The convergence of nonnegative solutions for the family of problems − Δpu = λeu as p

Let Ω ⊂ ℝN (N ≥ 2) be a bounded domain with smooth boundary. We show the existence of a positive real number λ* such that for each λ ∈ (0, λ*) and each real number p > N the equation −Δp u = λeu in Ω subject to the homogeneous Dirichlet boundary condition possesses a nonnegative solution up. Next...

Full description

Saved in:
Bibliographic Details
Published inESAIM. Control, optimisation and calculus of variations Vol. 24; no. 2; pp. 569 - 578
Main Authors Mihăilescu, Mihai, Stancu−Dumitru, Denisa, Varga, Csaba
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let Ω ⊂ ℝN (N ≥ 2) be a bounded domain with smooth boundary. We show the existence of a positive real number λ* such that for each λ ∈ (0, λ*) and each real number p > N the equation −Δp u = λeu in Ω subject to the homogeneous Dirichlet boundary condition possesses a nonnegative solution up. Next, we analyze the asymptotic behavior of up as p → ∞ and we show that it converges uniformly to the distance function to the boundary of the domain.
Bibliography:publisher-ID:cocv160177
href:https://www.esaim-cocv.org/articles/cocv/abs/2018/02/cocv160177/cocv160177.html
Corresponding author: Mihai Mihăilescu, Department of Mathematics, University of Craiova, 200585 Craiova, Romania. E-mail: mmihailes@yahoo.com.
istex:08D25D1E1DE46AF8A44351FDE5E16436934B548D
ark:/67375/80W-R519R82K-T
denisa.stancu@yahoo.com
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv/2017048