k_UZBmsXsfCMHPtfMZela1t-VmRzqunMjnhAiY6GhvQiI1ZBGutr10do96EyyWJZvuuez0aDVGjVoICA_RWlX98o1JLkd4ODFb9L5xH3rx5SV768Yua8d8D3IXWV8CeM1yLoj3Y4Hwftr9xDR5A-5lnhTt6KUqnK6mo39KU80jVO4xzw2XtkpU7vZWzVgvGvdtxt-8uf0twX-MA5VYTqGAC4iyJRctgFVBmjDWhyjAMCHVEgWCdpKOkLNSKtSIkAQwkCgLZKDyEZl7kfAROJ2I_tNokmSZEk1CSxIqUjSLNPqN_DK1q6tP3BR_GdDXrkz_KT2GrWoHKBuPjGTTL2ZzPRZSXdFEv4SceKpvO |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86wY8XvyZ-W8HX1rW9tMmjTMem2xxswvBl9NoLitDK6F7867126_wAwaeEQELCJbn75e5-EeLKKAOxUWjrmHcw-BTbGtHYhQ_IuEAgS57uXj9oP8H9WI4XyeplLgwRlcFn5BTV0pefZPGseCrjE85goqFgVayxYa2CebrW8uJVIah1cbmg0bzuNG-GwwEoUJJxoAdO1f3HRyqlHmlti341g3n4yJszy9GJP36RM_57ijui_pWyZw2WymhXrFC6J7a-sQ3ui-tnmmb28CXLrSaXbIDzUNYjFi8x1i3lZVBWarWqcK26GLXuRs22vfgvwX4NPeB7jcGC9pCSKGQ7g6SHidZG-zIB30NQAXqMdqKG5DZfSVISARkyIJsIaAL_QNTSLKVDYTUCcn2jdJQoBNARRlEoUZogUOQSuEeiXix98j5nxJhUqz7-o_1CbLRHve6k2-k_nIjNQhqFR8aFU1HLpzM6Y8We43kpzk95bJ8Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ICASSP+2024+-+2024+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%28ICASSP%29&rft.atitle=Zero-Shot+Co-Salient+Object+Detection+Framework&rft.au=Xiao%2C+Haoke&rft.au=Tang%2C+Lv&rft.au=Li%2C+Bo&rft.au=Luo%2C+Zhiming&rft.date=2024-04-14&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=4010&rft.epage=4014&rft_id=info:doi/10.1109%2FICASSP48485.2024.10448084&rft.externalDocID=10448084 |