SLFN11 inhibits checkpoint maintenance and homologous recombination repair

High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA‐damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1‐dependent manner. Furthermo...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 17; no. 1; pp. 94 - 109
Main Authors Mu, Yanhua, Lou, Jiangman, Srivastava, Mrinal, Zhao, Bin, Feng, Xin-hua, Liu, Ting, Chen, Junjie, Huang, Jun
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.01.2016
Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA‐damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1‐dependent manner. Furthermore, we establish that SLFN11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA–ssDNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN11 to DNA‐damaging agents. Finally, we demonstrate that the RPA1‐binding ability of SLFN11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN11 at high levels, but also suggest that SLFN11 expression can serve as a biomarker to predict responses to DNA‐damaging therapeutic agents. Synopsis High levels of SLFN11 sensitize cancer cell lines to DNA‐damaging agents by inhibiting checkpoint maintenance and homologous recombination repair. SLFN11 expression might serve as a biomarker to predict responses to DNA‐damaging therapeutic agents. SLFN11 is a DNA damage responsive protein and forms a complex with RPA. SLFN11 inhibits checkpoint maintenance and homologous recombination repair by destabilizing the RPA–ssDNA complex. The role of SLFN11 in sensitizing cancer cells to DNA‐damaging agents depends on a physical protein–protein interaction between SLFN11 and RPA1. Graphical Abstract High levels of SLFN11 sensitize cancer cell lines to DNA‐damaging agents by inhibiting checkpoint maintenance and homologous recombination repair. SLFN11 expression might serve as a biomarker to predict responses to DNA‐damaging therapeutic agents.
AbstractList High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA‐damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1‐dependent manner. Furthermore, we establish that SLFN11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA–ssDNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN11 to DNA‐damaging agents. Finally, we demonstrate that the RPA1‐binding ability of SLFN11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN11 at high levels, but also suggest that SLFN11 expression can serve as a biomarker to predict responses to DNA‐damaging therapeutic agents. Synopsis High levels of SLFN11 sensitize cancer cell lines to DNA‐damaging agents by inhibiting checkpoint maintenance and homologous recombination repair. SLFN11 expression might serve as a biomarker to predict responses to DNA‐damaging therapeutic agents. SLFN11 is a DNA damage responsive protein and forms a complex with RPA. SLFN11 inhibits checkpoint maintenance and homologous recombination repair by destabilizing the RPA–ssDNA complex. The role of SLFN11 in sensitizing cancer cells to DNA‐damaging agents depends on a physical protein–protein interaction between SLFN11 and RPA1. Graphical Abstract High levels of SLFN11 sensitize cancer cell lines to DNA‐damaging agents by inhibiting checkpoint maintenance and homologous recombination repair. SLFN11 expression might serve as a biomarker to predict responses to DNA‐damaging therapeutic agents.
High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA‐damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1‐dependent manner. Furthermore, we establish that SLFN11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA–ssDNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN11 to DNA‐damaging agents. Finally, we demonstrate that the RPA1‐binding ability of SLFN11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN11 at high levels, but also suggest that SLFN11 expression can serve as a biomarker to predict responses to DNA‐damaging therapeutic agents. Synopsis High levels of SLFN11 sensitize cancer cell lines to DNA‐damaging agents by inhibiting checkpoint maintenance and homologous recombination repair. SLFN11 expression might serve as a biomarker to predict responses to DNA‐damaging therapeutic agents. SLFN11 is a DNA damage responsive protein and forms a complex with RPA. SLFN11 inhibits checkpoint maintenance and homologous recombination repair by destabilizing the RPA–ssDNA complex. The role of SLFN11 in sensitizing cancer cells to DNA‐damaging agents depends on a physical protein–protein interaction between SLFN11 and RPA1. High levels of SLFN11 sensitize cancer cell lines to DNA‐damaging agents by inhibiting checkpoint maintenance and homologous recombination repair. SLFN11 expression might serve as a biomarker to predict responses to DNA‐damaging therapeutic agents.
High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA-damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1-dependent manner. Furthermore, we establish that SLFN11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA-ssDNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN11 to DNA-damaging agents. Finally, we demonstrate that the RPA1-binding ability of SLFN11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN11 at high levels, but also suggest that SLFN11 expression can serve as a biomarker to predict responses to DNA-damaging therapeutic agents. Synopsis High levels of SLFN11 sensitize cancer cell lines to DNA-damaging agents by inhibiting checkpoint maintenance and homologous recombination repair. SLFN11 expression might serve as a biomarker to predict responses to DNA-damaging therapeutic agents. SLFN11 is a DNA damage responsive protein and forms a complex with RPA. SLFN11 inhibits checkpoint maintenance and homologous recombination repair by destabilizing the RPA-ssDNA complex. The role of SLFN11 in sensitizing cancer cells to DNA-damaging agents depends on a physical protein-protein interaction between SLFN11 and RPA1.
High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA-damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1-dependent manner. Furthermore, we establish that SLFN11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA-ssDNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN11 to DNA-damaging agents. Finally, we demonstrate that the RPA1-binding ability of SLFN11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN11 at high levels, but also suggest that SLFN11 expression can serve as a biomarker to predict responses to DNA-damaging therapeutic agents.High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA-damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1-dependent manner. Furthermore, we establish that SLFN11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA-ssDNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN11 to DNA-damaging agents. Finally, we demonstrate that the RPA1-binding ability of SLFN11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN11 at high levels, but also suggest that SLFN11 expression can serve as a biomarker to predict responses to DNA-damaging therapeutic agents.
High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA-damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN11 interacts directly with RPA1 and is recruited to sites of DNA damage in an RPA1-dependent manner. Furthermore, we establish that SLFN11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA-ssDNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN11 to DNA-damaging agents. Finally, we demonstrate that the RPA1-binding ability of SLFN11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN11 at high levels, but also suggest that SLFN11 expression can serve as a biomarker to predict responses to DNA-damaging therapeutic agents.
High expression levels of SLFN 11 correlate with the sensitivity of human cancer cells to DNA ‐damaging agents. However, little is known about the underlying mechanism. Here, we show that SLFN 11 interacts directly with RPA 1 and is recruited to sites of DNA damage in an RPA 1‐dependent manner. Furthermore, we establish that SLFN 11 inhibits checkpoint maintenance and homologous recombination repair by promoting the destabilization of the RPA –ss DNA complex, thereby sensitizing cancer cell lines expressing high endogenous levels of SLFN 11 to DNA ‐damaging agents. Finally, we demonstrate that the RPA 1‐binding ability of SLFN 11 is required for its function in the DNA damage response. Our findings not only provide novel insight into the molecular mechanisms underlying the drug sensitivity of cancer cell lines expressing SLFN 11 at high levels, but also suggest that SLFN 11 expression can serve as a biomarker to predict responses to DNA ‐damaging therapeutic agents.
Author Mu, Yanhua
Srivastava, Mrinal
Chen, Junjie
Lou, Jiangman
Zhao, Bin
Feng, Xin‐hua
Huang, Jun
Liu, Ting
AuthorAffiliation 1 Life Sciences Institute and Innovation Center for Cell Signaling Network Zhejiang University Hangzhou Zhejiang China
3 Department of Cell Biology Zhejiang University School of Medicine Hangzhou Zhejiang China
2 Department of Experimental Radiation Oncology University of Texas M.D. Anderson Cancer Center Houston TX USA
AuthorAffiliation_xml – name: 2 Department of Experimental Radiation Oncology University of Texas M.D. Anderson Cancer Center Houston TX USA
– name: 3 Department of Cell Biology Zhejiang University School of Medicine Hangzhou Zhejiang China
– name: 1 Life Sciences Institute and Innovation Center for Cell Signaling Network Zhejiang University Hangzhou Zhejiang China
Author_xml – sequence: 1
  givenname: Yanhua
  surname: Mu
  fullname: Mu, Yanhua
  organization: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, HangzhouZhejiang, China
– sequence: 2
  givenname: Jiangman
  surname: Lou
  fullname: Lou, Jiangman
  organization: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, HangzhouZhejiang, China
– sequence: 3
  givenname: Mrinal
  surname: Srivastava
  fullname: Srivastava, Mrinal
  organization: Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, TX, Houston, USA
– sequence: 4
  givenname: Bin
  surname: Zhao
  fullname: Zhao, Bin
  organization: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, HangzhouZhejiang, China
– sequence: 5
  givenname: Xin-hua
  surname: Feng
  fullname: Feng, Xin-hua
  organization: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, HangzhouZhejiang, China
– sequence: 6
  givenname: Ting
  surname: Liu
  fullname: Liu, Ting
  email: Corresponding author. Tel: +86 571 8898 1376; , liuting518@zju.edu.cn, Corresponding author. Tel: +1 713 792 4863; , jchen8@mdanderson.org, Corresponding author. Tel: +86 571 8898 1391; , jhuang@zju.edu.cn
  organization: Department of Cell Biology, Zhejiang University School of Medicine, HangzhouZhejiang, China
– sequence: 7
  givenname: Junjie
  surname: Chen
  fullname: Chen, Junjie
  email: Corresponding author. Tel: +86 571 8898 1376; , liuting518@zju.edu.cn, Corresponding author. Tel: +1 713 792 4863; , jchen8@mdanderson.org, Corresponding author. Tel: +86 571 8898 1391; , jhuang@zju.edu.cn
  organization: Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, TX, Houston, USA
– sequence: 8
  givenname: Jun
  surname: Huang
  fullname: Huang, Jun
  email: Corresponding author. Tel: +86 571 8898 1376; , liuting518@zju.edu.cn, Corresponding author. Tel: +1 713 792 4863; , jchen8@mdanderson.org, Corresponding author. Tel: +86 571 8898 1391; , jhuang@zju.edu.cn
  organization: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, HangzhouZhejiang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26658330$$D View this record in MEDLINE/PubMed
BookMark eNptUU1v1DAQtVAR_YAzNxSJC5e0_ojthAMSbL-otq3Eh8rNmngnu24Te3Gyhf77uuwSFdSL7dG89_zmzS7Z8sEjIa8Z3WeSS36AXR33OWWyoJUqnpEdVqgqF0yXW5s35-zHNtnt-2tKqax0-YJsc6VkKQTdIWdfp8cXjGXOL1zthj6zC7Q3y-D8kHWQTvTgLWbgZ9kidKEN87Dqs4g2dLXzMLjgU7UEF1-S5w20Pb7a3Hvk-_HRt8lpPr08-Tz5OM2dVLTINa-pVhYtNMhYbTWvqpLTphSNpgBCzWwJjEkhdQ2Aja0o1Cg0lIoLClrskQ9r3eWq7nBm0Q8RWrOMroN4ZwI482_Hu4WZh1tTaFYWjCWBdxuBGH6usB9M53qLbQse03CG6ZRmWXCqEvTtf9DrsIo-jfeA0lUKXlYJ9eaxo9HK35gT4P0a8Mu1eDf2GTV_tmgetmjGLZqj809fxiqR6ZrcJ56fY3zk4WmBRMnXFNcP-Hv8D-KNUVpoaa4uTsxEX50dVvrcnIp7k0qyHQ
CODEN ERMEAX
ContentType Journal Article
Copyright The Authors 2015
2015 The Authors
2015 The Authors.
2016 EMBO
Copyright_xml – notice: The Authors 2015
– notice: 2015 The Authors
– notice: 2015 The Authors.
– notice: 2016 EMBO
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.201540964
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList

Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Yanhua Mu et al
EISSN 1469-3178
EndPage 109
ExternalDocumentID PMC4718411
3925066651
26658330
EMBR201540964
10_15252_embr_201540964
ark_67375_WNG_C7WJD97M_H
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Funds for Distinguished Young Scholar
– fundername: China's Fundamental Research Funds for the Central Universities
– fundername: National Program for Special Support of Eminent Professionals
– fundername: National Basic Research Program of China
  grantid: 2012CB944402; 2013CB911003; 2013CB945303
– fundername: National Natural Science Foundation of China
  grantid: 31071243; 31171347
– fundername: Research Fund for the Doctoral Program of Higher Education
  grantid: 20110101120152
– fundername: National Basic Research Program of China
  funderid: 2012CB944402; 2013CB911003; 2013CB945303
– fundername: National Natural Science Foundation of China
  funderid: 31071243; 31171347
– fundername: Research Fund for the Doctoral Program of Higher Education
  funderid: 20110101120152
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
24P
29G
2WC
33P
36B
39C
3O-
3V.
53G
5GY
5VS
70F
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0L
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
PQQKQ
PROAC
PSQYO
Q2X
R.K
RHF
RHI
RIG
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
WYJ
X7M
ZGI
ZZTAW
AAJSJ
AAYCA
AFWVQ
AANHP
ACRPL
ACYXJ
ADNMO
AEUYN
AAMMB
AASML
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NAO
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-i5604-72b076cecafe11bc7299820f83f70aa36dc8a115357baaefc90abe37a86230a73
IEDL.DBID C6C
ISSN 1469-221X
1469-3178
IngestDate Thu Aug 21 13:57:53 EDT 2025
Fri Jul 11 00:28:13 EDT 2025
Fri Jul 25 10:55:22 EDT 2025
Mon Jul 21 06:03:49 EDT 2025
Wed Jan 22 16:45:00 EST 2025
Fri Feb 21 02:37:41 EST 2025
Wed Oct 30 10:05:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords checkpoint initiation
RPA
checkpoint maintenance
DNA damage response
homologous recombination repair
Language English
License 2015 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i5604-72b076cecafe11bc7299820f83f70aa36dc8a115357baaefc90abe37a86230a73
Notes National Natural Science Funds for Distinguished Young Scholar
istex:C9EB362A7C7802974FDAE5538B0CBF1F2607A079
National Basic Research Program of China - No. 2012CB944402; No. 2013CB911003; No. 2013CB945303
National Natural Science Foundation of China - No. 31071243; No. 31171347
Expanded View Figures PDFReview Process FileSource Data for Figure 1Source Data for Figure 2Source Data for Figure 3Source Data for Figure 4Source Data for Figure 5Source Data for Figure 6Source Data for Figure 7
ark:/67375/WNG-C7WJD97M-H
National Program for Special Support of Eminent Professionals
ArticleID:EMBR201540964
China's Fundamental Research Funds for the Central Universities
Research Fund for the Doctoral Program of Higher Education - No. 20110101120152
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
PMID 26658330
PQID 1757901559
PQPubID 26169
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4718411
proquest_miscellaneous_1754084206
proquest_journals_1757901559
pubmed_primary_26658330
wiley_primary_10_15252_embr_201540964_EMBR201540964
springer_journals_10_15252_embr_201540964
istex_primary_ark_67375_WNG_C7WJD97M_H
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO rep
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339: 823-826
Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40: 179-204
Schwarz DA, Katayama CD, Hedrick SM (1998) Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity 9: 657-668
Tian L, Song S, Liu X, Wang Y, Xu X, Hu Y, Xu J (2014) Schlafen-11 sensitizes colorectal carcinoma cells to irinotecan. Anticancer Drugs 25: 1175-1181
Dong S, Han J, Chen H, Liu T, Huen MS, Yang Y, Guo C, Huang J (2014) The human SRCAP chromatin remodeling complex promotes DNA-end resection. Curr Biol 24: 2097-2110
Liu T, Huang J (2014) Quality control of homologous recombination. Cell Mol Life Sci 71: 3779-3797
Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461: 1071-1078
Deans AJ, West SC (2009) FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia. Mol Cell 36: 943-953
Huang J, Gong Z, Ghosal G, Chen J (2009) SOSS complexes participate in the maintenance of genomic stability. Mol Cell 35: 384-393
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483: 603-607
Bernstein KA, Rothstein R (2009) At loose ends: resecting a double-strand break. Cell 137: 807-810
Wan L, Huang J (2014) The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). J Biol Chem 289: 6619-6626
Yusufzai T, Kong X, Yokomori K, Kadonaga JT (2009) The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev 23: 2400-2404
Marechal A, Zou L (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 25: 9-23
Bianchi J, Rudd SG, Jozwiakowski SK, Bailey LJ, Soura V, Taylor E, Stevanovic I, Green AJ, Stracker TH, Lindsay HD et al (2013) PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol Cell 52: 566-573
Wan L, Lou J, Xia Y, Su B, Liu T, Cui J, Sun Y, Lou H, Huang J (2013) hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep 14: 1104-1112
Ciccia A, Bredemeyer AL, Sowa ME, Terret ME, Jallepalli PV, Harper JW, Elledge SJ (2009) The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev 23: 2415-2425
Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y (1999) Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 18: 1397-1406
Altfeld M, Gale M Jr (2015) Innate immunity against HIV-1 infection. Nat Immunol 16: 554-562
Liu T, Ghosal G, Yuan J, Chen J, Huang J (2010) FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329: 693-696
Yuan J, Ghosal G, Chen J (2009) The annealing helicase HARP protects stalled replication forks. Genes Dev 23: 2394-2399
Bustos O, Naik S, Ayers G, Casola C, Perez-Lamigueiro MA, Chippindale PT, Pritham EJ, de la Casa-Esperon E (2009) Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence. Gene 447: 1-11
San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77: 229-257
Helleday T (2013) PrimPol breaks replication barriers. Nat Struct Mol Biol 20: 1348-1350
Huen MS, Sy SM, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11: 138-148
Wan L, Han J, Liu T, Dong S, Xie F, Chen H, Huang J (2013) Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Proc Natl Acad Sci USA 110: 10646-10651
Zoppoli G, Regairaz M, Leo E, Reinhold WC, Varma S, Ballestrero A, Doroshow JH, Pommier Y (2012) Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci USA 109: 15030-15035
Weinstock DM, Nakanishi K, Helgadottir HR, Jasin M (2006) Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol 409: 524-540
Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, et al (2012) Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 491: 125-128
Moldovan GL, Dejsuphong D, Petalcorin MI, Hofmann K, Takeda S, Boulton SJ, D'Andrea AD (2012) Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol Cell 45: 75-86
Neumann B, Zhao L, Murphy K, Gonda TJ (2008) Subcellular localization of the Schlafen protein family. Biochem Biophys Res Commun 370: 62-66
Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497-510
Postow L, Woo EM, Chait BT, Funabiki H (2009) Identification of SMARCAL1 as a component of the DNA damage response. J Biol Chem 284: 35951-35961
Mavrommatis E, Fish EN, Platanias LC (2013) The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 33: 206-210
Mouron S, Rodriguez-Acebes S, Martinez-Jimenez MI, Garcia-Gomez S, Chocron S, Blanco L, Mendez J (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol 20: 1383-1389
Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66: 61-92
Pierce AJ, Johnson RD, Thompson LH, Jasin M (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13: 2633-2638
Raderschall E, Golub EI, Haaf T (1999) Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci USA 96: 1921-1926
Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D (2009) The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23: 2405-2414
Katsoulidis E, Mavrommatis E, Woodard J, Shields MA, Sassano A, Carayol N, Sawicki KT, Munshi HG, Platanias LC (2010) Role of interferon alpha (IFN{alpha})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells. J Biol Chem 285: 40333-40341
Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49: 795-807
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823
Marechal A, Li JM, Ji XY, Wu CS, Yazinski SA, Nguyen HD, Liu S, Jimenez AE, Jin J, Zou L (2014) PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell 53: 235-246
Im JS, Lee KY, Dillon LW, Dutta A (2013) Human Primpol1: a novel guardian of stalled replication forks. EMBO Rep 14: 1032-1033
Moldovan, Dejsuphong, Petalcorin, Hofmann, Takeda, Boulton, D'Andrea (CR38) 2012; 45
Yuan, Ghosal, Chen (CR33) 2009; 23
Neumann, Zhao, Murphy, Gonda (CR10) 2008; 370
Shao, Cao, Zhang, Kohn, Wold, Pommier (CR22) 1999; 18
Mali, Yang, Esvelt, Aach, Guell, DiCarlo, Norville, Church (CR43) 2013; 339
Marechal, Li, Ji, Wu, Yazinski, Nguyen, Liu, Jimenez, Jin, Zou (CR32) 2014; 53
Tian, Song, Liu, Wang, Xu, Hu, Xu (CR15) 2014; 25
Zoppoli, Regairaz, Leo, Reinhold, Varma, Ballestrero, Doroshow, Pommier (CR14) 2012; 109
Wold (CR16) 1997; 66
Yusufzai, Kong, Yokomori, Kadonaga (CR34) 2009; 23
Liu, Ghosal, Yuan, Chen, Huang (CR40) 2010; 329
Altfeld, Gale (CR13) 2015; 16
Chapman, Taylor, Boulton (CR21) 2012; 47
San Filippo, Sung, Klein (CR23) 2008; 77
Schwarz, Katayama, Hedrick (CR9) 1998; 9
Bianchi, Rudd, Jozwiakowski, Bailey, Soura, Taylor, Stevanovic, Green, Stracker, Lindsay (CR29) 2013; 52
Im, Lee, Dillon, Dutta (CR28) 2013; 14
Ciccia, Bredemeyer, Sowa, Terret, Jallepalli, Harper, Elledge (CR36) 2009; 23
Bustos, Naik, Ayers, Casola, Perez‐Lamigueiro, Chippindale, Pritham, de la Casa‐Esperon (CR8) 2009; 447
Dong, Han, Chen, Liu, Huen, Yang, Guo, Huang (CR20) 2014; 24
Ciccia, Elledge (CR1) 2010; 40
Li, Kao, Gao, Sandig, Limmer, Pavon‐Eternod, Jones, Landry, Pan, Weitzman (CR12) 2012; 491
Wan, Huang (CR19) 2014; 289
Huen, Sy, Chen (CR3) 2010; 11
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini (CR42) 2013; 339
Mouron, Rodriguez‐Acebes, Martinez‐Jimenez, Garcia‐Gomez, Chocron, Blanco, Mendez (CR31) 2013; 20
Barretina, Caponigro, Stransky, Venkatesan, Margolin, Kim, Wilson, Lehar, Kryukov, Sonkin (CR11) 2012; 483
Wan, Lou, Xia, Su, Liu, Cui, Sun, Lou, Huang (CR18) 2013; 14
Mavrommatis, Fish, Platanias (CR7) 2013; 33
Bernstein, Rothstein (CR24) 2009; 137
Wan, Han, Liu, Dong, Xie, Chen, Huang (CR39) 2013; 110
Liu, Huang (CR4) 2014; 71
Raderschall, Golub, Haaf (CR27) 1999; 96
Deans, West (CR44) 2009; 36
Postow, Woo, Chait, Funabiki (CR37) 2009; 284
Huang, Gong, Ghosal, Chen (CR41) 2009; 35
Jackson, Bartek (CR5) 2009; 461
Weinstock, Nakanishi, Helgadottir, Jasin (CR25) 2006; 409
Jackson, Durocher (CR2) 2013; 49
Katsoulidis, Mavrommatis, Woodard, Shields, Sassano, Carayol, Sawicki, Munshi, Platanias (CR6) 2010; 285
Helleday (CR30) 2013; 20
Marechal, Zou (CR17) 2015; 25
Pierce, Johnson, Thompson, Jasin (CR26) 1999; 13
Bansbach, Betous, Lovejoy, Glick, Cortez (CR35) 2009; 23
2009; 23
2010; 11
2012; 483
2015; 16
2010; 329
2013; 49
1997; 66
2013; 20
2014; 25
2010; 285
2014; 24
2008; 77
2010; 40
2009; 137
2012; 109
2012; 491
2006; 409
2009; 36
2015; 25
2009; 35
2013; 14
2013; 33
2013; 339
1999; 18
2013; 52
1999; 13
1999; 96
2009; 284
2013; 110
2009; 461
2012; 47
2012; 45
2014; 71
1998; 9
2008; 370
2009; 447
2014; 289
2014; 53
References_xml – reference: Dong S, Han J, Chen H, Liu T, Huen MS, Yang Y, Guo C, Huang J (2014) The human SRCAP chromatin remodeling complex promotes DNA-end resection. Curr Biol 24: 2097-2110
– reference: Wan L, Lou J, Xia Y, Su B, Liu T, Cui J, Sun Y, Lou H, Huang J (2013) hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep 14: 1104-1112
– reference: Ciccia A, Bredemeyer AL, Sowa ME, Terret ME, Jallepalli PV, Harper JW, Elledge SJ (2009) The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev 23: 2415-2425
– reference: Wan L, Huang J (2014) The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). J Biol Chem 289: 6619-6626
– reference: Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483: 603-607
– reference: Zoppoli G, Regairaz M, Leo E, Reinhold WC, Varma S, Ballestrero A, Doroshow JH, Pommier Y (2012) Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci USA 109: 15030-15035
– reference: Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339: 823-826
– reference: Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49: 795-807
– reference: Bianchi J, Rudd SG, Jozwiakowski SK, Bailey LJ, Soura V, Taylor E, Stevanovic I, Green AJ, Stracker TH, Lindsay HD et al (2013) PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol Cell 52: 566-573
– reference: Bustos O, Naik S, Ayers G, Casola C, Perez-Lamigueiro MA, Chippindale PT, Pritham EJ, de la Casa-Esperon E (2009) Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence. Gene 447: 1-11
– reference: Tian L, Song S, Liu X, Wang Y, Xu X, Hu Y, Xu J (2014) Schlafen-11 sensitizes colorectal carcinoma cells to irinotecan. Anticancer Drugs 25: 1175-1181
– reference: Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y (1999) Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 18: 1397-1406
– reference: Weinstock DM, Nakanishi K, Helgadottir HR, Jasin M (2006) Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol 409: 524-540
– reference: Mavrommatis E, Fish EN, Platanias LC (2013) The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 33: 206-210
– reference: Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40: 179-204
– reference: Pierce AJ, Johnson RD, Thompson LH, Jasin M (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13: 2633-2638
– reference: Huen MS, Sy SM, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11: 138-148
– reference: Katsoulidis E, Mavrommatis E, Woodard J, Shields MA, Sassano A, Carayol N, Sawicki KT, Munshi HG, Platanias LC (2010) Role of interferon alpha (IFN{alpha})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells. J Biol Chem 285: 40333-40341
– reference: Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, Jones TE, Landry S, Pan T, Weitzman MD, et al (2012) Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 491: 125-128
– reference: Raderschall E, Golub EI, Haaf T (1999) Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci USA 96: 1921-1926
– reference: Schwarz DA, Katayama CD, Hedrick SM (1998) Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity 9: 657-668
– reference: Helleday T (2013) PrimPol breaks replication barriers. Nat Struct Mol Biol 20: 1348-1350
– reference: Yuan J, Ghosal G, Chen J (2009) The annealing helicase HARP protects stalled replication forks. Genes Dev 23: 2394-2399
– reference: Yusufzai T, Kong X, Yokomori K, Kadonaga JT (2009) The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev 23: 2400-2404
– reference: Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461: 1071-1078
– reference: Marechal A, Zou L (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 25: 9-23
– reference: Marechal A, Li JM, Ji XY, Wu CS, Yazinski SA, Nguyen HD, Liu S, Jimenez AE, Jin J, Zou L (2014) PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell 53: 235-246
– reference: Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D (2009) The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23: 2405-2414
– reference: Huang J, Gong Z, Ghosal G, Chen J (2009) SOSS complexes participate in the maintenance of genomic stability. Mol Cell 35: 384-393
– reference: Altfeld M, Gale M Jr (2015) Innate immunity against HIV-1 infection. Nat Immunol 16: 554-562
– reference: Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66: 61-92
– reference: Postow L, Woo EM, Chait BT, Funabiki H (2009) Identification of SMARCAL1 as a component of the DNA damage response. J Biol Chem 284: 35951-35961
– reference: Moldovan GL, Dejsuphong D, Petalcorin MI, Hofmann K, Takeda S, Boulton SJ, D'Andrea AD (2012) Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol Cell 45: 75-86
– reference: Im JS, Lee KY, Dillon LW, Dutta A (2013) Human Primpol1: a novel guardian of stalled replication forks. EMBO Rep 14: 1032-1033
– reference: Bernstein KA, Rothstein R (2009) At loose ends: resecting a double-strand break. Cell 137: 807-810
– reference: Liu T, Ghosal G, Yuan J, Chen J, Huang J (2010) FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329: 693-696
– reference: Neumann B, Zhao L, Murphy K, Gonda TJ (2008) Subcellular localization of the Schlafen protein family. Biochem Biophys Res Commun 370: 62-66
– reference: San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77: 229-257
– reference: Mouron S, Rodriguez-Acebes S, Martinez-Jimenez MI, Garcia-Gomez S, Chocron S, Blanco L, Mendez J (2013) Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol 20: 1383-1389
– reference: Deans AJ, West SC (2009) FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia. Mol Cell 36: 943-953
– reference: Wan L, Han J, Liu T, Dong S, Xie F, Chen H, Huang J (2013) Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Proc Natl Acad Sci USA 110: 10646-10651
– reference: Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823
– reference: Liu T, Huang J (2014) Quality control of homologous recombination. Cell Mol Life Sci 71: 3779-3797
– reference: Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497-510
– volume: 23
  start-page: 2400
  year: 2009
  end-page: 2404
  ident: CR34
  article-title: The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
  publication-title: Genes Dev
– volume: 11
  start-page: 138
  year: 2010
  end-page: 148
  ident: CR3
  article-title: BRCA1 and its toolbox for the maintenance of genome integrity
  publication-title: Nat Rev Mol Cell Biol
– volume: 110
  start-page: 10646
  year: 2013
  end-page: 10651
  ident: CR39
  article-title: Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair
  publication-title: Proc Natl Acad Sci USA
– volume: 36
  start-page: 943
  year: 2009
  end-page: 953
  ident: CR44
  article-title: FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia
  publication-title: Mol Cell
– volume: 20
  start-page: 1348
  year: 2013
  end-page: 1350
  ident: CR30
  article-title: PrimPol breaks replication barriers
  publication-title: Nat Struct Mol Biol
– volume: 370
  start-page: 62
  year: 2008
  end-page: 66
  ident: CR10
  article-title: Subcellular localization of the Schlafen protein family
  publication-title: Biochem Biophys Res Commun
– volume: 47
  start-page: 497
  year: 2012
  end-page: 510
  ident: CR21
  article-title: Playing the end game: DNA double‐strand break repair pathway choice
  publication-title: Mol Cell
– volume: 52
  start-page: 566
  year: 2013
  end-page: 573
  ident: CR29
  article-title: PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication
  publication-title: Mol Cell
– volume: 45
  start-page: 75
  year: 2012
  end-page: 86
  ident: CR38
  article-title: Inhibition of homologous recombination by the PCNA‐interacting protein PARI
  publication-title: Mol Cell
– volume: 447
  start-page: 1
  year: 2009
  end-page: 11
  ident: CR8
  article-title: Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence
  publication-title: Gene
– volume: 25
  start-page: 9
  year: 2015
  end-page: 23
  ident: CR17
  article-title: RPA‐coated single‐stranded DNA as a platform for post‐translational modifications in the DNA damage response
  publication-title: Cell Res
– volume: 33
  start-page: 206
  year: 2013
  end-page: 210
  ident: CR7
  article-title: The schlafen family of proteins and their regulation by interferons
  publication-title: J Interferon Cytokine Res
– volume: 14
  start-page: 1104
  year: 2013
  end-page: 1112
  ident: CR18
  article-title: hPrimpol1/CCDC111 is a human DNA primase‐polymerase required for the maintenance of genome integrity
  publication-title: EMBO Rep
– volume: 18
  start-page: 1397
  year: 1999
  end-page: 1406
  ident: CR22
  article-title: Replication‐mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA‐dependent protein kinase and dissociates RPA:DNA‐PK complexes
  publication-title: EMBO J
– volume: 137
  start-page: 807
  year: 2009
  end-page: 810
  ident: CR24
  article-title: At loose ends: resecting a double‐strand break
  publication-title: Cell
– volume: 53
  start-page: 235
  year: 2014
  end-page: 246
  ident: CR32
  article-title: PRP19 transforms into a sensor of RPA‐ssDNA after DNA damage and drives ATR activation via a ubiquitin‐mediated circuitry
  publication-title: Mol Cell
– volume: 77
  start-page: 229
  year: 2008
  end-page: 257
  ident: CR23
  article-title: Mechanism of eukaryotic homologous recombination
  publication-title: Annu Rev Biochem
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: CR43
  article-title: RNA‐guided human genome engineering via Cas9
  publication-title: Science
– volume: 16
  start-page: 554
  year: 2015
  end-page: 562
  ident: CR13
  article-title: Innate immunity against HIV‐1 infection
  publication-title: Nat Immunol
– volume: 461
  start-page: 1071
  year: 2009
  end-page: 1078
  ident: CR5
  article-title: The DNA‐damage response in human biology and disease
  publication-title: Nature
– volume: 409
  start-page: 524
  year: 2006
  end-page: 540
  ident: CR25
  article-title: Assaying double‐strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase
  publication-title: Methods Enzymol
– volume: 329
  start-page: 693
  year: 2010
  end-page: 696
  ident: CR40
  article-title: FAN1 acts with FANCI‐FANCD2 to promote DNA interstrand cross‐link repair
  publication-title: Science
– volume: 109
  start-page: 15030
  year: 2012
  end-page: 15035
  ident: CR14
  article-title: Putative DNA/RNA helicase Schlafen‐11 (SLFN11) sensitizes cancer cells to DNA‐damaging agents
  publication-title: Proc Natl Acad Sci USA
– volume: 285
  start-page: 40333
  year: 2010
  end-page: 40341
  ident: CR6
  article-title: Role of interferon alpha (IFN{alpha})‐inducible Schlafen‐5 in regulation of anchorage‐independent growth and invasion of malignant melanoma cells
  publication-title: J Biol Chem
– volume: 13
  start-page: 2633
  year: 1999
  end-page: 2638
  ident: CR26
  article-title: XRCC3 promotes homology‐directed repair of DNA damage in mammalian cells
  publication-title: Genes Dev
– volume: 23
  start-page: 2394
  year: 2009
  end-page: 2399
  ident: CR33
  article-title: The annealing helicase HARP protects stalled replication forks
  publication-title: Genes Dev
– volume: 491
  start-page: 125
  year: 2012
  end-page: 128
  ident: CR12
  article-title: Codon‐usage‐based inhibition of HIV protein synthesis by human schlafen 11
  publication-title: Nature
– volume: 96
  start-page: 1921
  year: 1999
  end-page: 1926
  ident: CR27
  article-title: Nuclear foci of mammalian recombination proteins are located at single‐stranded DNA regions formed after DNA damage
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 1032
  year: 2013
  end-page: 1033
  ident: CR28
  article-title: Human Primpol1: a novel guardian of stalled replication forks
  publication-title: EMBO Rep
– volume: 20
  start-page: 1383
  year: 2013
  end-page: 1389
  ident: CR31
  article-title: Repriming of DNA synthesis at stalled replication forks by human PrimPol
  publication-title: Nat Struct Mol Biol
– volume: 9
  start-page: 657
  year: 1998
  end-page: 668
  ident: CR9
  article-title: Schlafen, a new family of growth regulatory genes that affect thymocyte development
  publication-title: Immunity
– volume: 25
  start-page: 1175
  year: 2014
  end-page: 1181
  ident: CR15
  article-title: Schlafen‐11 sensitizes colorectal carcinoma cells to irinotecan
  publication-title: Anticancer Drugs
– volume: 284
  start-page: 35951
  year: 2009
  end-page: 35961
  ident: CR37
  article-title: Identification of SMARCAL1 as a component of the DNA damage response
  publication-title: J Biol Chem
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: CR42
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 40
  start-page: 179
  year: 2010
  end-page: 204
  ident: CR1
  article-title: The DNA damage response: making it safe to play with knives
  publication-title: Mol Cell
– volume: 71
  start-page: 3779
  year: 2014
  end-page: 3797
  ident: CR4
  article-title: Quality control of homologous recombination
  publication-title: Cell Mol Life Sci
– volume: 23
  start-page: 2415
  year: 2009
  end-page: 2425
  ident: CR36
  article-title: The SIOD disorder protein SMARCAL1 is an RPA‐interacting protein involved in replication fork restart
  publication-title: Genes Dev
– volume: 49
  start-page: 795
  year: 2013
  end-page: 807
  ident: CR2
  article-title: Regulation of DNA damage responses by ubiquitin and SUMO
  publication-title: Mol Cell
– volume: 23
  start-page: 2405
  year: 2009
  end-page: 2414
  ident: CR35
  article-title: The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
  publication-title: Genes Dev
– volume: 35
  start-page: 384
  year: 2009
  end-page: 393
  ident: CR41
  article-title: SOSS complexes participate in the maintenance of genomic stability
  publication-title: Mol Cell
– volume: 483
  start-page: 603
  year: 2012
  end-page: 607
  ident: CR11
  article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
– volume: 24
  start-page: 2097
  year: 2014
  end-page: 2110
  ident: CR20
  article-title: The human SRCAP chromatin remodeling complex promotes DNA‐end resection
  publication-title: Curr Biol
– volume: 66
  start-page: 61
  year: 1997
  end-page: 92
  ident: CR16
  article-title: Replication protein A: a heterotrimeric, single‐stranded DNA‐binding protein required for eukaryotic DNA metabolism
  publication-title: Annu Rev Biochem
– volume: 289
  start-page: 6619
  year: 2014
  end-page: 6626
  ident: CR19
  article-title: The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia‐mutated and Rad3‐related (ATR)
  publication-title: J Biol Chem
– volume: 137
  start-page: 807
  year: 2009
  end-page: 810
  article-title: At loose ends: resecting a double‐strand break
  publication-title: Cell
– volume: 329
  start-page: 693
  year: 2010
  end-page: 696
  article-title: FAN1 acts with FANCI‐FANCD2 to promote DNA interstrand cross‐link repair
  publication-title: Science
– volume: 13
  start-page: 2633
  year: 1999
  end-page: 2638
  article-title: XRCC3 promotes homology‐directed repair of DNA damage in mammalian cells
  publication-title: Genes Dev
– volume: 23
  start-page: 2415
  year: 2009
  end-page: 2425
  article-title: The SIOD disorder protein SMARCAL1 is an RPA‐interacting protein involved in replication fork restart
  publication-title: Genes Dev
– volume: 40
  start-page: 179
  year: 2010
  end-page: 204
  article-title: The DNA damage response: making it safe to play with knives
  publication-title: Mol Cell
– volume: 285
  start-page: 40333
  year: 2010
  end-page: 40341
  article-title: Role of interferon alpha (IFN{alpha})‐inducible Schlafen‐5 in regulation of anchorage‐independent growth and invasion of malignant melanoma cells
  publication-title: J Biol Chem
– volume: 23
  start-page: 2394
  year: 2009
  end-page: 2399
  article-title: The annealing helicase HARP protects stalled replication forks
  publication-title: Genes Dev
– volume: 35
  start-page: 384
  year: 2009
  end-page: 393
  article-title: SOSS complexes participate in the maintenance of genomic stability
  publication-title: Mol Cell
– volume: 18
  start-page: 1397
  year: 1999
  end-page: 1406
  article-title: Replication‐mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA‐dependent protein kinase and dissociates RPA:DNA‐PK complexes
  publication-title: EMBO J
– volume: 20
  start-page: 1383
  year: 2013
  end-page: 1389
  article-title: Repriming of DNA synthesis at stalled replication forks by human PrimPol
  publication-title: Nat Struct Mol Biol
– volume: 284
  start-page: 35951
  year: 2009
  end-page: 35961
  article-title: Identification of SMARCAL1 as a component of the DNA damage response
  publication-title: J Biol Chem
– volume: 77
  start-page: 229
  year: 2008
  end-page: 257
  article-title: Mechanism of eukaryotic homologous recombination
  publication-title: Annu Rev Biochem
– volume: 23
  start-page: 2405
  year: 2009
  end-page: 2414
  article-title: The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
  publication-title: Genes Dev
– volume: 24
  start-page: 2097
  year: 2014
  end-page: 2110
  article-title: The human SRCAP chromatin remodeling complex promotes DNA‐end resection
  publication-title: Curr Biol
– volume: 409
  start-page: 524
  year: 2006
  end-page: 540
  article-title: Assaying double‐strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase
  publication-title: Methods Enzymol
– volume: 53
  start-page: 235
  year: 2014
  end-page: 246
  article-title: PRP19 transforms into a sensor of RPA‐ssDNA after DNA damage and drives ATR activation via a ubiquitin‐mediated circuitry
  publication-title: Mol Cell
– volume: 25
  start-page: 9
  year: 2015
  end-page: 23
  article-title: RPA‐coated single‐stranded DNA as a platform for post‐translational modifications in the DNA damage response
  publication-title: Cell Res
– volume: 110
  start-page: 10646
  year: 2013
  end-page: 10651
  article-title: Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair
  publication-title: Proc Natl Acad Sci USA
– volume: 45
  start-page: 75
  year: 2012
  end-page: 86
  article-title: Inhibition of homologous recombination by the PCNA‐interacting protein PARI
  publication-title: Mol Cell
– volume: 11
  start-page: 138
  year: 2010
  end-page: 148
  article-title: BRCA1 and its toolbox for the maintenance of genome integrity
  publication-title: Nat Rev Mol Cell Biol
– volume: 71
  start-page: 3779
  year: 2014
  end-page: 3797
  article-title: Quality control of homologous recombination
  publication-title: Cell Mol Life Sci
– volume: 66
  start-page: 61
  year: 1997
  end-page: 92
  article-title: Replication protein A: a heterotrimeric, single‐stranded DNA‐binding protein required for eukaryotic DNA metabolism
  publication-title: Annu Rev Biochem
– volume: 289
  start-page: 6619
  year: 2014
  end-page: 6626
  article-title: The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia‐mutated and Rad3‐related (ATR)
  publication-title: J Biol Chem
– volume: 14
  start-page: 1104
  year: 2013
  end-page: 1112
  article-title: hPrimpol1/CCDC111 is a human DNA primase‐polymerase required for the maintenance of genome integrity
  publication-title: EMBO Rep
– volume: 370
  start-page: 62
  year: 2008
  end-page: 66
  article-title: Subcellular localization of the Schlafen protein family
  publication-title: Biochem Biophys Res Commun
– volume: 47
  start-page: 497
  year: 2012
  end-page: 510
  article-title: Playing the end game: DNA double‐strand break repair pathway choice
  publication-title: Mol Cell
– volume: 36
  start-page: 943
  year: 2009
  end-page: 953
  article-title: FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia
  publication-title: Mol Cell
– volume: 9
  start-page: 657
  year: 1998
  end-page: 668
  article-title: Schlafen, a new family of growth regulatory genes that affect thymocyte development
  publication-title: Immunity
– volume: 96
  start-page: 1921
  year: 1999
  end-page: 1926
  article-title: Nuclear foci of mammalian recombination proteins are located at single‐stranded DNA regions formed after DNA damage
  publication-title: Proc Natl Acad Sci USA
– volume: 447
  start-page: 1
  year: 2009
  end-page: 11
  article-title: Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence
  publication-title: Gene
– volume: 109
  start-page: 15030
  year: 2012
  end-page: 15035
  article-title: Putative DNA/RNA helicase Schlafen‐11 (SLFN11) sensitizes cancer cells to DNA‐damaging agents
  publication-title: Proc Natl Acad Sci USA
– volume: 483
  start-page: 603
  year: 2012
  end-page: 607
  article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 461
  start-page: 1071
  year: 2009
  end-page: 1078
  article-title: The DNA‐damage response in human biology and disease
  publication-title: Nature
– volume: 491
  start-page: 125
  year: 2012
  end-page: 128
  article-title: Codon‐usage‐based inhibition of HIV protein synthesis by human schlafen 11
  publication-title: Nature
– volume: 49
  start-page: 795
  year: 2013
  end-page: 807
  article-title: Regulation of DNA damage responses by ubiquitin and SUMO
  publication-title: Mol Cell
– volume: 23
  start-page: 2400
  year: 2009
  end-page: 2404
  article-title: The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
  publication-title: Genes Dev
– volume: 16
  start-page: 554
  year: 2015
  end-page: 562
  article-title: Innate immunity against HIV‐1 infection
  publication-title: Nat Immunol
– volume: 14
  start-page: 1032
  year: 2013
  end-page: 1033
  article-title: Human Primpol1: a novel guardian of stalled replication forks
  publication-title: EMBO Rep
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  article-title: RNA‐guided human genome engineering via Cas9
  publication-title: Science
– volume: 25
  start-page: 1175
  year: 2014
  end-page: 1181
  article-title: Schlafen‐11 sensitizes colorectal carcinoma cells to irinotecan
  publication-title: Anticancer Drugs
– volume: 33
  start-page: 206
  year: 2013
  end-page: 210
  article-title: The schlafen family of proteins and their regulation by interferons
  publication-title: J Interferon Cytokine Res
– volume: 52
  start-page: 566
  year: 2013
  end-page: 573
  article-title: PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication
  publication-title: Mol Cell
– volume: 20
  start-page: 1348
  year: 2013
  end-page: 1350
  article-title: PrimPol breaks replication barriers
  publication-title: Nat Struct Mol Biol
SSID ssj0005978
Score 2.5175817
Snippet High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA‐damaging agents. However, little is known about the underlying...
High expression levels of SLFN11 correlate with the sensitivity of human cancer cells to DNA-damaging agents. However, little is known about the underlying...
High expression levels of SLFN 11 correlate with the sensitivity of human cancer cells to DNA ‐damaging agents. However, little is known about the underlying...
SourceID pubmedcentral
proquest
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 94
SubjectTerms Biomarkers
Cancer therapies
Cell Cycle Checkpoints
Cell Line, Tumor
checkpoint initiation
checkpoint maintenance
Deoxyribonucleic acid
DNA
DNA Damage
DNA damage response
DNA Replication
DNA, Single-Stranded - genetics
DNA, Single-Stranded - metabolism
EMBO03
EMBO13
Genes, cdc
HeLa Cells
homologous recombination repair
Humans
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Proteins
Recombinational DNA Repair
Replication Protein A - genetics
Replication Protein A - metabolism
RPA
Title SLFN11 inhibits checkpoint maintenance and homologous recombination repair
URI https://api.istex.fr/ark:/67375/WNG-C7WJD97M-H/fulltext.pdf
https://link.springer.com/article/10.15252/embr.201540964
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201540964
https://www.ncbi.nlm.nih.gov/pubmed/26658330
https://www.proquest.com/docview/1757901559
https://www.proquest.com/docview/1754084206
https://pubmed.ncbi.nlm.nih.gov/PMC4718411
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED7BEIgXNAaMwJiChJB4iHDiOE4eWbdSVbRIwLS-WWfHUaOpadUVCf49d2kWVm088BbLJzvxnXPf-ezPAO_KovKocxuJvFRRam0VofA6yhwyHbgr0pa7czLNRufpeKZmHUkSn4W5mb9XiUo--oVl2k7y9AS20_vwQMVS8x0Ng2zwdy9H0f5yadYXUZLEs47D544GCIPy8P26C1De3hfZJ0d3oWvre4b78KQDjeGnrZafwj3fHMDD7TWSvw_g0aRLkD-D8fcvw2kch3Uzr229uQpJJ-5ytaybTbhA5oZggg0fYlOG8-WCG6DQP-SweEExcqsmKq2wXj-H8-HZj8Eo6q5LiGqCLWmkEyt05rzDysexdQSbC_LvVS4rLRBlVrocCQBKpS2ir1wh0HqpkYIaKVDLF7DXLBv_EkIvLcEkzFC4iinqc-szkq-kKj2FlCKA9-0omtWWEsPg-pJ3iGllLqafzUBfjE8LPTGjAI6uh9l0k-PKEGLRDENUEcDbvprMmnMV2Hj6bpZJRZ4mIgvgcKuVvjPCFHxWjN5C7-irF2DK7N2app631NnsitM4DuDDtWZvvBaFQ2wxhi3G9BYTgGxV37f-DzlzNjn51pde_UcPr-ExPXcLO0ewt1n_9G8I6mzscWvmx7xy-PUPZNX3iw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anYBdEIyvjAFBAiQOEfl2cuBQtpUua3pgm9abeXYcNZqaVm0n2J_Df8qzmwYqxoHDjk6ebMfv2f69vOefAd4WaamQJcJxkyJyQiFKB13FnFiipgOXaWi4O_Nh3D8Ps1E02oKf67MwJtt9HZI0K3VzR4__UU2EJvCkPZ9gd9jkUZ6o6-_kpS0-HR-SSt_5fu_o7KDvNBcJOBVt6KHDfEHuulQSS-V5QhKgTGnnK5OgZC5iEBcyQYJGQcQEoipl6qJQAUOC-4GLLKB678B2EsVJ1IHtbjc7zX7nkaRmuacVJ3V83xs1_EE3dJnwr1bdj5vA7N85mW1gdhM2m32v9xAeNIDV7q4s7BFsqXoX7q6usLzehXt5E5x_DNnpoDf0PLuqx5Wolgub7EFezqZVvbQnqHkpNLmHsrEu7PF0oiuYXi1s7ZJPyD83JkKlGVbzJ3B-KyP8FDr1tFbPwVaBIIiGMbqy1PT4iVAxyZdBVChyZ10L3ptR5LMVHQfH-aXOTmMRvxh-4QfsIjtMWc77Fuyvh5k3E3PBCS0xDYGi1II37WuaUjpOgrWi79YyoZuEvhtb8GyllbYxwjP6nBr1gm3oqxXQdN2bb-pqbGi7NQwIPc-CD2vN_tEtcsW0xXBtMby1GAsCo_q29n_I8aP889e2tPcfLbyG-_2zfMAHx8OTF7BDz5sfTPvQWc6v1EuCXEvxqjF6G77d9jz7BaMtOVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiouFZSXSwEjARIHq36vfeAASUOaNhECqua2zNprxariRIkr6I_iPzLjF0SUA4ce1x7trndmd7_xzH4L8CqNM40iUpYdpYHlK5VZaGthhQkyHXgS-xV353gSDs_80TSYbsHP9ixMle3ehiTrMw3M0lSUh8s0a-_rcQ_1XDGZJ-3_BMH9JqfyRF99J49t_e64T-p97bqDo6-9odVcKmDltLn7lnAVue6JTjDTjqMSApcx7YJZ5GXCRvTCNImQYJIXCIWosyS2UWlPIEF_z0bhUb234Da167Cv1wt7vzNK4mrhp7UntlzXmTZMQtd0mJAwK_HHdbD27-zMLkS7CaCrHXBwD3Yb6Gq-r23tPmzpYg_u1JdZXu3BzrgJ0z-A0ZfTwcRxzLyY5Sov1yZZRnKxXORFac6RGSqY5kObWKTmbDHnChaXa5Od8zl56pWxUGmJ-eohnN3I-D6C7WJR6Cdgak8RWMMQ7SRjovxI6ZDkMy9INTm2tgFvqlGUy5qYQ-LqgvPURCDPJx9lT5yP-rEYy6EBB-0wy2aKriXhJsFgKIgNeNm9psnFERMsNH03y_h25Lt2aMDjWitdY4Rs-MQa9UJs6KsTYOLuzTdFPqsIvBkQ-I5jwNtWs390i5wythjJFiM7izHAq1Tf1f4POXk0_vC5K-3_RwsvYOdTfyBPjycnT-EuPW7-NB3Adrm61M8Ie5XqeWXxJny76Sn2Cz5NPDY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SLFN11+inhibits+checkpoint+maintenance+and+homologous+recombination+repair&rft.jtitle=EMBO+reports&rft.au=Mu%2C+Yanhua&rft.au=Lou%2C+Jiangman&rft.au=Srivastava%2C+Mrinal&rft.au=Zhao%2C+Bin&rft.date=2016-01-01&rft.eissn=1469-3178&rft.volume=17&rft.issue=1&rft.spage=94&rft_id=info:doi/10.15252%2Fembr.201540964&rft_id=info%3Apmid%2F26658330&rft.externalDocID=26658330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon