A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations
We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 415; no. 4; pp. 3731 - 3749 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2011
Wiley-Blackwell Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically-thin and optically-thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these 'cone fields' is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time-steps), yielding a fully time-dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving-mesh code arepo, where it is coupled to the hydrodynamics in an operator-splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can accurately deal with non-equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations. |
---|---|
AbstractList | ABSTRACT
We present a numerical implementation of radiative transfer based on an explicitly photon‐conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second‐order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically‐thin and optically‐thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these ‘cone fields’ is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time‐steps), yielding a fully time‐dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving‐mesh code arepo, where it is coupled to the hydrodynamics in an operator‐splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can accurately deal with non‐equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations. We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically-thin and optically-thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these 'cone fields' is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time-steps), yielding a fully time-dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving-mesh code arepo, where it is coupled to the hydrodynamics in an operator-splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can accurately deal with non-equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations. ABSTRACT We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically-thin and optically-thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these 'cone fields' is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time-steps), yielding a fully time-dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving-mesh code arepo, where it is coupled to the hydrodynamics in an operator-splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can accurately deal with non-equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations. [PUBLICATION ABSTRACT] |
Author | Petkova, Margarita Springel, Volker |
Author_xml | – sequence: 1 givenname: Margarita surname: Petkova fullname: Petkova, Margarita email: mpetkova@mpa-garching.mpg.de organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany – sequence: 2 givenname: Volker surname: Springel fullname: Springel, Volker email: mpetkova@mpa-garching.mpg.de organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24427990$$DView record in Pascal Francis |
BookMark | eNp1UV1rFDEUDVLBbfU_BEF8mjGZZDLJi1CqrYW6glWqT-FuJmOzziRrMtPu_vtmumUfFPNyA-eDe-45Rkc-eIsQpqSk-b1bl5SJuqiUEGVFKC2pVFKU22docQCO0IIQVheyofQFOk5pTQjhrBIL9PMU-3BnewybTQxgbnEXIgZjpgijxRFaB6O7s3iM4FNnI3Yem5CG0IdfzkCPb3dtDO3Ow-AMTm6Y-iwIPr1Ezzvok331NE_Q9_OP384-FVdfLi7PTq8Kx1UjCkNBCWuUEWpFWmGsUGBraWnLOM1JOLESiGi5hIaumpVoO5Mh0VoQKyNrdoLe7n3z_n8mm0Y9uGRs34O3YUpaKkVrLtTMfP0Xcx2m6PNyWkpeKcY4yaQ3TyRIOV6XYxuX9Ca6AeJOV5xXjVIz7_2ed-96uzvglOi5Fr3W8_X1fH0916Ifa9Fb_Xn59fGbDdjeIEyb_8iLf-RZVexVLo12e9BB_K1Fw5pa3ywv9I_r6kZ-uF5qwR4AFbqkdw |
CODEN | MNRAA4 |
ContentType | Journal Article |
Copyright | 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011 – notice: 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW 8FD H8D L7M 7TG KL. |
DOI | 10.1111/j.1365-2966.2011.18986.x |
DatabaseName | Istex Pascal-Francis Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 3749 |
ExternalDocumentID | 2429424031 24427990 MNR18986 10.1111/j.1365-2966.2011.18986.x ark_67375_WNG_XS2W8DSN_6 |
Genre | article Feature |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABXVV ABZBJ ACBWZ ACCFJ ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASPBG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE CO8 COF D-E D-F DAKXR DCZOG DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 V8K W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX 2WC AASNB ABSAR ABSMQ ABTAH ACBNA ACFRR ACUTJ AETEA AFFNX AGMDO ASAOO ATDFG CXTWN DFGAJ GROUPED_DOAJ MBTAY O0~ OHT PB- RNP UQL VOH ZY4 AAMMB AANHP ABAZT ABGNP ABNGD ABVLG ACRPL ACUKT ACUXJ ACYXJ ADNMO AEFGJ AGQPQ AGXDD AHGBF AIDQK AIDYY ALXQX AMNDL ANAKG APJGH JXSIZ IQODW 8FD H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-i4976-c1a96ec9c69b0d6ce69ae58e1d34198640e8a06d48a71b7b6dfcd346dea6bc853 |
IEDL.DBID | DR2 |
ISSN | 0035-8711 |
IngestDate | Fri Jul 11 15:06:32 EDT 2025 Mon Jul 14 09:15:51 EDT 2025 Mon Jul 21 09:15:07 EDT 2025 Wed Aug 20 07:26:16 EDT 2025 Wed Aug 28 03:23:46 EDT 2024 Wed Oct 30 09:54:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | methods: numerical intergalactic medium radiative transfer Intergalactic matter Second order Boltzmann equation Light velocity Radiation flux Numerical method Spheres Numerical approximation Discretization Dynamics Operator splitting Radiative transfer Diffusion Intensity Digital simulation Shading Transfer equation Point sources Advection Solid angle Local field Hydrodynamic model Field ionization |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4976-c1a96ec9c69b0d6ce69ae58e1d34198640e8a06d48a71b7b6dfcd346dea6bc853 |
Notes | ark:/67375/WNG-XS2W8DSN-6 ArticleID:MNR18986 istex:E6E5F5013D1AB2437D4F44A2D5059F2D2714DD79 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/415/4/3731/4920004/mnras0415-3731.pdf |
PQID | 884293340 |
PQPubID | 42411 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_899154695 proquest_journals_884293340 pascalfrancis_primary_24427990 wiley_primary_10_1111_j_1365_2966_2011_18986_x_MNR18986 oup_primary_10_1111_j_1365-2966_2011_18986_x istex_primary_ark_67375_WNG_XS2W8DSN_6 |
PublicationCentury | 2000 |
PublicationDate | August 2011 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: August 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Malden, MA – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAbbrev | Monthly Notices of the Royal Astronomical Society |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Oxford University Press |
References | Trac H., Cen R., 2007, ApJ, 671, 1 Gnedin N. Y., Abel T., 2001, New Astron., 6, 437 Maselli A., Ferrara A., Ciardi B., 2003, MNRAS, 345, 379 Aubert D., Teyssier R., 2008, MNRAS, 387, 295 Bolton J. S., Haehnelt M. G., Viel M., Springel V., 2005, MNRAS, 357, 1178 Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19 Paardekooper J., Kruip C. J. H., Icke V., 2010, A&A, 515, A79 Rijkhorst E.-J., Plewa T., Dubey A., Mellema G., 2006, A&A, 452, 907 Altay G., Croft R. A. C., Pelupessy I., 2008, MNRAS, 386, 1931 Spitzer L., 1978, Physical Processes in the Interstellar Medium. Wiley Interscience, New York Baek S., Di Matteo P., Semelin B., Combes F., Revaz Y., 2009, A&A, 495, 389 Gritschneder M., Naab T., Walch S., Burkert A., Heitsch F., 2009a, ApJ, 694, L26 Osterbrock D. E., Ferland G. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edn. University Science Books, Mill Valley , CA Susa H., 2006, PASJ, 58, 445 Reynolds D. R., Hayes J. C., Paschos P., Norman M. L., 2009, J. Comput. Phys., 228, 6833 Cen R., 2002, ApJS, 141, 211 Abel T., Norman M. L., Madau P., 1999, ApJ, 523, 66 Ahn K., Shapiro P. R., 2007, MNRAS, 375, 881 Iliev I. T. et al., 2006, MNRAS, 371, 1057 Finlator K., Özel F., Davé R., 2009, MNRAS, 393, 1090 Springel V., 2010, MNRAS, 401, 791 Cantalupo S., Porciani C., 2011, MNRAS, 411, 1678 Petkova M., Springel V., 2009, MNRAS, 396, 1383 Whalen D., Norman M. L., 2006, ApJS, 162, 281 Shapiro P. R., Iliev I. T., Raga A. C., 2004, MNRAS, 348, 753 Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., Bartelmann M., 2005, ApJ, 622, 759 Hasegawa K., Umemura M., 2010, MNRAS, 407, 2632 Mellema G., Iliev I. T., Alvarez M. A., Shapiro P. R., 2006, New Astron., 11, 374 Sokasian A., Abel T., Hernquist L. E., 2001, New Astron., 6, 359 Nakamoto T., Umemura M., Susa H., 2001, MNRAS, 321, 593 Gritschneder M., Naab T., Burkert A., Walch S., Heitsch F., Wetzstein M., 2009b, MNRAS, 393, 21 Iliev I. T. et al., 2009, MNRAS, 400, 1283 Razoumov A. O., Cardall C. Y., 2005, MNRAS, 362, 1413 Spitzer L., 1998, Physical Processes in the Interstellar Medium. Wiley-VCH, Chichester Nayakshin S., Cha S., Hobbs A., 2009, MNRAS, 397, 1314 Ciardi B., Ferrara A., Marri S., Raimondo G., 2001, MNRAS, 324, 381 Whitehouse S. C., Bate M. R., Monaghan J. J., 2005, MNRAS, 364, 1367 Pawlik A. H., Schaye J., 2008, MNRAS, 389, 651 Mellema G., Raga A. C., Canto J., Lundqvist P., Balick B., Steffen W., Noriega-Crespo A., 1998, A&A, 331, 335 Mihalas D., Weibel Mihalas B., 1984, Foundations of Radiation Hydrodynamics. Oxford Univ. Press, New York Alvarez M. A., Bromm V., Shapiro P. R., 2006, ApJ, 639, 621 Kunasz P., Auer L. H., 1988, J. Quant. Spectrosc. Radiat. Transfer, 39, 67 Ritzerveld J., Icke V., 2006, Phys. Rev. E, 74, 026704 Abel T., Wandelt B. D., 2002, MNRAS, 330, L53 2011; 411 2001; 321 2006; 74 2006; 639 2010; 407 2002; 330 2006; 11 2005; 357 2010; 401 2006; 58 2009a; 694 1988; 39 2009; 495 2009; 396 1998 2006; 371 2009; 397 2006 2009; 393 2008; 389 2008; 387 1998; 331 2008; 386 1999; 523 2004; 348 2001; 324 2006; 452 1978 1996; 105 2005; 362 2001; 6 2010; 515 2005; 364 2002; 141 2007; 671 2007; 375 2005; 622 2006; 162 1984 2009; 228 2003; 345 2009; 400 2009b; 393 |
References_xml | – reference: Iliev I. T. et al., 2009, MNRAS, 400, 1283 – reference: Razoumov A. O., Cardall C. Y., 2005, MNRAS, 362, 1413 – reference: Maselli A., Ferrara A., Ciardi B., 2003, MNRAS, 345, 379 – reference: Osterbrock D. E., Ferland G. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edn. University Science Books, Mill Valley , CA – reference: Bolton J. S., Haehnelt M. G., Viel M., Springel V., 2005, MNRAS, 357, 1178 – reference: Mihalas D., Weibel Mihalas B., 1984, Foundations of Radiation Hydrodynamics. Oxford Univ. Press, New York – reference: Nayakshin S., Cha S., Hobbs A., 2009, MNRAS, 397, 1314 – reference: Aubert D., Teyssier R., 2008, MNRAS, 387, 295 – reference: Abel T., Norman M. L., Madau P., 1999, ApJ, 523, 66 – reference: Ritzerveld J., Icke V., 2006, Phys. Rev. E, 74, 026704 – reference: Petkova M., Springel V., 2009, MNRAS, 396, 1383 – reference: Shapiro P. R., Iliev I. T., Raga A. C., 2004, MNRAS, 348, 753 – reference: Spitzer L., 1978, Physical Processes in the Interstellar Medium. Wiley Interscience, New York – reference: Ahn K., Shapiro P. R., 2007, MNRAS, 375, 881 – reference: Cantalupo S., Porciani C., 2011, MNRAS, 411, 1678 – reference: Reynolds D. R., Hayes J. C., Paschos P., Norman M. L., 2009, J. Comput. Phys., 228, 6833 – reference: Gnedin N. Y., Abel T., 2001, New Astron., 6, 437 – reference: Whitehouse S. C., Bate M. R., Monaghan J. J., 2005, MNRAS, 364, 1367 – reference: Mellema G., Iliev I. T., Alvarez M. A., Shapiro P. R., 2006, New Astron., 11, 374 – reference: Cen R., 2002, ApJS, 141, 211 – reference: Nakamoto T., Umemura M., Susa H., 2001, MNRAS, 321, 593 – reference: Paardekooper J., Kruip C. J. H., Icke V., 2010, A&A, 515, A79 – reference: Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., Bartelmann M., 2005, ApJ, 622, 759 – reference: Baek S., Di Matteo P., Semelin B., Combes F., Revaz Y., 2009, A&A, 495, 389 – reference: Hasegawa K., Umemura M., 2010, MNRAS, 407, 2632 – reference: Whalen D., Norman M. L., 2006, ApJS, 162, 281 – reference: Abel T., Wandelt B. D., 2002, MNRAS, 330, L53 – reference: Ciardi B., Ferrara A., Marri S., Raimondo G., 2001, MNRAS, 324, 381 – reference: Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19 – reference: Sokasian A., Abel T., Hernquist L. E., 2001, New Astron., 6, 359 – reference: Trac H., Cen R., 2007, ApJ, 671, 1 – reference: Finlator K., Özel F., Davé R., 2009, MNRAS, 393, 1090 – reference: Iliev I. T. et al., 2006, MNRAS, 371, 1057 – reference: Springel V., 2010, MNRAS, 401, 791 – reference: Spitzer L., 1998, Physical Processes in the Interstellar Medium. Wiley-VCH, Chichester – reference: Gritschneder M., Naab T., Burkert A., Walch S., Heitsch F., Wetzstein M., 2009b, MNRAS, 393, 21 – reference: Gritschneder M., Naab T., Walch S., Burkert A., Heitsch F., 2009a, ApJ, 694, L26 – reference: Kunasz P., Auer L. H., 1988, J. Quant. Spectrosc. Radiat. Transfer, 39, 67 – reference: Mellema G., Raga A. C., Canto J., Lundqvist P., Balick B., Steffen W., Noriega-Crespo A., 1998, A&A, 331, 335 – reference: Altay G., Croft R. A. C., Pelupessy I., 2008, MNRAS, 386, 1931 – reference: Pawlik A. H., Schaye J., 2008, MNRAS, 389, 651 – reference: Rijkhorst E.-J., Plewa T., Dubey A., Mellema G., 2006, A&A, 452, 907 – reference: Alvarez M. A., Bromm V., Shapiro P. R., 2006, ApJ, 639, 621 – reference: Susa H., 2006, PASJ, 58, 445 – volume: 397 start-page: 1314 year: 2009 publication-title: MNRAS – volume: 105 start-page: 19 year: 1996 publication-title: ApJS – volume: 694 start-page: L26 year: 2009a publication-title: ApJ – volume: 11 start-page: 374 year: 2006 publication-title: New Astron. – volume: 452 start-page: 907 year: 2006 publication-title: A&A – volume: 364 start-page: 1367 year: 2005 publication-title: MNRAS – volume: 357 start-page: 1178 year: 2005 publication-title: MNRAS – volume: 671 start-page: 1 year: 2007 publication-title: ApJ – volume: 386 start-page: 1931 year: 2008 publication-title: MNRAS – volume: 400 start-page: 1283 year: 2009 publication-title: MNRAS – volume: 324 start-page: 381 year: 2001 publication-title: MNRAS – volume: 393 start-page: 21 year: 2009b publication-title: MNRAS – volume: 411 start-page: 1678 year: 2011 publication-title: MNRAS – volume: 375 start-page: 881 year: 2007 publication-title: MNRAS – volume: 141 start-page: 211 year: 2002 publication-title: ApJS – volume: 401 start-page: 791 year: 2010 publication-title: MNRAS – year: 1998 – volume: 622 start-page: 759 year: 2005 publication-title: ApJ – volume: 39 start-page: 67 year: 1988 publication-title: J. Quant. Spectrosc. Radiat. Transfer – year: 1984 – volume: 515 start-page: A79 year: 2010 publication-title: A&A – volume: 345 start-page: 379 year: 2003 publication-title: MNRAS – volume: 321 start-page: 593 year: 2001 publication-title: MNRAS – volume: 6 start-page: 359 year: 2001 publication-title: New Astron. – volume: 348 start-page: 753 year: 2004 publication-title: MNRAS – volume: 639 start-page: 621 year: 2006 publication-title: ApJ – volume: 523 start-page: 66 year: 1999 publication-title: ApJ – volume: 228 start-page: 6833 year: 2009 publication-title: J. Comput. Phys. – volume: 371 start-page: 1057 year: 2006 publication-title: MNRAS – year: 2006 – volume: 6 start-page: 437 year: 2001 publication-title: New Astron. – volume: 396 start-page: 1383 year: 2009 publication-title: MNRAS – volume: 495 start-page: 389 year: 2009 publication-title: A&A – volume: 74 start-page: 026704 year: 2006 publication-title: Phys. Rev. E – volume: 362 start-page: 1413 year: 2005 publication-title: MNRAS – volume: 330 start-page: L53 year: 2002 publication-title: MNRAS – volume: 393 start-page: 1090 year: 2009 publication-title: MNRAS – volume: 162 start-page: 281 year: 2006 publication-title: ApJS – volume: 331 start-page: 335 year: 1998 publication-title: A&A – volume: 389 start-page: 651 year: 2008 publication-title: MNRAS – volume: 58 start-page: 445 year: 2006 publication-title: PASJ – year: 1978 – volume: 387 start-page: 295 year: 2008 publication-title: MNRAS – volume: 407 start-page: 2632 year: 2010 publication-title: MNRAS |
SSID | ssj0004326 |
Score | 2.2263129 |
Snippet | We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell... ABSTRACT We present a numerical implementation of radiative transfer based on an explicitly photon‐conserving advection scheme, where radiative fluxes over the... ABSTRACT We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the... |
SourceID | proquest pascalfrancis wiley oup istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3731 |
SubjectTerms | Astronomy Astrophysics Cosmology Earth, ocean, space Exact sciences and technology intergalactic medium methods: numerical Radiation radiative transfer Simulation |
Title | A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations |
URI | https://api.istex.fr/ark:/67375/WNG-XS2W8DSN-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2011.18986.x https://www.proquest.com/docview/884293340 https://www.proquest.com/docview/899154695 |
Volume | 415 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fa9swEMeP0afB2I9uo163oofRpznYtSxLj6FbVwbJoD9o9iQkWWYmjV3sZDT963uS7azZj5exl-BwdrB9Ounjy_l7AO-LSBeiyJMw5VERUqbSUCuVh6koEJYd8Pt2b5MpO72kX2bprK9_cu_CdPoQm4Sbiww_X7sAV7rdDnJfoYW83ilxxlxwNnI86QyOj85-KknRxHde8wqN-IwQbxf1_PGHEFfdnb4dXn17cqNavG9F1_Bii0gfcq1fmE6ewXy4pK4eZT5aLfXI3P2i9vh_rvk5PO35lYy7AfcCHtlqF_bGrcuo14s1OSR-u0uYtLsQTJDK68Yn79F4fF0iIvtvL-HbmFT1D3tNBmFzggRNlDErp19BGieb4GZjsvR0bRtSVsTU7WKYsMn3dY4LwLpSi9KQtlz0vcjaV3B58uni-DTsWz2EJUUgCk2sBLNGGCZ0lDNjmVA25TbOnd4cZzSyXEUsp1xlsc40ywuDJpZbxbRB5HgNO1Vd2T0gUSGspcZpHiTUWidAFhnkLssSlRgVB3Do3SpvOjkPqZq5q27LUnk1_Sxn50dX_OP5VLIAPqDfN7s9eFoafCCdD6T3gbwN4GBrgGwORIA6ynDRD2B_GDGynyhayTkCQZJQtJKNFSPc_W2jKluvcBdE-JQykQaQ-cHxl1OSv52SnEzP_Oabfz5yHx4PWfQofgs7y2Zl3yGGLfWBDzD8vPg6uwdjYiah |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb5swFMefpvawSdPWdZvKunU-TD2NCIox5hi167Kt4dAfanayjDEqagIVJFPTv37PBtJmPy7TbiAbBDw_--OH_X0AH3IvzeM8C9yQe7lLmQzdVMrMDeMcYdkAv033Nk7Y6IJ-nYSTLh2Q2QvT6kOsAm7GM2x_bRzcBKTXvdwu0UJgb6U4fR5zNkCg3DQJvo2Q_tHpvZYUDWzuNavRiLMEf31Zzx_vhMBqvvVtv_nt6Y1s8MvlbcqLNSZ9SLZ2aDp-DtP-pdoVKdeDxTwdqLtf9B7_01tvwbMOYcmwbXMv4JEut2Fn2JigejVbkn1ij9uYSbMNzhjBvKpt_B4LD6cFUrI9ewnfh6Ssfugp6bXNCUI0kUotjIQFqY1ygumQydwCtq5JURJVNbO-zyZXywzHgGUpZ4UiTTHr0pE1r-Di-NP54cjtsj24BUUmcpUvY6ZVrFicehlTmsVSh1z7mZGc44x6mkuPZZTLyE-jlGW5wiKWaclShdTxGjbKqtQ7QLw81poqI3sQUK2NBpmnEL00C2SgpO_AvrWruGkVPYSsr80CtygUl8lnMTk7uORHZ4lgDnxEw6-qPZgw9TYQxgbC2kDcOrC31kJWFyJDHUQ47juw2zcZ0fUVjeAcmSAIKJaSVSk6uflzI0tdLbAKUnxIWRw6ENnW8ZdHEr89khgnp_bwzT9f-R4ej87HJ-LkS_JtF570QXXPfwsb83qh3yGVzdM9620_AdMEKaE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3bb5swFIetqZWmSdMu3aaybp0fpj6NCIox9mPULOsuQVO7qtmTZWyjoTQQQVI1--t3bCBrdnmZ9gYyIOD42J8Ph99B6HUeZDnPdeTHLMh9QmXsZ1JqP-Y5wLIFflfubZLS0wvyYRpPu_wn-y9Mqw-xCbhZz3DjtXXwhc63ndxlaAGvt0qcIeOMDoAndwkNuC3jMDr7KSVFIld6zUk0wiIh3M7q-eOVgFftq77p_327v5ANvLi8rXixhaS3wdbNTOOHaNY_U5uQMhusltlAff9F7vH_PPQj9KADWDxse9xjdMeUe2h_2NiQejVf4yPsttuISbOHvAlgeVW76D00nlwVwMhu7wn6OsRldW2ucK9sjgGhsVRqZQUscG11E-xwjJcOr02NixKrqpn3Izb-ttYwA6xLOS8Ubop5V4yseYouxm-_nJz6Xa0HvyBARL4KJadGcUV5FmiqDOXSxMyE2grOMUoCw2RANWEyCbMkozpX0ES1kTRTwBzP0E5ZlWYf4SDnxhBlRQ8iYoxVIAsUgJehkYyUDD105MwqFq2eh5D1zKa3JbG4TN-J6fnxJRudp4J66A3YfXPYreVSbwNhbSCcDcSNhw63OsjmRCCo4wRmfQ8d9D1GdCNFIxgDIogiAq140woubr_byNJUKzgEGD4mlMceSlzn-Mstid9uSUzSM7f5_J_PfIXufh6Nxaf36ccDdK-PqAfhC7SzrFfmJSDZMjt0vvYDKfEoUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+for+accurate+radiative+transfer+in+cosmological+hydrodynamic+simulations&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Petkova%2C+Margarita&rft.au=Springel%2C+Volker&rft.date=2011-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=415&rft.issue=4&rft.spage=3731&rft.epage=3749&rft_id=info:doi/10.1111%2Fj.1365-2966.2011.18986.x&rft.externalDBID=10.1111%252Fj.1365-2966.2011.18986.x&rft.externalDocID=MNR18986 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |