A Dynamic Kernel Prior Model for Unsupervised Blind Image Super-Resolution

Deep learning-based methods have achieved significant successes on solving the blind super-resolution (BSR) problem. However, most of them request supervised pretraining on labelled datasets. This paper proposes an unsupervised kernel estimation model, named dynamic kernel prior (DKP), to realize an...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 26046 - 26056
Main Authors Yang, Zhixiong, Xia, Jingyuan, Li, Shengxi, Huang, Xinghua, Zhang, Shuanghui, Liu, Zhen, Fu, Yaowen, Liu, Yongxiang
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning-based methods have achieved significant successes on solving the blind super-resolution (BSR) problem. However, most of them request supervised pretraining on labelled datasets. This paper proposes an unsupervised kernel estimation model, named dynamic kernel prior (DKP), to realize an unsupervised and pretraining-free learning-based algorithm for solving the BSR problem. DKP can adaptively learn dynamic kernel priors to realize real-time kernel estimation, and thereby enables superior HR image restoration performances. This is achieved by a Markov chain Monte Carlo sampling process on random kernel distributions. The learned kernel prior is then assigned to optimize a blur kernel estimation network, which entails a network-based Langevin dynamic optimization strategy. These two techniques ensure the accuracy of the kernel estimation. DKP can be easily used to replace the kernel estimation models in the existing methods, such as Double-DIP and FKP-DIP, or be added to the off-the-shelf image restoration model, such as diffusion model. In this paper, we incorporate our DKP model with DIP and diffusion model, referring to DIP-DKP and Diff-DKP, for validations. Extensive simulations on Gaussian and motion kernel scenarios demonstrate that the proposed DKP model can significantly improve the kernel estimation with comparable runtime and memory usage, leading to state-of-the-art BSR results. The code is available at https://github.com/XYLGroup/DKP.
AbstractList Deep learning-based methods have achieved significant successes on solving the blind super-resolution (BSR) problem. However, most of them request supervised pretraining on labelled datasets. This paper proposes an unsupervised kernel estimation model, named dynamic kernel prior (DKP), to realize an unsupervised and pretraining-free learning-based algorithm for solving the BSR problem. DKP can adaptively learn dynamic kernel priors to realize real-time kernel estimation, and thereby enables superior HR image restoration performances. This is achieved by a Markov chain Monte Carlo sampling process on random kernel distributions. The learned kernel prior is then assigned to optimize a blur kernel estimation network, which entails a network-based Langevin dynamic optimization strategy. These two techniques ensure the accuracy of the kernel estimation. DKP can be easily used to replace the kernel estimation models in the existing methods, such as Double-DIP and FKP-DIP, or be added to the off-the-shelf image restoration model, such as diffusion model. In this paper, we incorporate our DKP model with DIP and diffusion model, referring to DIP-DKP and Diff-DKP, for validations. Extensive simulations on Gaussian and motion kernel scenarios demonstrate that the proposed DKP model can significantly improve the kernel estimation with comparable runtime and memory usage, leading to state-of-the-art BSR results. The code is available at https://github.com/XYLGroup/DKP.
Author Yang, Zhixiong
Liu, Yongxiang
Li, Shengxi
Huang, Xinghua
Liu, Zhen
Zhang, Shuanghui
Fu, Yaowen
Xia, Jingyuan
Author_xml – sequence: 1
  givenname: Zhixiong
  surname: Yang
  fullname: Yang, Zhixiong
  email: yzx21@nudt.edu.cn
  organization: College of Electronic Engineering, National University of Defense Technology,Changsha,China
– sequence: 2
  givenname: Jingyuan
  surname: Xia
  fullname: Xia, Jingyuan
  email: j.xia10@nudt.edu.cn
  organization: College of Electronic Engineering, National University of Defense Technology,Changsha,China
– sequence: 3
  givenname: Shengxi
  surname: Li
  fullname: Li, Shengxi
  organization: College of Electronic Engineering, Beihang University,Beijing,China
– sequence: 4
  givenname: Xinghua
  surname: Huang
  fullname: Huang, Xinghua
  organization: College of Electronic Engineering, National University of Defense Technology,Changsha,China
– sequence: 5
  givenname: Shuanghui
  surname: Zhang
  fullname: Zhang, Shuanghui
  organization: College of Electronic Engineering, National University of Defense Technology,Changsha,China
– sequence: 6
  givenname: Zhen
  surname: Liu
  fullname: Liu, Zhen
  organization: College of Electronic Engineering, National University of Defense Technology,Changsha,China
– sequence: 7
  givenname: Yaowen
  surname: Fu
  fullname: Fu, Yaowen
  organization: College of Electronic Engineering, National University of Defense Technology,Changsha,China
– sequence: 8
  givenname: Yongxiang
  surname: Liu
  fullname: Liu, Yongxiang
  organization: College of Electronic Engineering, National University of Defense Technology,Changsha,China
BookMark eNotj8FOwzAQRA0CiVLyBz34B1LWdtaOjyVQKBRRlcK1cpo1MkqcKqFI_XuC4DCapzmM9C7ZWWwjMTYRMBUC7HXxvlqjNEpNJchsOkSLE5ZYY3OFoFAB6FM2kmgwNWDwgiV9_wkASgqhbT5ijzN-e4yuCTv-RF2kmq-60Hb8ua0G9gO9xf6wp-479FTxmzrEii8a90H89XdO19S39eErtPGKnXtX95T895ht5neb4iFdvtwvitkyDdqI1GaeFKA2UjnjM2kzcOVOlVYaYdBXCF6TzwcnW3r02jnwHrPBp8y1t0KN2eTvNhDRdt-FxnXHrQCNeYZC_QAC1E8M
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR52733.2024.02461
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350353006
EISSN 2575-7075
EndPage 26056
ExternalDocumentID 10658451
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i671-94fe3056723a7f42940abc3b927175fd50f6ef87339bf5f6aa0ff54835b86f913
IEDL.DBID RIE
IngestDate Wed Sep 25 09:21:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i671-94fe3056723a7f42940abc3b927175fd50f6ef87339bf5f6aa0ff54835b86f913
OpenAccessLink https://arxiv.org/pdf/2404.15620
PageCount 11
ParticipantIDs ieee_primary_10658451
PublicationCentury 2000
PublicationDate 2024-June-16
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-16
  day: 16
PublicationDecade 2020
PublicationTitle 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211698
Score 1.9237055
Snippet Deep learning-based methods have achieved significant successes on solving the blind super-resolution (BSR) problem. However, most of them request supervised...
SourceID ieee
SourceType Publisher
StartPage 26046
SubjectTerms Accuracy
Diffusion models
Dynamics
Estimation
Heuristic algorithms
Superresolution
Training
Title A Dynamic Kernel Prior Model for Unsupervised Blind Image Super-Resolution
URI https://ieeexplore.ieee.org/document/10658451
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJ07jMcRbOXBt6SOP5giDaQwxTbCh3aYmdaSJ0U3beuHX47TdEEhIXKooUpTKqWN_rj-bkOs0AghMHHhgBAKUSFovAc69jElhQwZGlnVmn_uiO2K9MR_XZPWSCwMAZfIZ-G5Y_svP5qZwoTLUcGcvHWF6VypVkbW2AZUYoYxQSU2PCwN1034bvLj6YjHCwIj5gSud9qOJSmlDOk3S3-xepY68-8Va--bzV2HGf7_ePml90_XoYGuIDsgO5IekWfuXtNbe1RHp3dL7qgE9fYJlDjNcNZ0vqeuHNqPovdJRvioW7vZY4cI79EAz-viBNw59ddOei_VXX2qLDDsPw3bXq3speFMhQ08xCw4syChOpUUbxIJUm1irCOEctxkPrACboKyUttyKNA2sRTATc50Iq8L4mDTyeQ4nhIaZtJKZKNLCsoQZZSzXPAFUbXxG-pS0nGgmi6paxmQjlbM_5s_Jnjsel34VigvSWC8LuERDv9ZX5QF_AVBMpv8
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QOMCJ1xBvcuDa0Uce7REG096aYEO7TU3qSBOjm7b1wq_HabshkJC4VFGkKJVTx_5cfzYhd7EP4OrAdUALBCi-NE4InDsJk8J4DLTM68z2-qI5Yu0xH5dk9ZwLAwB58hnU7DD_l5_MdWZDZajh1l5awvQuOtahKOha25BKgGBGRGFJkPPc6L7-NnixFcYCBII-q7m2eNqPNiq5FWkckP5m_yJ55L2WrVVNf_4qzfjvFzwk1W_CHh1sTdER2YH0mByUHiYt9Xd1QtoP9KloQU87sExhhqum8yW1HdFmFP1XOkpX2cLeHytc-Ig-aEJbH3jn0Fc77dhof_GtVsmw8TysN52ym4IzFdJzImbAwgXpB7E0aIWYGysdqMhHQMdNwl0jwIQoq0gZbkQcu8YgnAm4CoWJvOCUVNJ5CmeEeok0kmnfV8KwkOlIG654CKjc-PTVOala0UwWRb2MyUYqF3_M35K95rDXnXRb_c4l2bdHZZOxPHFFKutlBtdo9tfqJj_sLzyTqko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=A+Dynamic+Kernel+Prior+Model+for+Unsupervised+Blind+Image+Super-Resolution&rft.au=Yang%2C+Zhixiong&rft.au=Xia%2C+Jingyuan&rft.au=Li%2C+Shengxi&rft.au=Huang%2C+Xinghua&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=2575-7075&rft.spage=26046&rft.epage=26056&rft_id=info:doi/10.1109%2FCVPR52733.2024.02461&rft.externalDocID=10658451