Deep Neural Networks Comparison for MRI Segmentation of the Brainstem
Deep learning networks are the standard for medical image segmentation, yet the network architectures in medical applications are poorly understood. A precise segmentation of the brainstem is crucial in neurological conditions like Amyotrophic Lateral Sclerosis (ALS), which is a rare neurodegenerati...
Saved in:
Published in | 2024 IEEE International Symposium on Biomedical Imaging (ISBI) pp. 1 - 5 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
27.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning networks are the standard for medical image segmentation, yet the network architectures in medical applications are poorly understood. A precise segmentation of the brainstem is crucial in neurological conditions like Amyotrophic Lateral Sclerosis (ALS), which is a rare neurodegenerative disease affecting respiratory muscles by weakening motor neurons in the brain and spinal cord, but it is challenging due to the lack and low resolution of Magnetic Resonance Imaging (MRI) data. In this context, this paper explores neural network properties for brainstem segmentation and presents an efficient model with strong results. We find that minimal gains come from transfer learning in the encoder while optimizing the decoder and loss function improves performance. Our work also provides valuable insights into model components for MRI segmentation of the brainstem. |
---|---|
AbstractList | Deep learning networks are the standard for medical image segmentation, yet the network architectures in medical applications are poorly understood. A precise segmentation of the brainstem is crucial in neurological conditions like Amyotrophic Lateral Sclerosis (ALS), which is a rare neurodegenerative disease affecting respiratory muscles by weakening motor neurons in the brain and spinal cord, but it is challenging due to the lack and low resolution of Magnetic Resonance Imaging (MRI) data. In this context, this paper explores neural network properties for brainstem segmentation and presents an efficient model with strong results. We find that minimal gains come from transfer learning in the encoder while optimizing the decoder and loss function improves performance. Our work also provides valuable insights into model components for MRI segmentation of the brainstem. |
Author | Urien, Helene Marchand-Pauvert, Veronique Oh, Seoyoung Sublime, Jeremie Pelegrini-Issac, Melanie |
Author_xml | – sequence: 1 givenname: Seoyoung surname: Oh fullname: Oh, Seoyoung organization: ISEP - School of Digital Engineers,Paris,France – sequence: 2 givenname: Melanie surname: Pelegrini-Issac fullname: Pelegrini-Issac, Melanie organization: Sorbonne Université, Inserm, CNRS,Laboratoire d'Imagerie Biomédicale, LIB,Paris,France – sequence: 3 givenname: Helene surname: Urien fullname: Urien, Helene organization: ISEP - School of Digital Engineers,Paris,France – sequence: 4 givenname: Veronique surname: Marchand-Pauvert fullname: Marchand-Pauvert, Veronique organization: Sorbonne Université, Inserm, CNRS,Laboratoire d'Imagerie Biomédicale, LIB,Paris,France – sequence: 5 givenname: Jeremie surname: Sublime fullname: Sublime, Jeremie organization: ISEP - School of Digital Engineers,Paris,France |
BookMark | eNo1j81KxDAUhaMoOI59A8G8QOvNf7J06qiFUcGZ_RDaG61Om5JWxLe3oJ7Nd_gWB845Oeljj4RcMSgYA3ddbVeV0spAwYHLgoEWyip9RDJnnBUKBBNC2GOyYE6q3ErFz0g2ju8wx0gpQC7I-hZxoE_4mfxhxvQV08dIy9gNPrVj7GmIiT6-VHSLrx32k5_aWcZApzekq-TbfpywuyCnwR9GzP64JLu79a58yDfP91V5s8lbAzo3aILRzChQDn2wDiWA8s4qrAEZb5TzLOim5qauG21CkE6IRjfaed7MfUkuf2dbRNwPqe18-t7_Hxc_GXtORw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI56570.2024.10635856 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350313338 |
EISSN | 1945-8452 |
EndPage | 5 |
ExternalDocumentID | 10635856 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i706-7e7f76175059eaf89e4005a985ec0e12d59a1f6dc27ccd67ff4933d6d69a2d493 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 28 05:46:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i706-7e7f76175059eaf89e4005a985ec0e12d59a1f6dc27ccd67ff4933d6d69a2d493 |
OpenAccessLink | https://hal.science/hal-04497572/document |
PageCount | 5 |
ParticipantIDs | ieee_primary_10635856 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-27 |
PublicationDateYYYYMMDD | 2024-05-27 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE International Symposium on Biomedical Imaging (ISBI) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.305858 |
Snippet | Deep learning networks are the standard for medical image segmentation, yet the network architectures in medical applications are poorly understood. A precise... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Biological system modeling Brain modeling Brainstem Deep learning Image segmentation Magnetic resonance imaging MRI Neural Network Properties Segmentation Transfer learning |
Title | Deep Neural Networks Comparison for MRI Segmentation of the Brainstem |
URI | https://ieeexplore.ieee.org/document/10635856 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J734qvgmB6-7Zl_J5tra0gotYiv0VvKYiKi7RduLv97JdlsfIHhKCARChmG-ZGa-j5CryKKHKa4DJkQSpMokgUYzB9YJl5gocq7SjByOeP8hvZ1m07pZveqFAYCq-AxCP61y-bY0S_9Vhh6O4THPeIM0hJSrZq3NhwrGwhTf5nUNV8Tk9WDcHvisHsNnYJyG690_dFSqMNLbJaP1AVbVI8_hcqFD8_GLm_HfJ9wjra-OPXq3iUX7ZAuKA7LzjWzwkHRvAObUk3GoFxyq6u932tnoEFKEr3R4P6BjeHytO5IKWjqKEJG2vZKE53xukUmvO-n0g1pEIXgSjAcChBOIUhDoSFAul4BOmymZZ2AYRLHNpIoctyYWxlgunEtlklhuuVSxxfkRaRZlAceEKmEtYy433KlUm0gjWOQaUsM0Ljl5Qlr-QmbzFU3GbH0Xp3-sn5Ftbxefio_FOWku3pZwgRF-oS8ry34CP-6lcg |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rFV8W3OXjddZ_J5tra0tW2iK3greQxEVG3RduLv97JdlsfIHhKCARChuH7kpn5hpCL0KCHSaa8gPPYS6SOPYVm9ozlNtZhaG3ZM7LXZ5375PohfaiK1ctaGAAok8_Ad9Mylm_Geua-ytDDER6zlK2SNSTWGZuXay2_VBANE3ydV1lcYSAu80Ejd3G9AB-CUeIv9v_opFICSXuL9BdHmOePPPuzqfL1xy91xn-fcZvUv2r26O0SjXbIChS7ZPOb3OAeaV0BTKiT45AvOJT53--0uexESJHA0t5dTgfw-FrVJBV0bCmSRNpwvSSc6nOdDNutYbPjVW0UvCceMI8Dtxx5ClIdAdJmAtBtUymyFHQAYWRSIUPLjI641oZxaxMRx4YZJmRkcL5PasW4gANCJTcmCGymmZWJ0qFCusgUJDpQuGTFIam7CxlN5kIZo8VdHP2xfk7WO8Ned9TN-zfHZMPZyAXmI35CatO3GZwi3k_VWWnlTxboqL0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Symposium+on+Biomedical+Imaging+%28ISBI%29&rft.atitle=Deep+Neural+Networks+Comparison+for+MRI+Segmentation+of+the+Brainstem&rft.au=Oh%2C+Seoyoung&rft.au=Pelegrini-Issac%2C+Melanie&rft.au=Urien%2C+Helene&rft.au=Marchand-Pauvert%2C+Veronique&rft.date=2024-05-27&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI56570.2024.10635856&rft.externalDocID=10635856 |