Deep Neural Networks Comparison for MRI Segmentation of the Brainstem

Deep learning networks are the standard for medical image segmentation, yet the network architectures in medical applications are poorly understood. A precise segmentation of the brainstem is crucial in neurological conditions like Amyotrophic Lateral Sclerosis (ALS), which is a rare neurodegenerati...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE International Symposium on Biomedical Imaging (ISBI) pp. 1 - 5
Main Authors Oh, Seoyoung, Pelegrini-Issac, Melanie, Urien, Helene, Marchand-Pauvert, Veronique, Sublime, Jeremie
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning networks are the standard for medical image segmentation, yet the network architectures in medical applications are poorly understood. A precise segmentation of the brainstem is crucial in neurological conditions like Amyotrophic Lateral Sclerosis (ALS), which is a rare neurodegenerative disease affecting respiratory muscles by weakening motor neurons in the brain and spinal cord, but it is challenging due to the lack and low resolution of Magnetic Resonance Imaging (MRI) data. In this context, this paper explores neural network properties for brainstem segmentation and presents an efficient model with strong results. We find that minimal gains come from transfer learning in the encoder while optimizing the decoder and loss function improves performance. Our work also provides valuable insights into model components for MRI segmentation of the brainstem.
AbstractList Deep learning networks are the standard for medical image segmentation, yet the network architectures in medical applications are poorly understood. A precise segmentation of the brainstem is crucial in neurological conditions like Amyotrophic Lateral Sclerosis (ALS), which is a rare neurodegenerative disease affecting respiratory muscles by weakening motor neurons in the brain and spinal cord, but it is challenging due to the lack and low resolution of Magnetic Resonance Imaging (MRI) data. In this context, this paper explores neural network properties for brainstem segmentation and presents an efficient model with strong results. We find that minimal gains come from transfer learning in the encoder while optimizing the decoder and loss function improves performance. Our work also provides valuable insights into model components for MRI segmentation of the brainstem.
Author Urien, Helene
Marchand-Pauvert, Veronique
Oh, Seoyoung
Sublime, Jeremie
Pelegrini-Issac, Melanie
Author_xml – sequence: 1
  givenname: Seoyoung
  surname: Oh
  fullname: Oh, Seoyoung
  organization: ISEP - School of Digital Engineers,Paris,France
– sequence: 2
  givenname: Melanie
  surname: Pelegrini-Issac
  fullname: Pelegrini-Issac, Melanie
  organization: Sorbonne Université, Inserm, CNRS,Laboratoire d'Imagerie Biomédicale, LIB,Paris,France
– sequence: 3
  givenname: Helene
  surname: Urien
  fullname: Urien, Helene
  organization: ISEP - School of Digital Engineers,Paris,France
– sequence: 4
  givenname: Veronique
  surname: Marchand-Pauvert
  fullname: Marchand-Pauvert, Veronique
  organization: Sorbonne Université, Inserm, CNRS,Laboratoire d'Imagerie Biomédicale, LIB,Paris,France
– sequence: 5
  givenname: Jeremie
  surname: Sublime
  fullname: Sublime, Jeremie
  organization: ISEP - School of Digital Engineers,Paris,France
BookMark eNo1j81KxDAUhaMoOI59A8G8QOvNf7J06qiFUcGZ_RDaG61Om5JWxLe3oJ7Nd_gWB845Oeljj4RcMSgYA3ddbVeV0spAwYHLgoEWyip9RDJnnBUKBBNC2GOyYE6q3ErFz0g2ju8wx0gpQC7I-hZxoE_4mfxhxvQV08dIy9gNPrVj7GmIiT6-VHSLrx32k5_aWcZApzekq-TbfpywuyCnwR9GzP64JLu79a58yDfP91V5s8lbAzo3aILRzChQDn2wDiWA8s4qrAEZb5TzLOim5qauG21CkE6IRjfaed7MfUkuf2dbRNwPqe18-t7_Hxc_GXtORw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBI56570.2024.10635856
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350313338
EISSN 1945-8452
EndPage 5
ExternalDocumentID 10635856
Genre orig-research
GroupedDBID 23N
6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i706-7e7f76175059eaf89e4005a985ec0e12d59a1f6dc27ccd67ff4933d6d69a2d493
IEDL.DBID RIE
IngestDate Wed Aug 28 05:46:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i706-7e7f76175059eaf89e4005a985ec0e12d59a1f6dc27ccd67ff4933d6d69a2d493
OpenAccessLink https://hal.science/hal-04497572/document
PageCount 5
ParticipantIDs ieee_primary_10635856
PublicationCentury 2000
PublicationDate 2024-May-27
PublicationDateYYYYMMDD 2024-05-27
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-27
  day: 27
PublicationDecade 2020
PublicationTitle 2024 IEEE International Symposium on Biomedical Imaging (ISBI)
PublicationTitleAbbrev ISBI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000744304
Score 2.305858
Snippet Deep learning networks are the standard for medical image segmentation, yet the network architectures in medical applications are poorly understood. A precise...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biological system modeling
Brain modeling
Brainstem
Deep learning
Image segmentation
Magnetic resonance imaging
MRI
Neural Network Properties
Segmentation
Transfer learning
Title Deep Neural Networks Comparison for MRI Segmentation of the Brainstem
URI https://ieeexplore.ieee.org/document/10635856
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J734qvgmB6-7Zl_J5tra0gotYiv0VvKYiKi7RduLv97JdlsfIHhKCARChmG-ZGa-j5CryKKHKa4DJkQSpMokgUYzB9YJl5gocq7SjByOeP8hvZ1m07pZveqFAYCq-AxCP61y-bY0S_9Vhh6O4THPeIM0hJSrZq3NhwrGwhTf5nUNV8Tk9WDcHvisHsNnYJyG690_dFSqMNLbJaP1AVbVI8_hcqFD8_GLm_HfJ9wjra-OPXq3iUX7ZAuKA7LzjWzwkHRvAObUk3GoFxyq6u932tnoEFKEr3R4P6BjeHytO5IKWjqKEJG2vZKE53xukUmvO-n0g1pEIXgSjAcChBOIUhDoSFAul4BOmymZZ2AYRLHNpIoctyYWxlgunEtlklhuuVSxxfkRaRZlAceEKmEtYy433KlUm0gjWOQaUsM0Ljl5Qlr-QmbzFU3GbH0Xp3-sn5Ftbxefio_FOWku3pZwgRF-oS8ry34CP-6lcg
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rFV8W3OXjddZ_J5tra0tW2iK3greQxEVG3RduLv97JdlsfIHhKCARChuH7kpn5hpCL0KCHSaa8gPPYS6SOPYVm9ozlNtZhaG3ZM7LXZ5375PohfaiK1ctaGAAok8_Ad9Mylm_Geua-ytDDER6zlK2SNSTWGZuXay2_VBANE3ydV1lcYSAu80Ejd3G9AB-CUeIv9v_opFICSXuL9BdHmOePPPuzqfL1xy91xn-fcZvUv2r26O0SjXbIChS7ZPOb3OAeaV0BTKiT45AvOJT53--0uexESJHA0t5dTgfw-FrVJBV0bCmSRNpwvSSc6nOdDNutYbPjVW0UvCceMI8Dtxx5ClIdAdJmAtBtUymyFHQAYWRSIUPLjI641oZxaxMRx4YZJmRkcL5PasW4gANCJTcmCGymmZWJ0qFCusgUJDpQuGTFIam7CxlN5kIZo8VdHP2xfk7WO8Ned9TN-zfHZMPZyAXmI35CatO3GZwi3k_VWWnlTxboqL0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Symposium+on+Biomedical+Imaging+%28ISBI%29&rft.atitle=Deep+Neural+Networks+Comparison+for+MRI+Segmentation+of+the+Brainstem&rft.au=Oh%2C+Seoyoung&rft.au=Pelegrini-Issac%2C+Melanie&rft.au=Urien%2C+Helene&rft.au=Marchand-Pauvert%2C+Veronique&rft.date=2024-05-27&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISBI56570.2024.10635856&rft.externalDocID=10635856