NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2

As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which n...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 17; no. 3; pp. 349 - 366
Main Authors Liu, Xiaofeng, Tan, Yuqin, Zhang, Chunfeng, Zhang, Ying, Zhang, Liangliang, Ren, Pengwei, Deng, Hongkui, Luo, Jianyuan, Ke, Yang, Du, Xiaojuan
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.03.2016
Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. Synopsis NAT10 acts as an E3 ligase for Mdm2 to promote Mdm2 degradation and stabilizes p53 under normal conditions. While under DNA damage conditions, NAT10 prevents Mdm2–p53 interaction by binding to p53 and acetylates p53, thus regulating p53‐mediated cell cycle arrest and apoptosis. NAT10 promotes Mdm2 ubiquitination and degradation with its E3 ligase activity under normal conditions. NAT10 acetylates p53 at K120. NAT10 translocates to nucleoplasm to bind and acetylate p53 at K120 upon cellular stress, thus contributing to p53 activation. Graphical Abstract NAT10 acts as an E3 ligase for Mdm2 to promote Mdm2 degradation and stabilizes p53 under normal conditions. While under DNA damage conditions, NAT10 prevents Mdm2–p53 interaction by binding to p53 and acetylates p53, thus regulating p53‐mediated cell cycle arrest and apoptosis.
AbstractList As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT 10 as a novel regulator for p53 activation. NAT 10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT 10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT 10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT 10 inhibits cell proliferation and expression of NAT 10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT 10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2-p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53-mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. Synopsis NAT10 acts as an E3 ligase for Mdm2 to promote Mdm2 degradation and stabilizes p53 under normal conditions. While under DNA damage conditions, NAT10 prevents Mdm2–p53 interaction by binding to p53 and acetylates p53, thus regulating p53‐mediated cell cycle arrest and apoptosis. NAT10 promotes Mdm2 ubiquitination and degradation with its E3 ligase activity under normal conditions. NAT10 acetylates p53 at K120. NAT10 translocates to nucleoplasm to bind and acetylate p53 at K120 upon cellular stress, thus contributing to p53 activation. Graphical Abstract NAT10 acts as an E3 ligase for Mdm2 to promote Mdm2 degradation and stabilizes p53 under normal conditions. While under DNA damage conditions, NAT10 prevents Mdm2–p53 interaction by binding to p53 and acetylates p53, thus regulating p53‐mediated cell cycle arrest and apoptosis.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2-p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53-mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2-p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53-mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2–p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53‐mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. Synopsis NAT10 acts as an E3 ligase for Mdm2 to promote Mdm2 degradation and stabilizes p53 under normal conditions. While under DNA damage conditions, NAT10 prevents Mdm2–p53 interaction by binding to p53 and acetylates p53, thus regulating p53‐mediated cell cycle arrest and apoptosis. NAT10 promotes Mdm2 ubiquitination and degradation with its E3 ligase activity under normal conditions. NAT10 acetylates p53 at K120. NAT10 translocates to nucleoplasm to bind and acetylate p53 at K120 upon cellular stress, thus contributing to p53 activation. NAT10 acts as an E3 ligase for Mdm2 to promote Mdm2 degradation and stabilizes p53 under normal conditions. While under DNA damage conditions, NAT10 prevents Mdm2–p53 interaction by binding to p53 and acetylates p53, thus regulating p53‐mediated cell cycle arrest and apoptosis.
As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress response. Several nucleolar proteins stabilize p53 by interfering Mdm2-p53 interaction upon cellular stress, while other mechanisms by which nucleolar proteins activate p53 remain to be determined. Here, we identify NAT10 as a novel regulator for p53 activation. NAT10 acetylates p53 at K120 and stabilizes p53 by counteracting Mdm2 action. In addition, NAT10 promotes Mdm2 degradation with its intrinsic E3 ligase activity. After DNA damage, NAT10 translocates to nucleoplasm and activates p53-mediated cell cycle control and apoptosis. Finally, NAT10 inhibits cell proliferation and expression of NAT10 decreases in human colorectal carcinomas. Thus, our data demonstrate that NAT10 plays a critical role in p53 activation via acetylating p53 and counteracting Mdm2 action, providing a novel pathway by which nucleolar protein activates p53 as a cellular stress sensor. Synopsis NAT10 acts as an E3 ligase for Mdm2 to promote Mdm2 degradation and stabilizes p53 under normal conditions. While under DNA damage conditions, NAT10 prevents Mdm2-p53 interaction by binding to p53 and acetylates p53, thus regulating p53-mediated cell cycle arrest and apoptosis. NAT10 promotes Mdm2 ubiquitination and degradation with its E3 ligase activity under normal conditions. NAT10 acetylates p53 at K120. NAT10 translocates to nucleoplasm to bind and acetylate p53 at K120 upon cellular stress, thus contributing to p53 activation.
Author Luo, Jianyuan
Ke, Yang
Du, Xiaojuan
Zhang, Chunfeng
Zhang, Liangliang
Deng, Hongkui
Tan, Yuqin
Zhang, Ying
Ren, Pengwei
Liu, Xiaofeng
AuthorAffiliation 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Health Science Center Beijing China
2 Department of Cell Biology School of Basic Medical Sciences Peking University Health Science Center Beijing China
5 Department of Medical & Research Technology School of Medicine University of Maryland Baltimore MD USA
4 Laboratory of Genetics Peking University School of Oncology Peking University Cancer Hospital & Institute Beijing China
3 Department of Medical Genetics School of Basic Medical Sciences Peking University Health Science Center Beijing China
AuthorAffiliation_xml – name: 2 Department of Cell Biology School of Basic Medical Sciences Peking University Health Science Center Beijing China
– name: 3 Department of Medical Genetics School of Basic Medical Sciences Peking University Health Science Center Beijing China
– name: 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Health Science Center Beijing China
– name: 4 Laboratory of Genetics Peking University School of Oncology Peking University Cancer Hospital & Institute Beijing China
– name: 5 Department of Medical & Research Technology School of Medicine University of Maryland Baltimore MD USA
Author_xml – sequence: 1
  givenname: Xiaofeng
  surname: Liu
  fullname: Liu, Xiaofeng
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 2
  givenname: Yuqin
  surname: Tan
  fullname: Tan, Yuqin
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 3
  givenname: Chunfeng
  surname: Zhang
  fullname: Zhang, Chunfeng
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 4
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 5
  givenname: Liangliang
  surname: Zhang
  fullname: Zhang, Liangliang
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 6
  givenname: Pengwei
  surname: Ren
  fullname: Ren, Pengwei
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 7
  givenname: Hongkui
  surname: Deng
  fullname: Deng, Hongkui
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 8
  givenname: Jianyuan
  surname: Luo
  fullname: Luo, Jianyuan
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 9
  givenname: Yang
  surname: Ke
  fullname: Ke, Yang
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
– sequence: 10
  givenname: Xiaojuan
  surname: Du
  fullname: Du, Xiaojuan
  email: duxiaojuan100@bjmu.edu.cn
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26882543$$D View this record in MEDLINE/PubMed
BookMark eNptkc1v1DAQxS1URD_gzA1F4sIlxXZij80BqVRtQW0XCRaKuFjeZDbrkjhbJynsf4_bLFFBnPzxfu95PLNPdnzrkZDnjB4ywQV_jc0iHHLKRE4FFY_IHsulTjMGame755x92yX7XXdNKRUa1BOyy6VSXOTZHvk6O5ozmgSshtr22CVrkSW26N2t7V3rk34V2qFaxSvsN5FwvhqRPjlnnCbWl8mwcDeDi9IoX5YNf0oeL23d4bPtekC-nJ7Mj9-nFx_PPhwfXaROSCpSxgGZtUAp1zxDAZrhApQty0ICowq4ZDovtNW0xLzgXOllvqSAEjPMAbMD8nbMXQ-LBssCfR9sbdbBNTZsTGud-VvxbmWq9tbkAFyDjAGvtgGhvRmw603jugLr2npsh84wABo7KKSK6Mt_0Ot2CD5-L1JSaQqK3VEvHlY0lfKn5RF4MwI_XY2bSWfU3E_U3E3UTBM1J5fvPk2naKajuYs-X2F4UMP_A6IlHS2u6_HX9J4NP4yEDIS5mp0ZfjU7_Qzf50ZkvwHIjLNz
CODEN ERMEAX
ContentType Journal Article
Copyright The Authors. Published under the terms of the CC BY NC ND 4.0 license 2016
2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license
2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
2016 EMBO
Copyright_xml – notice: The Authors. Published under the terms of the CC BY NC ND 4.0 license 2016
– notice: 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license
– notice: 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
– notice: 2016 EMBO
DBID BSCLL
C6C
24P
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.201540505
DatabaseName Istex
Springer Nature OA Free Journals
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Xiaofeng Liu et al
EISSN 1469-3178
EndPage 366
ExternalDocumentID PMC4772976
3967394151
26882543
EMBR201540505
10_15252_embr_201540505
ark_67375_WNG_2WNFS7ZT_5
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Innovation Team of Ministry of Education
  grantid: IRT13001
– fundername: 973 Program
  grantid: 2010CB529303
– fundername: National Natural Science Foundation of China
  grantid: 81171877; 81371868; 81321003
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  funderid: 81171877; 81371868; 81321003
– fundername: 973 Program
  funderid: 2010CB529303
– fundername: Innovation Team of Ministry of Education
  funderid: IRT13001
– fundername: National Natural Science Foundation of China
  grantid: 81171877; 81371868; 81321003
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
24P
29G
2WC
33P
36B
39C
3O-
3V.
53G
5GY
5VS
70F
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0L
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
PQQKQ
PROAC
PSQYO
Q2X
R.K
RHF
RHI
RIG
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
WYJ
X7M
ZGI
ZZTAW
AAJSJ
AAYCA
AFWVQ
AANHP
ACRPL
ACYXJ
ADNMO
AEUYN
AAMMB
AASML
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NAO
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-i5605-127e1aa7002923e5791eb78addc67108726194c9a90de4c2289f4f07e6e3e47e3
IEDL.DBID C6C
ISSN 1469-221X
1469-3178
IngestDate Thu Aug 21 18:28:54 EDT 2025
Fri Jul 11 07:50:23 EDT 2025
Fri Jul 25 11:00:02 EDT 2025
Mon Jul 21 06:03:51 EDT 2025
Wed Jan 22 16:34:51 EST 2025
Fri Feb 21 02:36:37 EST 2025
Wed Oct 30 09:51:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords acetylation
Mdm2
NAT10
E3 ligase
p53
Language English
License Attribution-NonCommercial-NoDerivs
2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i5605-127e1aa7002923e5791eb78addc67108726194c9a90de4c2289f4f07e6e3e47e3
Notes Innovation Team of Ministry of Education - No. IRT13001
973 Program - No. 2010CB529303
National Natural Science Foundation of China - No. 81171877; No. 81371868; No. 81321003
ark:/67375/WNG-2WNFS7ZT-5
ArticleID:EMBR201540505
Expanded View Figures PDFReview Process FileSource Data for Figure 6C
istex:5FB60E86E80F9DF827C5C8A58657CD87A8162AE6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.15252/embr.201540505
PMID 26882543
PQID 1768907818
PQPubID 26169
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4772976
proquest_miscellaneous_1770221568
proquest_journals_1768907818
pubmed_primary_26882543
wiley_primary_10_15252_embr_201540505_EMBR201540505
springer_journals_10_15252_embr_201540505
istex_primary_ark_67375_WNG_2WNFS7ZT_5
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO rep
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149: 1269-1283
Hussain SP, Harris CC (1999) p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer. Mutat Res 428: 23-32
Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15: 164-171
Meng L, Lin T, Tsai RY (2008) Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J Cell Sci 121: 4037-4046
Rokudai S, Laptenko O, Arnal SM, Taya Y, Kitabayashi I, Prives C (2013) MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci USA 110: 3895-3900
Yuan J, Luo K, Zhang L, Cheville JC, Lou Z (2010) USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140: 384-396
Lee S, Kim JY, Kim YJ, Seok KO, Kim JH, Chang YJ, Kang HY, Park JH (2012) Nucleolar protein GLTSCR2 stabilizes p53 in response to ribosomal stresses. Cell Death Differ 19: 1613-1622
Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137-148
Forslund A, Zeng Z, Qin LX, Rosenberg S, Ndubuisi M, Pincas H, Gerald W, Notterman DA, Barany F, Paty PB (2008) MDM2 gene amplification is correlated to tumor progression but not to the presence of SNP309 or TP53 mutational status in primary colorectal cancers. Mol Cancer Res 6: 205-211
Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408: 377-381
Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299-303
el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817-825
Thut CJ, Goodrich JA, Tjian R (1997) Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev 11: 1974-1986
Lu L, Berkey KA, Casero RA Jr (1996) RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine N1acetyltransferase. J Biol Chem 271: 18920-18924
Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H et al (2010) Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 18: 147-159
Kubbutat MH, Ludwig RL, Levine AJ, Vousden KH (1999) Analysis of the degradation function of Mdm2. Cell Growth Differ 10: 87-92
Shibagaki I, Tanaka H, Shimada Y, Wagata T, Ikenaga M, Imamura M, Ishizaki K (1995) p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma. Clin Cancer Res 1: 769-773
Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408: 307-310
Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H (2004) Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24: 7654-7668
Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP (2014) Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 344: 527-532
Li M, Luo J, Brooks CL, Gu W (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277: 50607-50611
Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20-26
Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18: 22-27
Honda R, Yasuda H (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19: 1473-1476
Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y (2003) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23: 8902-8912
Lv J, Liu H, Wang Q, Tang Z, Hou L, Zhang B (2003) Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Biochem Biophys Res Commun 311: 506-513
Xu C, Fan CD, Wang X (2015) Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene 34: 281-289
Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3: 577-587
Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16: 369-377
Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96: 11364-11369
Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, Gong Y, Hou L, Zhang B (2009) NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res 315: 1653-1667
Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841-851
Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206-208
Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725-734
Krummel KA, Lee CJ, Toledo F, Wahl GM (2005) The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 102: 10188-10193
Vousden KH, Lu X (2002) Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594-604
Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W (2004) Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101: 2259-2264
Brooks CL, Gu W (2010) New insights into p53 activation. Cell Res 20: 614-621
Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275: 8945-8951
Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402-412
Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24: 827-839
Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125: 531-537
Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22: 6068-6077
Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5: 465-475
Dai MS, Lu H (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279: 44475-44482
Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS, Bhat KP, Godfrey VL, Evan GI, Zhang Y (2007) Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12: 355-366
Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26: 3453-3459
Tao W, Levine AJ (1999) P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96: 6937-6941
Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203-206
Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25-27
Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307-315
Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008) Acetylation is indispensable for p53 activation. Cell 133: 612-626
Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21: 301-307
Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137: 413-431
Kong R, Zhang L, Hu L, Peng Q, Han W, Du X, Ke Y (2011) hALP, a novel transcriptional U three protein (t-UTP), activates RNA polymerase I transcription by binding and acetylating the upstream binding factor (UBF). J Biol Chem 286: 7139-7148
Jin A, Itahana K, O'Keefe K, Zhang Y (2004) Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24: 7669-7680
Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663-673
Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595-606
Linares LK, Kiernan R, Triboulet R, Chable-Bessia C, Latreille D, Cuvier O, Lacroix M, Le Cam L, Coux O, Benkirane M (2007) Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 9: 331-338
Jones, Roe, Donehower, Bradley (CR8) 1995; 378
Tang, Luo, Zhang, Gu (CR28) 2006; 24
Meng, Lin, Tsai (CR48) 2008; 121
Inuzuka, Tseng, Gao, Zhai, Zhang, Shaik, Wan, Ang, Mock, Yin (CR53) 2010; 18
Xu, Fan, Wang (CR54) 2015; 34
Shen, Zheng, McNutt, Guang, Sun, Wang, Gong, Hou, Zhang (CR35) 2009; 315
Shibagaki, Tanaka, Shimada, Wagata, Ikenaga, Imamura, Ishizaki (CR13) 1995; 1
Sykes, Mellert, Holbert, Li, Marmorstein, Lane, McMahon (CR29) 2006; 24
Krummel, Lee, Toledo, Wahl (CR27) 2005; 102
Luo, Li, Tang, Laszkowska, Roeder, Gu (CR26) 2004; 101
Kurki, Peltonen, Latonen, Kiviharju, Ojala, Meek, Laiho (CR47) 2004; 5
Weber, Taylor, Roussel, Sherr, Bar‐Sagi (CR44) 1999; 1
Riley, Sontag, Chen, Levine (CR4) 2008; 9
Honda, Yasuda (CR16) 1999; 18
Yuan, Luo, Zhang, Cheville, Lou (CR59) 2010; 140
Momand, Jung, Wilczynski, Niland (CR11) 1998; 26
Vousden, Lu (CR3) 2002; 2
Gu, Roeder (CR23) 1997; 90
Vousden, Prives (CR43) 2009; 137
Vogelstein, Lane, Levine (CR2) 2000; 408
Thut, Goodrich, Tjian (CR9) 1997; 11
Dai, Lu (CR18) 2004; 279
Kubbutat, Ludwig, Levine, Vousden (CR41) 1999; 10
Sherr (CR22) 2006; 6
Jin, Itahana, O'Keefe, Zhang (CR46) 2004; 24
el‐Deiry, Tokino, Velculescu, Levy, Parsons, Trent, Lin, Mercer, Kinzler, Vogelstein (CR58) 1993; 75
Metzger, Hristova, Weissman (CR55) 2012; 125
Brooks, Gu (CR21) 2010; 20
Zhang, Xiong, Yarbrough (CR17) 1998; 92
Luo, Su, Chen, Shiloh, Gu (CR24) 2000; 408
Lohrum, Ludwig, Kubbutat, Hanlon, Vousden (CR45) 2003; 3
Lorick, Jensen, Fang, Ong, Hatakeyama, Weissman (CR42) 1999; 96
Honda, Yasuda (CR40) 2000; 19
Itahana, Mao, Jin, Itahana, Clegg, Lindstrom, Bhat, Godfrey, Evan, Zhang (CR51) 2007; 12
Forslund, Zeng, Qin, Rosenberg, Ndubuisi, Pincas, Gerald, Notterman, Barany, Paty (CR12) 2008; 6
Fang, Jensen, Ludwig, Vousden, Weissman (CR39) 2000; 275
Honda, Tanaka, Yasuda (CR6) 1997; 420
Lv, Liu, Wang, Tang, Hou, Zhang (CR32) 2003; 311
Brooks, Gu (CR14) 2006; 21
Dai, Zeng, Jin, Sun, David, Lu (CR20) 2004; 24
Kubbutat, Jones, Vousden (CR10) 1997; 387
Luo, Nikolaev, Imai, Chen, Su, Shiloh, Guarente, Gu (CR25) 2001; 107
Hussain, Harris (CR1) 1999; 428
Brooks, Gu (CR5) 2003; 15
Linares, Kiernan, Triboulet, Chable‐Bessia, Latreille, Cuvier, Lacroix, Le Cam, Coux, Benkirane (CR52) 2007; 9
Zhang, Wolf, Bhat, Jin, Allio, Burkhart, Xiong (CR19) 2003; 23
Berndsen, Wolberger (CR56) 2014; 21
Larrieu, Britton, Demir, Rodriguez, Jackson (CR34) 2014; 344
Li, Kon, Jiang, Tan, Ludwig, Zhao, Baer, Gu (CR31) 2012; 149
Tao, Levine (CR57) 1999; 96
Li, Luo, Brooks, Gu (CR38) 2002; 277
Lee, Kim, Kim, Seok, Kim, Chang, Kang, Park (CR49) 2012; 19
Rubbi, Milner (CR50) 2003; 22
Kong, Zhang, Hu, Peng, Han, Du, Ke (CR33) 2011; 286
Rokudai, Laptenko, Arnal, Taya, Kitabayashi, Prives (CR30) 2013; 110
Zhang, Lu (CR15) 2009; 16
Tang, Zhao, Chen, Zhao, Gu (CR36) 2008; 133
Lu, Berkey, Casero (CR37) 1996; 271
Montes de Oca Luna, Wagner, Lozano (CR7) 1995; 378
2015; 34
2010; 18
2004; 24
2002; 277
2008; 9
2003; 15
2004; 5
2012; 19
1995; 378
2008; 6
2010; 140
2012; 125
2001; 107
2003; 311
2014; 21
2009; 315
2000; 408
1997; 90
2010; 20
2000; 19
1997; 11
2006; 24
2006; 21
1999; 18
2005; 102
1993; 75
1997; 420
1997; 387
2003; 3
2007; 9
1999; 10
1998; 92
1999; 96
2013; 110
2009; 16
2011; 286
2004; 101
1998; 26
2002; 2
2006; 6
2000; 275
1999; 1
1995; 1
2012; 149
2008; 121
2007; 12
2009; 137
1999; 428
2004; 279
1996; 271
2008; 133
2003; 22
2003; 23
2014; 344
References_xml – reference: Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408: 307-310
– reference: Shibagaki I, Tanaka H, Shimada Y, Wagata T, Ikenaga M, Imamura M, Ishizaki K (1995) p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma. Clin Cancer Res 1: 769-773
– reference: Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137-148
– reference: Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402-412
– reference: Lu L, Berkey KA, Casero RA Jr (1996) RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine N1acetyltransferase. J Biol Chem 271: 18920-18924
– reference: Meng L, Lin T, Tsai RY (2008) Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J Cell Sci 121: 4037-4046
– reference: Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22: 6068-6077
– reference: Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W (2004) Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101: 2259-2264
– reference: Rokudai S, Laptenko O, Arnal SM, Taya Y, Kitabayashi I, Prives C (2013) MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci USA 110: 3895-3900
– reference: Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725-734
– reference: Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25-27
– reference: Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299-303
– reference: Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H (2004) Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24: 7654-7668
– reference: Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15: 164-171
– reference: Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149: 1269-1283
– reference: Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96: 11364-11369
– reference: Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26: 3453-3459
– reference: Yuan J, Luo K, Zhang L, Cheville JC, Lou Z (2010) USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140: 384-396
– reference: Jin A, Itahana K, O'Keefe K, Zhang Y (2004) Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24: 7669-7680
– reference: Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18: 22-27
– reference: Forslund A, Zeng Z, Qin LX, Rosenberg S, Ndubuisi M, Pincas H, Gerald W, Notterman DA, Barany F, Paty PB (2008) MDM2 gene amplification is correlated to tumor progression but not to the presence of SNP309 or TP53 mutational status in primary colorectal cancers. Mol Cancer Res 6: 205-211
– reference: Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125: 531-537
– reference: Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307-315
– reference: Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16: 369-377
– reference: Tao W, Levine AJ (1999) P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96: 6937-6941
– reference: Kubbutat MH, Ludwig RL, Levine AJ, Vousden KH (1999) Analysis of the degradation function of Mdm2. Cell Growth Differ 10: 87-92
– reference: Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP (2014) Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 344: 527-532
– reference: Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275: 8945-8951
– reference: Thut CJ, Goodrich JA, Tjian R (1997) Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev 11: 1974-1986
– reference: Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137: 413-431
– reference: Linares LK, Kiernan R, Triboulet R, Chable-Bessia C, Latreille D, Cuvier O, Lacroix M, Le Cam L, Coux O, Benkirane M (2007) Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 9: 331-338
– reference: Vousden KH, Lu X (2002) Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594-604
– reference: Shen Q, Zheng X, McNutt MA, Guang L, Sun Y, Wang J, Gong Y, Hou L, Zhang B (2009) NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules. Exp Cell Res 315: 1653-1667
– reference: Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21: 301-307
– reference: Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206-208
– reference: Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663-673
– reference: Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS, Bhat KP, Godfrey VL, Evan GI, Zhang Y (2007) Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12: 355-366
– reference: Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595-606
– reference: Lee S, Kim JY, Kim YJ, Seok KO, Kim JH, Chang YJ, Kang HY, Park JH (2012) Nucleolar protein GLTSCR2 stabilizes p53 in response to ribosomal stresses. Cell Death Differ 19: 1613-1622
– reference: Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408: 377-381
– reference: Dai MS, Lu H (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279: 44475-44482
– reference: Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H et al (2010) Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 18: 147-159
– reference: Hussain SP, Harris CC (1999) p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer. Mutat Res 428: 23-32
– reference: Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5: 465-475
– reference: Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y (2003) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23: 8902-8912
– reference: Brooks CL, Gu W (2010) New insights into p53 activation. Cell Res 20: 614-621
– reference: Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3: 577-587
– reference: Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20-26
– reference: Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24: 827-839
– reference: Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203-206
– reference: Xu C, Fan CD, Wang X (2015) Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene 34: 281-289
– reference: el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817-825
– reference: Lv J, Liu H, Wang Q, Tang Z, Hou L, Zhang B (2003) Molecular cloning of a novel human gene encoding histone acetyltransferase-like protein involved in transcriptional activation of hTERT. Biochem Biophys Res Commun 311: 506-513
– reference: Li M, Luo J, Brooks CL, Gu W (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277: 50607-50611
– reference: Honda R, Yasuda H (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19: 1473-1476
– reference: Kong R, Zhang L, Hu L, Peng Q, Han W, Du X, Ke Y (2011) hALP, a novel transcriptional U three protein (t-UTP), activates RNA polymerase I transcription by binding and acetylating the upstream binding factor (UBF). J Biol Chem 286: 7139-7148
– reference: Tang Y, Zhao W, Chen Y, Zhao Y, Gu W (2008) Acetylation is indispensable for p53 activation. Cell 133: 612-626
– reference: Krummel KA, Lee CJ, Toledo F, Wahl GM (2005) The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 102: 10188-10193
– reference: Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841-851
– volume: 378
  start-page: 206
  year: 1995
  end-page: 208
  ident: CR8
  article-title: Rescue of embryonic lethality in Mdm2‐deficient mice by absence of p53
  publication-title: Nature
– volume: 277
  start-page: 50607
  year: 2002
  end-page: 50611
  ident: CR38
  article-title: Acetylation of p53 inhibits its ubiquitination by Mdm2
  publication-title: J Biol Chem
– volume: 279
  start-page: 44475
  year: 2004
  end-page: 44482
  ident: CR18
  article-title: Inhibition of MDM2‐mediated p53 ubiquitination and degradation by ribosomal protein L5
  publication-title: J Biol Chem
– volume: 387
  start-page: 299
  year: 1997
  end-page: 303
  ident: CR10
  article-title: Regulation of p53 stability by Mdm2
  publication-title: Nature
– volume: 271
  start-page: 18920
  year: 1996
  end-page: 18924
  ident: CR37
  article-title: RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine N1acetyltransferase
  publication-title: J Biol Chem
– volume: 107
  start-page: 137
  year: 2001
  end-page: 148
  ident: CR25
  article-title: Negative control of p53 by Sir2alpha promotes cell survival under stress
  publication-title: Cell
– volume: 34
  start-page: 281
  year: 2015
  end-page: 289
  ident: CR54
  article-title: Regulation of Mdm2 protein stability and the p53 response by NEDD4‐1 E3 ligase
  publication-title: Oncogene
– volume: 6
  start-page: 205
  year: 2008
  end-page: 211
  ident: CR12
  article-title: MDM2 gene amplification is correlated to tumor progression but not to the presence of SNP309 or TP53 mutational status in primary colorectal cancers
  publication-title: Mol Cancer Res
– volume: 10
  start-page: 87
  year: 1999
  end-page: 92
  ident: CR41
  article-title: Analysis of the degradation function of Mdm2
  publication-title: Cell Growth Differ
– volume: 18
  start-page: 147
  year: 2010
  end-page: 159
  ident: CR53
  article-title: Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta‐TRCP) ubiquitin ligase
  publication-title: Cancer Cell
– volume: 275
  start-page: 8945
  year: 2000
  end-page: 8951
  ident: CR39
  article-title: Mdm2 is a RING finger‐dependent ubiquitin protein ligase for itself and p53
  publication-title: J Biol Chem
– volume: 9
  start-page: 331
  year: 2007
  end-page: 338
  ident: CR52
  article-title: Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2
  publication-title: Nat Cell Biol
– volume: 121
  start-page: 4037
  year: 2008
  end-page: 4046
  ident: CR48
  article-title: Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2‐M progression and cell survival
  publication-title: J Cell Sci
– volume: 428
  start-page: 23
  year: 1999
  end-page: 32
  ident: CR1
  article-title: p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer
  publication-title: Mutat Res
– volume: 21
  start-page: 307
  year: 2006
  end-page: 315
  ident: CR14
  article-title: p53 ubiquitination: Mdm2 and beyond
  publication-title: Mol Cell
– volume: 24
  start-page: 841
  year: 2006
  end-page: 851
  ident: CR29
  article-title: Acetylation of the p53 DNA‐binding domain regulates apoptosis induction
  publication-title: Mol Cell
– volume: 22
  start-page: 6068
  year: 2003
  end-page: 6077
  ident: CR50
  article-title: Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses
  publication-title: EMBO J
– volume: 311
  start-page: 506
  year: 2003
  end-page: 513
  ident: CR32
  article-title: Molecular cloning of a novel human gene encoding histone acetyltransferase‐like protein involved in transcriptional activation of hTERT
  publication-title: Biochem Biophys Res Commun
– volume: 18
  start-page: 22
  year: 1999
  end-page: 27
  ident: CR16
  article-title: Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53
  publication-title: EMBO J
– volume: 26
  start-page: 3453
  year: 1998
  end-page: 3459
  ident: CR11
  article-title: The MDM2 gene amplification database
  publication-title: Nucleic Acids Res
– volume: 344
  start-page: 527
  year: 2014
  end-page: 532
  ident: CR34
  article-title: Chemical inhibition of NAT10 corrects defects of laminopathic cells
  publication-title: Science
– volume: 96
  start-page: 6937
  year: 1999
  end-page: 6941
  ident: CR57
  article-title: P19(ARF) stabilizes p53 by blocking nucleo‐cytoplasmic shuttling of Mdm2
  publication-title: Proc Natl Acad Sci USA
– volume: 149
  start-page: 1269
  year: 2012
  end-page: 1283
  ident: CR31
  article-title: Tumor suppression in the absence of p53‐mediated cell‐cycle arrest, apoptosis, and senescence
  publication-title: Cell
– volume: 12
  start-page: 355
  year: 2007
  end-page: 366
  ident: CR51
  article-title: Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation
  publication-title: Cancer Cell
– volume: 315
  start-page: 1653
  year: 2009
  end-page: 1667
  ident: CR35
  article-title: NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules
  publication-title: Exp Cell Res
– volume: 140
  start-page: 384
  year: 2010
  end-page: 396
  ident: CR59
  article-title: USP10 regulates p53 localization and stability by deubiquitinating p53
  publication-title: Cell
– volume: 75
  start-page: 817
  year: 1993
  end-page: 825
  ident: CR58
  article-title: WAF1, a potential mediator of p53 tumor suppression
  publication-title: Cell
– volume: 5
  start-page: 465
  year: 2004
  end-page: 475
  ident: CR47
  article-title: Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2‐mediated degradation
  publication-title: Cancer Cell
– volume: 19
  start-page: 1473
  year: 2000
  end-page: 1476
  ident: CR40
  article-title: Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase
  publication-title: Oncogene
– volume: 11
  start-page: 1974
  year: 1997
  end-page: 1986
  ident: CR9
  article-title: Repression of p53‐mediated transcription by MDM2: a dual mechanism
  publication-title: Genes Dev
– volume: 23
  start-page: 8902
  year: 2003
  end-page: 8912
  ident: CR19
  article-title: Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53‐dependent ribosomal‐stress checkpoint pathway
  publication-title: Mol Cell Biol
– volume: 102
  start-page: 10188
  year: 2005
  end-page: 10193
  ident: CR27
  article-title: The C‐terminal lysines fine‐tune P53 stress responses in a mouse model but are not required for stability control or transactivation
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 7654
  year: 2004
  end-page: 7668
  ident: CR20
  article-title: Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition
  publication-title: Mol Cell Biol
– volume: 286
  start-page: 7139
  year: 2011
  end-page: 7148
  ident: CR33
  article-title: hALP, a novel transcriptional U three protein (t‐UTP), activates RNA polymerase I transcription by binding and acetylating the upstream binding factor (UBF)
  publication-title: J Biol Chem
– volume: 125
  start-page: 531
  year: 2012
  end-page: 537
  ident: CR55
  article-title: HECT and RING finger families of E3 ubiquitin ligases at a glance
  publication-title: J Cell Sci
– volume: 19
  start-page: 1613
  year: 2012
  end-page: 1622
  ident: CR49
  article-title: Nucleolar protein GLTSCR2 stabilizes p53 in response to ribosomal stresses
  publication-title: Cell Death Differ
– volume: 378
  start-page: 203
  year: 1995
  end-page: 206
  ident: CR7
  article-title: Rescue of early embryonic lethality in mdm2‐deficient mice by deletion of p53
  publication-title: Nature
– volume: 24
  start-page: 827
  year: 2006
  end-page: 839
  ident: CR28
  article-title: Tip60‐dependent acetylation of p53 modulates the decision between cell‐cycle arrest and apoptosis
  publication-title: Mol Cell
– volume: 24
  start-page: 7669
  year: 2004
  end-page: 7680
  ident: CR46
  article-title: Inhibition of HDM2 and activation of p53 by ribosomal protein L23
  publication-title: Mol Cell Biol
– volume: 1
  start-page: 20
  year: 1999
  end-page: 26
  ident: CR44
  article-title: Nucleolar Arf sequesters Mdm2 and activates p53
  publication-title: Nat Cell Biol
– volume: 133
  start-page: 612
  year: 2008
  end-page: 626
  ident: CR36
  article-title: Acetylation is indispensable for p53 activation
  publication-title: Cell
– volume: 9
  start-page: 402
  year: 2008
  end-page: 412
  ident: CR4
  article-title: Transcriptional control of human p53‐regulated genes
  publication-title: Nat Rev Mol Cell Biol
– volume: 16
  start-page: 369
  year: 2009
  end-page: 377
  ident: CR15
  article-title: Signaling to p53: ribosomal proteins find their way
  publication-title: Cancer Cell
– volume: 408
  start-page: 377
  year: 2000
  end-page: 381
  ident: CR24
  article-title: Deacetylation of p53 modulates its effect on cell growth and apoptosis
  publication-title: Nature
– volume: 92
  start-page: 725
  year: 1998
  end-page: 734
  ident: CR17
  article-title: ARF promotes MDM2 degradation and stabilizes p53: ARF‐INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways
  publication-title: Cell
– volume: 20
  start-page: 614
  year: 2010
  end-page: 621
  ident: CR21
  article-title: New insights into p53 activation
  publication-title: Cell Res
– volume: 96
  start-page: 11364
  year: 1999
  end-page: 11369
  ident: CR42
  article-title: RING fingers mediate ubiquitin‐conjugating enzyme (E2)‐dependent ubiquitination
  publication-title: Proc Natl Acad Sci USA
– volume: 137
  start-page: 413
  year: 2009
  end-page: 431
  ident: CR43
  article-title: Blinded by the light: the growing complexity of p53
  publication-title: Cell
– volume: 110
  start-page: 3895
  year: 2013
  end-page: 3900
  ident: CR30
  article-title: MOZ increases p53 acetylation and premature senescence through its complex formation with PML
  publication-title: Proc Natl Acad Sci USA
– volume: 101
  start-page: 2259
  year: 2004
  end-page: 2264
  ident: CR26
  article-title: Acetylation of p53 augments its site‐specific DNA binding both and
  publication-title: Proc Natl Acad Sci USA
– volume: 15
  start-page: 164
  year: 2003
  end-page: 171
  ident: CR5
  article-title: Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation
  publication-title: Curr Opin Cell Biol
– volume: 420
  start-page: 25
  year: 1997
  end-page: 27
  ident: CR6
  article-title: Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53
  publication-title: FEBS Lett
– volume: 3
  start-page: 577
  year: 2003
  end-page: 587
  ident: CR45
  article-title: Regulation of HDM2 activity by the ribosomal protein L11
  publication-title: Cancer Cell
– volume: 1
  start-page: 769
  year: 1995
  end-page: 773
  ident: CR13
  article-title: p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma
  publication-title: Clin Cancer Res
– volume: 21
  start-page: 301
  year: 2014
  end-page: 307
  ident: CR56
  article-title: New insights into ubiquitin E3 ligase mechanism
  publication-title: Nat Struct Mol Biol
– volume: 408
  start-page: 307
  year: 2000
  end-page: 310
  ident: CR2
  article-title: Surfing the p53 network
  publication-title: Nature
– volume: 2
  start-page: 594
  year: 2002
  end-page: 604
  ident: CR3
  article-title: Live or let die: the cell's response to p53
  publication-title: Nat Rev Cancer
– volume: 90
  start-page: 595
  year: 1997
  end-page: 606
  ident: CR23
  article-title: Activation of p53 sequence‐specific DNA binding by acetylation of the p53 C‐terminal domain
  publication-title: Cell
– volume: 6
  start-page: 663
  year: 2006
  end-page: 673
  ident: CR22
  article-title: Divorcing ARF and p53: an unsettled case
  publication-title: Nat Rev Cancer
– volume: 20
  start-page: 614
  year: 2010
  end-page: 621
  article-title: New insights into p53 activation
  publication-title: Cell Res
– volume: 315
  start-page: 1653
  year: 2009
  end-page: 1667
  article-title: NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules
  publication-title: Exp Cell Res
– volume: 271
  start-page: 18920
  year: 1996
  end-page: 18924
  article-title: RGFGIGS is an amino acid sequence required for acetyl coenzyme A binding and activity of human spermidine/spermine N1acetyltransferase
  publication-title: J Biol Chem
– volume: 277
  start-page: 50607
  year: 2002
  end-page: 50611
  article-title: Acetylation of p53 inhibits its ubiquitination by Mdm2
  publication-title: J Biol Chem
– volume: 21
  start-page: 307
  year: 2006
  end-page: 315
  article-title: p53 ubiquitination: Mdm2 and beyond
  publication-title: Mol Cell
– volume: 121
  start-page: 4037
  year: 2008
  end-page: 4046
  article-title: Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2‐M progression and cell survival
  publication-title: J Cell Sci
– volume: 133
  start-page: 612
  year: 2008
  end-page: 626
  article-title: Acetylation is indispensable for p53 activation
  publication-title: Cell
– volume: 18
  start-page: 22
  year: 1999
  end-page: 27
  article-title: Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53
  publication-title: EMBO J
– volume: 26
  start-page: 3453
  year: 1998
  end-page: 3459
  article-title: The MDM2 gene amplification database
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 147
  year: 2010
  end-page: 159
  article-title: Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta‐TRCP) ubiquitin ligase
  publication-title: Cancer Cell
– volume: 15
  start-page: 164
  year: 2003
  end-page: 171
  article-title: Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation
  publication-title: Curr Opin Cell Biol
– volume: 420
  start-page: 25
  year: 1997
  end-page: 27
  article-title: Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53
  publication-title: FEBS Lett
– volume: 24
  start-page: 841
  year: 2006
  end-page: 851
  article-title: Acetylation of the p53 DNA‐binding domain regulates apoptosis induction
  publication-title: Mol Cell
– volume: 311
  start-page: 506
  year: 2003
  end-page: 513
  article-title: Molecular cloning of a novel human gene encoding histone acetyltransferase‐like protein involved in transcriptional activation of hTERT
  publication-title: Biochem Biophys Res Commun
– volume: 101
  start-page: 2259
  year: 2004
  end-page: 2264
  article-title: Acetylation of p53 augments its site‐specific DNA binding both and
  publication-title: Proc Natl Acad Sci USA
– volume: 34
  start-page: 281
  year: 2015
  end-page: 289
  article-title: Regulation of Mdm2 protein stability and the p53 response by NEDD4‐1 E3 ligase
  publication-title: Oncogene
– volume: 24
  start-page: 827
  year: 2006
  end-page: 839
  article-title: Tip60‐dependent acetylation of p53 modulates the decision between cell‐cycle arrest and apoptosis
  publication-title: Mol Cell
– volume: 6
  start-page: 205
  year: 2008
  end-page: 211
  article-title: MDM2 gene amplification is correlated to tumor progression but not to the presence of SNP309 or TP53 mutational status in primary colorectal cancers
  publication-title: Mol Cancer Res
– volume: 10
  start-page: 87
  year: 1999
  end-page: 92
  article-title: Analysis of the degradation function of Mdm2
  publication-title: Cell Growth Differ
– volume: 2
  start-page: 594
  year: 2002
  end-page: 604
  article-title: Live or let die: the cell's response to p53
  publication-title: Nat Rev Cancer
– volume: 344
  start-page: 527
  year: 2014
  end-page: 532
  article-title: Chemical inhibition of NAT10 corrects defects of laminopathic cells
  publication-title: Science
– volume: 408
  start-page: 377
  year: 2000
  end-page: 381
  article-title: Deacetylation of p53 modulates its effect on cell growth and apoptosis
  publication-title: Nature
– volume: 19
  start-page: 1613
  year: 2012
  end-page: 1622
  article-title: Nucleolar protein GLTSCR2 stabilizes p53 in response to ribosomal stresses
  publication-title: Cell Death Differ
– volume: 387
  start-page: 299
  year: 1997
  end-page: 303
  article-title: Regulation of p53 stability by Mdm2
  publication-title: Nature
– volume: 96
  start-page: 6937
  year: 1999
  end-page: 6941
  article-title: P19(ARF) stabilizes p53 by blocking nucleo‐cytoplasmic shuttling of Mdm2
  publication-title: Proc Natl Acad Sci USA
– volume: 408
  start-page: 307
  year: 2000
  end-page: 310
  article-title: Surfing the p53 network
  publication-title: Nature
– volume: 12
  start-page: 355
  year: 2007
  end-page: 366
  article-title: Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation
  publication-title: Cancer Cell
– volume: 1
  start-page: 20
  year: 1999
  end-page: 26
  article-title: Nucleolar Arf sequesters Mdm2 and activates p53
  publication-title: Nat Cell Biol
– volume: 275
  start-page: 8945
  year: 2000
  end-page: 8951
  article-title: Mdm2 is a RING finger‐dependent ubiquitin protein ligase for itself and p53
  publication-title: J Biol Chem
– volume: 16
  start-page: 369
  year: 2009
  end-page: 377
  article-title: Signaling to p53: ribosomal proteins find their way
  publication-title: Cancer Cell
– volume: 378
  start-page: 203
  year: 1995
  end-page: 206
  article-title: Rescue of early embryonic lethality in mdm2‐deficient mice by deletion of p53
  publication-title: Nature
– volume: 428
  start-page: 23
  year: 1999
  end-page: 32
  article-title: p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer
  publication-title: Mutat Res
– volume: 6
  start-page: 663
  year: 2006
  end-page: 673
  article-title: Divorcing ARF and p53: an unsettled case
  publication-title: Nat Rev Cancer
– volume: 22
  start-page: 6068
  year: 2003
  end-page: 6077
  article-title: Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses
  publication-title: EMBO J
– volume: 24
  start-page: 7669
  year: 2004
  end-page: 7680
  article-title: Inhibition of HDM2 and activation of p53 by ribosomal protein L23
  publication-title: Mol Cell Biol
– volume: 279
  start-page: 44475
  year: 2004
  end-page: 44482
  article-title: Inhibition of MDM2‐mediated p53 ubiquitination and degradation by ribosomal protein L5
  publication-title: J Biol Chem
– volume: 5
  start-page: 465
  year: 2004
  end-page: 475
  article-title: Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2‐mediated degradation
  publication-title: Cancer Cell
– volume: 149
  start-page: 1269
  year: 2012
  end-page: 1283
  article-title: Tumor suppression in the absence of p53‐mediated cell‐cycle arrest, apoptosis, and senescence
  publication-title: Cell
– volume: 286
  start-page: 7139
  year: 2011
  end-page: 7148
  article-title: hALP, a novel transcriptional U three protein (t‐UTP), activates RNA polymerase I transcription by binding and acetylating the upstream binding factor (UBF)
  publication-title: J Biol Chem
– volume: 9
  start-page: 331
  year: 2007
  end-page: 338
  article-title: Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2
  publication-title: Nat Cell Biol
– volume: 3
  start-page: 577
  year: 2003
  end-page: 587
  article-title: Regulation of HDM2 activity by the ribosomal protein L11
  publication-title: Cancer Cell
– volume: 378
  start-page: 206
  year: 1995
  end-page: 208
  article-title: Rescue of embryonic lethality in Mdm2‐deficient mice by absence of p53
  publication-title: Nature
– volume: 92
  start-page: 725
  year: 1998
  end-page: 734
  article-title: ARF promotes MDM2 degradation and stabilizes p53: ARF‐INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways
  publication-title: Cell
– volume: 96
  start-page: 11364
  year: 1999
  end-page: 11369
  article-title: RING fingers mediate ubiquitin‐conjugating enzyme (E2)‐dependent ubiquitination
  publication-title: Proc Natl Acad Sci USA
– volume: 125
  start-page: 531
  year: 2012
  end-page: 537
  article-title: HECT and RING finger families of E3 ubiquitin ligases at a glance
  publication-title: J Cell Sci
– volume: 90
  start-page: 595
  year: 1997
  end-page: 606
  article-title: Activation of p53 sequence‐specific DNA binding by acetylation of the p53 C‐terminal domain
  publication-title: Cell
– volume: 140
  start-page: 384
  year: 2010
  end-page: 396
  article-title: USP10 regulates p53 localization and stability by deubiquitinating p53
  publication-title: Cell
– volume: 107
  start-page: 137
  year: 2001
  end-page: 148
  article-title: Negative control of p53 by Sir2alpha promotes cell survival under stress
  publication-title: Cell
– volume: 19
  start-page: 1473
  year: 2000
  end-page: 1476
  article-title: Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase
  publication-title: Oncogene
– volume: 24
  start-page: 7654
  year: 2004
  end-page: 7668
  article-title: Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition
  publication-title: Mol Cell Biol
– volume: 21
  start-page: 301
  year: 2014
  end-page: 307
  article-title: New insights into ubiquitin E3 ligase mechanism
  publication-title: Nat Struct Mol Biol
– volume: 110
  start-page: 3895
  year: 2013
  end-page: 3900
  article-title: MOZ increases p53 acetylation and premature senescence through its complex formation with PML
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 10188
  year: 2005
  end-page: 10193
  article-title: The C‐terminal lysines fine‐tune P53 stress responses in a mouse model but are not required for stability control or transactivation
  publication-title: Proc Natl Acad Sci USA
– volume: 1
  start-page: 769
  year: 1995
  end-page: 773
  article-title: p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma
  publication-title: Clin Cancer Res
– volume: 11
  start-page: 1974
  year: 1997
  end-page: 1986
  article-title: Repression of p53‐mediated transcription by MDM2: a dual mechanism
  publication-title: Genes Dev
– volume: 75
  start-page: 817
  year: 1993
  end-page: 825
  article-title: WAF1, a potential mediator of p53 tumor suppression
  publication-title: Cell
– volume: 137
  start-page: 413
  year: 2009
  end-page: 431
  article-title: Blinded by the light: the growing complexity of p53
  publication-title: Cell
– volume: 9
  start-page: 402
  year: 2008
  end-page: 412
  article-title: Transcriptional control of human p53‐regulated genes
  publication-title: Nat Rev Mol Cell Biol
– volume: 23
  start-page: 8902
  year: 2003
  end-page: 8912
  article-title: Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53‐dependent ribosomal‐stress checkpoint pathway
  publication-title: Mol Cell Biol
SSID ssj0005978
Score 2.5303867
Snippet As a genome guardian, p53 maintains genome stability by arresting cells for damage repair or inducing cell apoptosis to eliminate the damaged cells in stress...
SourceID pubmedcentral
proquest
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 349
SubjectTerms Acetylation
Active Transport, Cell Nucleus
Apoptosis
Cell cycle
Cell Nucleus - metabolism
Colorectal cancer
Colorectal Neoplasms - metabolism
Deoxyribonucleic acid
DNA
DNA Damage
E3 ligase
EMBO31
EMBO37
Genomes
HCT116 Cells
HEK293 Cells
Humans
Mdm2
N-Terminal Acetyltransferase E - genetics
N-Terminal Acetyltransferase E - metabolism
N-Terminal Acetyltransferases
NAT10
p53
Protein Binding
Protein Stability
Proteolysis
Proto-Oncogene Proteins c-mdm2 - metabolism
Tumor Suppressor Protein p53 - metabolism
Ubiquitination
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQE9Ne0Ab7yMYmI02T9hAtdhw7eWQTHQK1mlgZaC-WnVxGhQjQDwn-e-7iNFu18bK3NHd1Ld_Z_Z19_h1j732d1WWii9gpqGNVgYsxsi0QyAnnS5V7X9N-x3CkD07U4Vm2zCakuzCBH6LfcKOZ0a7XNMGdny0r9hBrKFx6IvQUhDmIxfQRXbClrD6pvv3O8ijaxRglRSylOOvYfaiJT6sNIDqlgb39F9T8O2OyPzZdBbXtv9LgKdvs4CTfC_Z_xtag2WIbocDk3RZ7POyOzrfZj9HeWCR8GmrPw4xfZymnWw1hT5Z3BXvwFczvKEGu-RVU5vxIyIS7puILP7lZTFAUxMPqUj5nJ4P98ZeDuCuqEE8Q3GSxkAaEc4aO42QKmSkEeJPjMldqRBu5oZBKlYUrkgpUKTEgq1WdGNCQgjKQvmDrzVUDrxj3PqkzjTM4Sb2SUHm0uXZlmae-lM7oiH1oR9ReB-IM66YXlEdmMns6-mrl6Wjw3fwc2yxiO8sht90UmlmBgVBBVER5xHZ7MTo_nWi4Bq4WpGMQg2AIijovg4X6H5M6p-g3jZhZsV2vQMTaq5Jmct4SbCsKOaj_H5dW_qNbGDSR91jyHtt7T8TS1g361h_Qs_vDz8f9p9f_9a037Ak-65AJt8PW59MFvEVoNPfvWue_B99eA7w
  priority: 102
  providerName: Wiley-Blackwell
Title NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2
URI https://api.istex.fr/ark:/67375/WNG-2WNFS7ZT-5/fulltext.pdf
https://link.springer.com/article/10.15252/embr.201540505
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201540505
https://www.ncbi.nlm.nih.gov/pubmed/26882543
https://www.proquest.com/docview/1768907818
https://www.proquest.com/docview/1770221568
https://pubmed.ncbi.nlm.nih.gov/PMC4772976
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCLQXxMZX2KiMhJB4iIi_k8dRrUygFgQdq3ix7MSBalo2ulZi__3u4iys2njgLcmdbMt3dn7nO98R8trXqi4zXaROhjqVVXApWLYFADnmfClz72s87xhP9MGh_DhTsy5JEt6Fue6_V1zxd-HEY9pOhsgCc5XeU0wYrNEw1MO_sRxFu-XCqi9Sztmsy-FzSwOAQXH6_twGKG_GRfbO0XXo2v57Ro_Iww400r0o5S1yJzTb5H4sI3mxTR6MOwf5Y_J9sjdlGV3ECvPhnJ4pQfHuQjx5pV1ZHvgUlhcYBtf8jCxL-onxjLqmois__72aAymSx9UJf0IOR_vT4UHalU5I5wBhVMq4Ccw5g043LoIyBQve5LCZlRowRW7QcJJl4YqsCrLkYHbVss5M0EEEaYJ4Sjaa0yY8J9T7rFYa1mkmvOSh8iBZ7coyF77kzuiEvGln1J7F9BjWLY4xWswoezT5YPnRZPTN_JhalZDdqym33UI5twzMnQITDuUJedWTQcXRb-GacLpCHgNIAwxN4HkWJdR3xnWONq5IiFmTXc-A6bPXKc38V5tGW6JhgeN_eyXla8MC0wi1x6L22F57EiJaNehb_wef3R-__9q_vfiPHnbIJjzrGOW2SzaWi1V4CbBn6QfkLpdfBq3iD_As8fMlbS75_g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRXoECQAIlDROL4kRw4LNBlu9vkQLd0xcXYiQMr1LTsQ7A_h3_KOC9YUQ4ceow9cizPjD2fZzwD8FQXrMh8HnuKmsKjuVEeItsYDblA6YxGWhf2viNJ-fCIjqZsugU_27cwVbR765KsduqmRg95aU60TeAZWBvDb-Mox2b9HVHa4tX-W2TpM0IGe5M3Q68pJODN8EBnXkCECZQS1gVFQsNEHBgtIlTtjOMJGwkLI2gWq9jPDc0IgpCCFr4w3ISGChPiuJdgO2I8Yj3Y7vdHh6PfcSRxtd3jjhN7hATTJn_QOVNG-9ey7sd5xuzfMZmdY3bTbK7OvcENuN4YrG6_lrCbsGXKHbhcl7Bc78CVpHHO34IPaX8S-O68rm5vFu4ZC137bqK-9XWbkkDYZJZrG4JXfq5Jlu44IL6rytxd6dm31Qy76u4kPyG34ehCVvsO9MrT0twDV2u_YBz3CD_UlJhco1RxlWVRqDOiBHfgebWi8qxOzSHV_KuNVBNMHqfvJDlOB4fi40QyB3bbJZeNki5kgFArtsmOIgeedN2oXtZnokpzurI0Aq0cBLlIc7fmUPczwiOLr0MHxAbvOgKbunuzp5x9qVJ4Uwtq7PxftFz-Y1oIy6z0SCs9spMeB8JKDLrR_0En95LX77uv-__xh8dwdThJDuTBfjp-ANewndfRdrvQW85X5iGaX0v9qFEAFz5dtM79ApKHOPo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NISZeEIx_gQFGAiQeoiWOYycPPIxuZaO0QtCxihdjJw5UaFlpU0E_FN-Rc5wEKsYDD3uMfXIs3519P9_5DuCJLuIiC3jqK2YKn-VG-YhsUzTkQqUzlmhd2PuO4YgfHrPXk3iyAT_btzB1tHvrknRvGmyWprLaneVFW6-H7ppTbZN5htbeCNqYyoFZfUfEtnhxtI_sfUpp_2DcO_SbogL-FA_32A-pMKFSwrqjaGRikYZGiwTVPON42ibCQgqWpSoNcsMyioCkYEUgDDeRYcJEOO4luIywKLRYr8d7vyNK0nrjx70n9SkNJ00moXMmjJawZeKP88zav6MzOxftugFdn4D963CtMV3JnpO1G7Bhym244opZrrZha9i46W_Ch9HeOAzI3NW5NwsyiyNiX1C4-1_SFAfCJlOtbDBe-dmRVGQQ0oCoMidLPf22nGKX6x7mp_QWHF_IWt-GzfKsNHeBaB0UMcfdIog0oybXKF9cZVkS6YwqwT14Vq-onLkkHVLNv9qYNRHLk9ErSU9G_ffi41jGHuy0Sy4bdV3IEEFXatMeJR487rpR0az3RJXmbGlpBNo7CHeR5o7jUPczyhOLtCMPxBrvOgKbxHu9p5x-qZN5Mwtv7Pyft1z-Y1oI0Kz0SCs9spMeD6JaDLrR_0EnD4Yv33Vf9_7jD49g6-1-X745Gg3uw1Vs5i7sbgc2q_nSPEA7rNIPa-kn8Omi1e0XYK471A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAT10+regulates+p53+activation+through+acetylating+p53+at+K120+and+ubiquitinating+Mdm2&rft.jtitle=EMBO+reports&rft.au=Liu%2C+Xiaofeng&rft.au=Tan%2C+Yuqin&rft.au=Zhang%2C+Chunfeng&rft.au=Zhang%2C+Ying&rft.date=2016-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=17&rft.issue=3&rft.spage=349&rft.epage=366&rft_id=info:doi/10.15252%2Fembr.201540505&rft.externalDocID=10_15252_embr_201540505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon