A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations

We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 415; no. 4; pp. 3731 - 3749
Main Authors Petkova, Margarita, Springel, Volker
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2011
Wiley-Blackwell
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically-thin and optically-thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these 'cone fields' is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time-steps), yielding a fully time-dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving-mesh code arepo, where it is coupled to the hydrodynamics in an operator-splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can accurately deal with non-equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations.
AbstractList ABSTRACT We present a numerical implementation of radiative transfer based on an explicitly photon‐conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second‐order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically‐thin and optically‐thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these ‘cone fields’ is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time‐steps), yielding a fully time‐dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving‐mesh code arepo, where it is coupled to the hydrodynamics in an operator‐splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can accurately deal with non‐equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations.
We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically-thin and optically-thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these 'cone fields' is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time-steps), yielding a fully time-dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving-mesh code arepo, where it is coupled to the hydrodynamics in an operator-splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can accurately deal with non-equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations.
ABSTRACT We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell interfaces of a structured or unstructured mesh are calculated with a second-order reconstruction of the intensity field. The approach employs a direct discretization of the radiative transfer equation in Boltzmann form with adjustable angular resolution that, in principle, works equally well in the optically-thin and optically-thick regimes. In our most general formulation of the scheme, the local radiation field is decomposed into a linear sum of directional bins of equal solid angle, tessellating the unit sphere. Each of these 'cone fields' is transported independently, with constant intensity as a function of the direction within the cone. Photons propagate at the speed of light (or optionally using a reduced speed of light approximation to allow larger time-steps), yielding a fully time-dependent solution of the radiative transfer equation that can naturally cope with an arbitrary number of sources, as well as with scattering. The method casts sharp shadows, subject to the limitations induced by the adopted angular resolution. If the number of point sources is small and scattering is unimportant, our implementation can alternatively treat each source exactly in angular space, producing shadows whose sharpness is only limited by the grid resolution. A third hybrid alternative is to treat only a small number of the locally most luminous point sources explicitly, with the rest of the radiation intensity followed in a radiative diffusion approximation. We have implemented the method in the moving-mesh code arepo, where it is coupled to the hydrodynamics in an operator-splitting approach that subcycles the radiative transfer alternately with the hydrodynamical evolution steps. We also discuss our treatment of basic photon sink processes relevant to cosmological reionization, with a chemical network that can accurately deal with non-equilibrium effects. We discuss several tests of the new method, including shadowing configurations in two and three dimensions, ionized sphere expansion in static and dynamic density fields and the ionization of a cosmological density field. The tests agree favourably with analytical expectations and results based on other numerical radiative transfer approximations. [PUBLICATION ABSTRACT]
Author Petkova, Margarita
Springel, Volker
Author_xml – sequence: 1
  givenname: Margarita
  surname: Petkova
  fullname: Petkova, Margarita
  email: mpetkova@mpa-garching.mpg.de
  organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany
– sequence: 2
  givenname: Volker
  surname: Springel
  fullname: Springel, Volker
  email: mpetkova@mpa-garching.mpg.de
  organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24427990$$DView record in Pascal Francis
BookMark eNp1UV1rFDEUDVLBbfU_BEF8mjGZZDLJi1CqrYW6glWqT-FuJmOzziRrMtPu_vtmumUfFPNyA-eDe-45Rkc-eIsQpqSk-b1bl5SJuqiUEGVFKC2pVFKU22docQCO0IIQVheyofQFOk5pTQjhrBIL9PMU-3BnewybTQxgbnEXIgZjpgijxRFaB6O7s3iM4FNnI3Yem5CG0IdfzkCPb3dtDO3Ow-AMTm6Y-iwIPr1Ezzvok331NE_Q9_OP384-FVdfLi7PTq8Kx1UjCkNBCWuUEWpFWmGsUGBraWnLOM1JOLESiGi5hIaumpVoO5Mh0VoQKyNrdoLe7n3z_n8mm0Y9uGRs34O3YUpaKkVrLtTMfP0Xcx2m6PNyWkpeKcY4yaQ3TyRIOV6XYxuX9Ca6AeJOV5xXjVIz7_2ed-96uzvglOi5Fr3W8_X1fH0916Ifa9Fb_Xn59fGbDdjeIEyb_8iLf-RZVexVLo12e9BB_K1Fw5pa3ywv9I_r6kZ-uF5qwR4AFbqkdw
CODEN MNRAA4
ContentType Journal Article
Copyright 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011
2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS
2015 INIST-CNRS
Copyright_xml – notice: 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS 2011
– notice: 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
8FD
H8D
L7M
7TG
KL.
DOI 10.1111/j.1365-2966.2011.18986.x
DatabaseName Istex
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList

Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 3749
ExternalDocumentID 2429424031
24427990
MNR18986
10.1111/j.1365-2966.2011.18986.x
ark_67375_WNG_XS2W8DSN_6
Genre article
Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABXVV
ABZBJ
ACBWZ
ACCFJ
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
2WC
AASNB
ABSAR
ABSMQ
ABTAH
ACBNA
ACFRR
ACUTJ
AETEA
AFFNX
AGMDO
ASAOO
ATDFG
CXTWN
DFGAJ
GROUPED_DOAJ
MBTAY
O0~
OHT
PB-
RNP
UQL
VOH
ZY4
AAMMB
AANHP
ABAZT
ABGNP
ABNGD
ABVLG
ACRPL
ACUKT
ACUXJ
ACYXJ
ADNMO
AEFGJ
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
ALXQX
AMNDL
ANAKG
APJGH
JXSIZ
IQODW
8FD
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-i4976-c1a96ec9c69b0d6ce69ae58e1d34198640e8a06d48a71b7b6dfcd346dea6bc853
IEDL.DBID DR2
ISSN 0035-8711
IngestDate Fri Jul 11 15:06:32 EDT 2025
Mon Jul 14 09:15:51 EDT 2025
Mon Jul 21 09:15:07 EDT 2025
Wed Aug 20 07:26:16 EDT 2025
Wed Aug 28 03:23:46 EDT 2024
Wed Oct 30 09:54:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords methods: numerical
intergalactic medium
radiative transfer
Intergalactic matter
Second order
Boltzmann equation
Light velocity
Radiation flux
Numerical method
Spheres
Numerical approximation
Discretization
Dynamics
Operator splitting
Radiative transfer
Diffusion
Intensity
Digital simulation
Shading
Transfer equation
Point sources
Advection
Solid angle
Local field
Hydrodynamic model
Field ionization
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4976-c1a96ec9c69b0d6ce69ae58e1d34198640e8a06d48a71b7b6dfcd346dea6bc853
Notes ark:/67375/WNG-XS2W8DSN-6
ArticleID:MNR18986
istex:E6E5F5013D1AB2437D4F44A2D5059F2D2714DD79
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/415/4/3731/4920004/mnras0415-3731.pdf
PQID 884293340
PQPubID 42411
PageCount 19
ParticipantIDs proquest_miscellaneous_899154695
proquest_journals_884293340
pascalfrancis_primary_24427990
wiley_primary_10_1111_j_1365_2966_2011_18986_x_MNR18986
oup_primary_10_1111_j_1365-2966_2011_18986_x
istex_primary_ark_67375_WNG_XS2W8DSN_6
PublicationCentury 2000
PublicationDate August 2011
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: August 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden, MA
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Oxford University Press
References Trac H., Cen R., 2007, ApJ, 671, 1
Gnedin N. Y., Abel T., 2001, New Astron., 6, 437
Maselli A., Ferrara A., Ciardi B., 2003, MNRAS, 345, 379
Aubert D., Teyssier R., 2008, MNRAS, 387, 295
Bolton J. S., Haehnelt M. G., Viel M., Springel V., 2005, MNRAS, 357, 1178
Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19
Paardekooper J., Kruip C. J. H., Icke V., 2010, A&A, 515, A79
Rijkhorst E.-J., Plewa T., Dubey A., Mellema G., 2006, A&A, 452, 907
Altay G., Croft R. A. C., Pelupessy I., 2008, MNRAS, 386, 1931
Spitzer L., 1978, Physical Processes in the Interstellar Medium. Wiley Interscience, New York
Baek S., Di Matteo P., Semelin B., Combes F., Revaz Y., 2009, A&A, 495, 389
Gritschneder M., Naab T., Walch S., Burkert A., Heitsch F., 2009a, ApJ, 694, L26
Osterbrock D. E., Ferland G. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edn. University Science Books, Mill Valley , CA
Susa H., 2006, PASJ, 58, 445
Reynolds D. R., Hayes J. C., Paschos P., Norman M. L., 2009, J. Comput. Phys., 228, 6833
Cen R., 2002, ApJS, 141, 211
Abel T., Norman M. L., Madau P., 1999, ApJ, 523, 66
Ahn K., Shapiro P. R., 2007, MNRAS, 375, 881
Iliev I. T. et al., 2006, MNRAS, 371, 1057
Finlator K., Özel F., Davé R., 2009, MNRAS, 393, 1090
Springel V., 2010, MNRAS, 401, 791
Cantalupo S., Porciani C., 2011, MNRAS, 411, 1678
Petkova M., Springel V., 2009, MNRAS, 396, 1383
Whalen D., Norman M. L., 2006, ApJS, 162, 281
Shapiro P. R., Iliev I. T., Raga A. C., 2004, MNRAS, 348, 753
Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., Bartelmann M., 2005, ApJ, 622, 759
Hasegawa K., Umemura M., 2010, MNRAS, 407, 2632
Mellema G., Iliev I. T., Alvarez M. A., Shapiro P. R., 2006, New Astron., 11, 374
Sokasian A., Abel T., Hernquist L. E., 2001, New Astron., 6, 359
Nakamoto T., Umemura M., Susa H., 2001, MNRAS, 321, 593
Gritschneder M., Naab T., Burkert A., Walch S., Heitsch F., Wetzstein M., 2009b, MNRAS, 393, 21
Iliev I. T. et al., 2009, MNRAS, 400, 1283
Razoumov A. O., Cardall C. Y., 2005, MNRAS, 362, 1413
Spitzer L., 1998, Physical Processes in the Interstellar Medium. Wiley-VCH, Chichester
Nayakshin S., Cha S., Hobbs A., 2009, MNRAS, 397, 1314
Ciardi B., Ferrara A., Marri S., Raimondo G., 2001, MNRAS, 324, 381
Whitehouse S. C., Bate M. R., Monaghan J. J., 2005, MNRAS, 364, 1367
Pawlik A. H., Schaye J., 2008, MNRAS, 389, 651
Mellema G., Raga A. C., Canto J., Lundqvist P., Balick B., Steffen W., Noriega-Crespo A., 1998, A&A, 331, 335
Mihalas D., Weibel Mihalas B., 1984, Foundations of Radiation Hydrodynamics. Oxford Univ. Press, New York
Alvarez M. A., Bromm V., Shapiro P. R., 2006, ApJ, 639, 621
Kunasz P., Auer L. H., 1988, J. Quant. Spectrosc. Radiat. Transfer, 39, 67
Ritzerveld J., Icke V., 2006, Phys. Rev. E, 74, 026704
Abel T., Wandelt B. D., 2002, MNRAS, 330, L53
2011; 411
2001; 321
2006; 74
2006; 639
2010; 407
2002; 330
2006; 11
2005; 357
2010; 401
2006; 58
2009a; 694
1988; 39
2009; 495
2009; 396
1998
2006; 371
2009; 397
2006
2009; 393
2008; 389
2008; 387
1998; 331
2008; 386
1999; 523
2004; 348
2001; 324
2006; 452
1978
1996; 105
2005; 362
2001; 6
2010; 515
2005; 364
2002; 141
2007; 671
2007; 375
2005; 622
2006; 162
1984
2009; 228
2003; 345
2009; 400
2009b; 393
References_xml – reference: Iliev I. T. et al., 2009, MNRAS, 400, 1283
– reference: Razoumov A. O., Cardall C. Y., 2005, MNRAS, 362, 1413
– reference: Maselli A., Ferrara A., Ciardi B., 2003, MNRAS, 345, 379
– reference: Osterbrock D. E., Ferland G. J., 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edn. University Science Books, Mill Valley , CA
– reference: Bolton J. S., Haehnelt M. G., Viel M., Springel V., 2005, MNRAS, 357, 1178
– reference: Mihalas D., Weibel Mihalas B., 1984, Foundations of Radiation Hydrodynamics. Oxford Univ. Press, New York
– reference: Nayakshin S., Cha S., Hobbs A., 2009, MNRAS, 397, 1314
– reference: Aubert D., Teyssier R., 2008, MNRAS, 387, 295
– reference: Abel T., Norman M. L., Madau P., 1999, ApJ, 523, 66
– reference: Ritzerveld J., Icke V., 2006, Phys. Rev. E, 74, 026704
– reference: Petkova M., Springel V., 2009, MNRAS, 396, 1383
– reference: Shapiro P. R., Iliev I. T., Raga A. C., 2004, MNRAS, 348, 753
– reference: Spitzer L., 1978, Physical Processes in the Interstellar Medium. Wiley Interscience, New York
– reference: Ahn K., Shapiro P. R., 2007, MNRAS, 375, 881
– reference: Cantalupo S., Porciani C., 2011, MNRAS, 411, 1678
– reference: Reynolds D. R., Hayes J. C., Paschos P., Norman M. L., 2009, J. Comput. Phys., 228, 6833
– reference: Gnedin N. Y., Abel T., 2001, New Astron., 6, 437
– reference: Whitehouse S. C., Bate M. R., Monaghan J. J., 2005, MNRAS, 364, 1367
– reference: Mellema G., Iliev I. T., Alvarez M. A., Shapiro P. R., 2006, New Astron., 11, 374
– reference: Cen R., 2002, ApJS, 141, 211
– reference: Nakamoto T., Umemura M., Susa H., 2001, MNRAS, 321, 593
– reference: Paardekooper J., Kruip C. J. H., Icke V., 2010, A&A, 515, A79
– reference: Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., Bartelmann M., 2005, ApJ, 622, 759
– reference: Baek S., Di Matteo P., Semelin B., Combes F., Revaz Y., 2009, A&A, 495, 389
– reference: Hasegawa K., Umemura M., 2010, MNRAS, 407, 2632
– reference: Whalen D., Norman M. L., 2006, ApJS, 162, 281
– reference: Abel T., Wandelt B. D., 2002, MNRAS, 330, L53
– reference: Ciardi B., Ferrara A., Marri S., Raimondo G., 2001, MNRAS, 324, 381
– reference: Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19
– reference: Sokasian A., Abel T., Hernquist L. E., 2001, New Astron., 6, 359
– reference: Trac H., Cen R., 2007, ApJ, 671, 1
– reference: Finlator K., Özel F., Davé R., 2009, MNRAS, 393, 1090
– reference: Iliev I. T. et al., 2006, MNRAS, 371, 1057
– reference: Springel V., 2010, MNRAS, 401, 791
– reference: Spitzer L., 1998, Physical Processes in the Interstellar Medium. Wiley-VCH, Chichester
– reference: Gritschneder M., Naab T., Burkert A., Walch S., Heitsch F., Wetzstein M., 2009b, MNRAS, 393, 21
– reference: Gritschneder M., Naab T., Walch S., Burkert A., Heitsch F., 2009a, ApJ, 694, L26
– reference: Kunasz P., Auer L. H., 1988, J. Quant. Spectrosc. Radiat. Transfer, 39, 67
– reference: Mellema G., Raga A. C., Canto J., Lundqvist P., Balick B., Steffen W., Noriega-Crespo A., 1998, A&A, 331, 335
– reference: Altay G., Croft R. A. C., Pelupessy I., 2008, MNRAS, 386, 1931
– reference: Pawlik A. H., Schaye J., 2008, MNRAS, 389, 651
– reference: Rijkhorst E.-J., Plewa T., Dubey A., Mellema G., 2006, A&A, 452, 907
– reference: Alvarez M. A., Bromm V., Shapiro P. R., 2006, ApJ, 639, 621
– reference: Susa H., 2006, PASJ, 58, 445
– volume: 397
  start-page: 1314
  year: 2009
  publication-title: MNRAS
– volume: 105
  start-page: 19
  year: 1996
  publication-title: ApJS
– volume: 694
  start-page: L26
  year: 2009a
  publication-title: ApJ
– volume: 11
  start-page: 374
  year: 2006
  publication-title: New Astron.
– volume: 452
  start-page: 907
  year: 2006
  publication-title: A&A
– volume: 364
  start-page: 1367
  year: 2005
  publication-title: MNRAS
– volume: 357
  start-page: 1178
  year: 2005
  publication-title: MNRAS
– volume: 671
  start-page: 1
  year: 2007
  publication-title: ApJ
– volume: 386
  start-page: 1931
  year: 2008
  publication-title: MNRAS
– volume: 400
  start-page: 1283
  year: 2009
  publication-title: MNRAS
– volume: 324
  start-page: 381
  year: 2001
  publication-title: MNRAS
– volume: 393
  start-page: 21
  year: 2009b
  publication-title: MNRAS
– volume: 411
  start-page: 1678
  year: 2011
  publication-title: MNRAS
– volume: 375
  start-page: 881
  year: 2007
  publication-title: MNRAS
– volume: 141
  start-page: 211
  year: 2002
  publication-title: ApJS
– volume: 401
  start-page: 791
  year: 2010
  publication-title: MNRAS
– year: 1998
– volume: 622
  start-page: 759
  year: 2005
  publication-title: ApJ
– volume: 39
  start-page: 67
  year: 1988
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– year: 1984
– volume: 515
  start-page: A79
  year: 2010
  publication-title: A&A
– volume: 345
  start-page: 379
  year: 2003
  publication-title: MNRAS
– volume: 321
  start-page: 593
  year: 2001
  publication-title: MNRAS
– volume: 6
  start-page: 359
  year: 2001
  publication-title: New Astron.
– volume: 348
  start-page: 753
  year: 2004
  publication-title: MNRAS
– volume: 639
  start-page: 621
  year: 2006
  publication-title: ApJ
– volume: 523
  start-page: 66
  year: 1999
  publication-title: ApJ
– volume: 228
  start-page: 6833
  year: 2009
  publication-title: J. Comput. Phys.
– volume: 371
  start-page: 1057
  year: 2006
  publication-title: MNRAS
– year: 2006
– volume: 6
  start-page: 437
  year: 2001
  publication-title: New Astron.
– volume: 396
  start-page: 1383
  year: 2009
  publication-title: MNRAS
– volume: 495
  start-page: 389
  year: 2009
  publication-title: A&A
– volume: 74
  start-page: 026704
  year: 2006
  publication-title: Phys. Rev. E
– volume: 362
  start-page: 1413
  year: 2005
  publication-title: MNRAS
– volume: 330
  start-page: L53
  year: 2002
  publication-title: MNRAS
– volume: 393
  start-page: 1090
  year: 2009
  publication-title: MNRAS
– volume: 162
  start-page: 281
  year: 2006
  publication-title: ApJS
– volume: 331
  start-page: 335
  year: 1998
  publication-title: A&A
– volume: 389
  start-page: 651
  year: 2008
  publication-title: MNRAS
– volume: 58
  start-page: 445
  year: 2006
  publication-title: PASJ
– year: 1978
– volume: 387
  start-page: 295
  year: 2008
  publication-title: MNRAS
– volume: 407
  start-page: 2632
  year: 2010
  publication-title: MNRAS
SSID ssj0004326
Score 2.2263129
Snippet We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the cell...
ABSTRACT We present a numerical implementation of radiative transfer based on an explicitly photon‐conserving advection scheme, where radiative fluxes over the...
ABSTRACT We present a numerical implementation of radiative transfer based on an explicitly photon-conserving advection scheme, where radiative fluxes over the...
SourceID proquest
pascalfrancis
wiley
oup
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3731
SubjectTerms Astronomy
Astrophysics
Cosmology
Earth, ocean, space
Exact sciences and technology
intergalactic medium
methods: numerical
Radiation
radiative transfer
Simulation
Title A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations
URI https://api.istex.fr/ark:/67375/WNG-XS2W8DSN-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2011.18986.x
https://www.proquest.com/docview/884293340
https://www.proquest.com/docview/899154695
Volume 415
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fa9swEMeP0afB2I9uo163oofRpznYtSxLj6FbVwbJoD9o9iQkWWYmjV3sZDT963uS7azZj5exl-BwdrB9Ounjy_l7AO-LSBeiyJMw5VERUqbSUCuVh6koEJYd8Pt2b5MpO72kX2bprK9_cu_CdPoQm4Sbiww_X7sAV7rdDnJfoYW83ilxxlxwNnI86QyOj85-KknRxHde8wqN-IwQbxf1_PGHEFfdnb4dXn17cqNavG9F1_Bii0gfcq1fmE6ewXy4pK4eZT5aLfXI3P2i9vh_rvk5PO35lYy7AfcCHtlqF_bGrcuo14s1OSR-u0uYtLsQTJDK68Yn79F4fF0iIvtvL-HbmFT1D3tNBmFzggRNlDErp19BGieb4GZjsvR0bRtSVsTU7WKYsMn3dY4LwLpSi9KQtlz0vcjaV3B58uni-DTsWz2EJUUgCk2sBLNGGCZ0lDNjmVA25TbOnd4cZzSyXEUsp1xlsc40ywuDJpZbxbRB5HgNO1Vd2T0gUSGspcZpHiTUWidAFhnkLssSlRgVB3Do3SpvOjkPqZq5q27LUnk1_Sxn50dX_OP5VLIAPqDfN7s9eFoafCCdD6T3gbwN4GBrgGwORIA6ynDRD2B_GDGynyhayTkCQZJQtJKNFSPc_W2jKluvcBdE-JQykQaQ-cHxl1OSv52SnEzP_Oabfz5yHx4PWfQofgs7y2Zl3yGGLfWBDzD8vPg6uwdjYiah
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb5swFMefpvawSdPWdZvKunU-TD2NCIox5hi167Kt4dAfanayjDEqagIVJFPTv37PBtJmPy7TbiAbBDw_--OH_X0AH3IvzeM8C9yQe7lLmQzdVMrMDeMcYdkAv033Nk7Y6IJ-nYSTLh2Q2QvT6kOsAm7GM2x_bRzcBKTXvdwu0UJgb6U4fR5zNkCg3DQJvo2Q_tHpvZYUDWzuNavRiLMEf31Zzx_vhMBqvvVtv_nt6Y1s8MvlbcqLNSZ9SLZ2aDp-DtP-pdoVKdeDxTwdqLtf9B7_01tvwbMOYcmwbXMv4JEut2Fn2JigejVbkn1ij9uYSbMNzhjBvKpt_B4LD6cFUrI9ewnfh6Ssfugp6bXNCUI0kUotjIQFqY1ygumQydwCtq5JURJVNbO-zyZXywzHgGUpZ4UiTTHr0pE1r-Di-NP54cjtsj24BUUmcpUvY6ZVrFicehlTmsVSh1z7mZGc44x6mkuPZZTLyE-jlGW5wiKWaclShdTxGjbKqtQ7QLw81poqI3sQUK2NBpmnEL00C2SgpO_AvrWruGkVPYSsr80CtygUl8lnMTk7uORHZ4lgDnxEw6-qPZgw9TYQxgbC2kDcOrC31kJWFyJDHUQ47juw2zcZ0fUVjeAcmSAIKJaSVSk6uflzI0tdLbAKUnxIWRw6ENnW8ZdHEr89khgnp_bwzT9f-R4ej87HJ-LkS_JtF570QXXPfwsb83qh3yGVzdM9620_AdMEKaE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3bb5swFIetqZWmSdMu3aaybp0fpj6NCIox9mPULOsuQVO7qtmTZWyjoTQQQVI1--t3bCBrdnmZ9gYyIOD42J8Ph99B6HUeZDnPdeTHLMh9QmXsZ1JqP-Y5wLIFflfubZLS0wvyYRpPu_wn-y9Mqw-xCbhZz3DjtXXwhc63ndxlaAGvt0qcIeOMDoAndwkNuC3jMDr7KSVFIld6zUk0wiIh3M7q-eOVgFftq77p_327v5ANvLi8rXixhaS3wdbNTOOHaNY_U5uQMhusltlAff9F7vH_PPQj9KADWDxse9xjdMeUe2h_2NiQejVf4yPsttuISbOHvAlgeVW76D00nlwVwMhu7wn6OsRldW2ucK9sjgGhsVRqZQUscG11E-xwjJcOr02NixKrqpn3Izb-ttYwA6xLOS8Ubop5V4yseYouxm-_nJz6Xa0HvyBARL4KJadGcUV5FmiqDOXSxMyE2grOMUoCw2RANWEyCbMkozpX0ES1kTRTwBzP0E5ZlWYf4SDnxhBlRQ8iYoxVIAsUgJehkYyUDD105MwqFq2eh5D1zKa3JbG4TN-J6fnxJRudp4J66A3YfXPYreVSbwNhbSCcDcSNhw63OsjmRCCo4wRmfQ8d9D1GdCNFIxgDIogiAq140woubr_byNJUKzgEGD4mlMceSlzn-Mstid9uSUzSM7f5_J_PfIXufh6Nxaf36ccDdK-PqAfhC7SzrFfmJSDZMjt0vvYDKfEoUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+for+accurate+radiative+transfer+in+cosmological+hydrodynamic+simulations&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Petkova%2C+Margarita&rft.au=Springel%2C+Volker&rft.date=2011-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=415&rft.issue=4&rft.spage=3731&rft.epage=3749&rft_id=info:doi/10.1111%2Fj.1365-2966.2011.18986.x&rft.externalDBID=10.1111%252Fj.1365-2966.2011.18986.x&rft.externalDocID=MNR18986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon