Smart Touchless Control with Credit-Card Sized Radar Sensor and Microcomputer

A smart, low-cost, stand-alone, and reliable touchless human-computer interaction (HCI) using a tiny 60 GHz radar sensor and a small Raspberry Pi microcomputer with advanced radar signal processing and machine learning (ML), is proposed and implemented. Three feature extraction techniques and variou...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 11th Global Conference on Consumer Electronics (GCCE) pp. 321 - 322
Main Authors Lee, Philip Hann Yung, Lu, Yilong
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A smart, low-cost, stand-alone, and reliable touchless human-computer interaction (HCI) using a tiny 60 GHz radar sensor and a small Raspberry Pi microcomputer with advanced radar signal processing and machine learning (ML), is proposed and implemented. Three feature extraction techniques and various ML algorithms are explored and compared. Smart gesture classification is realized by an ensemble ML model with 3 non-deep and deep learning (DL) algorithms and the majority voting scheme to improve classification accuracy. Both radar signal processing and ML algorithms are implemented in Python language in a Raspberry Pi microcomputer with an optimization by TensorFlow Lite, which reduces DL CPU time by 120 times. The proposed HCI is also integrated with a menu driven use case, which could be easily adapted to many other gesture control applications for home and industrial appliances.
AbstractList A smart, low-cost, stand-alone, and reliable touchless human-computer interaction (HCI) using a tiny 60 GHz radar sensor and a small Raspberry Pi microcomputer with advanced radar signal processing and machine learning (ML), is proposed and implemented. Three feature extraction techniques and various ML algorithms are explored and compared. Smart gesture classification is realized by an ensemble ML model with 3 non-deep and deep learning (DL) algorithms and the majority voting scheme to improve classification accuracy. Both radar signal processing and ML algorithms are implemented in Python language in a Raspberry Pi microcomputer with an optimization by TensorFlow Lite, which reduces DL CPU time by 120 times. The proposed HCI is also integrated with a menu driven use case, which could be easily adapted to many other gesture control applications for home and industrial appliances.
Author Lu, Yilong
Lee, Philip Hann Yung
Author_xml – sequence: 1
  givenname: Philip Hann Yung
  surname: Lee
  fullname: Lee, Philip Hann Yung
  email: plee016@e.ntu.edu.sg
  organization: Nanyang Technological University, Singapore,School of Electrical and Electronic Engineering,Republic of Singapore
– sequence: 2
  givenname: Yilong
  surname: Lu
  fullname: Lu, Yilong
  email: eylu@ntu.edu.sg
  organization: Nanyang Technological University, Singapore,School of Electrical and Electronic Engineering,Republic of Singapore
BookMark eNo1z91KwzAYgOEIeqBzdyCYG-jMz5e0OZQwp7Ah2J6PNPnCAl0z0g7Rq1fQHb1nLzx35HrMIxLyyNmKc2aeNtaulYZarQQTYsUZ4yAUuyJLUzdcawVGSAG3ZNceXZlpl8_-MOA0UZvHueSBfqb5QG3BkObKuhJom74x0A8XXKEtjlMu1I2B7pIv2efj6TxjuSc30Q0TLv-7IN3LurOv1fZ982aft1UCo6voQEQVPdcQoebCi-A9SsNQuL4B0Ez1Thqpm2iMZlD3CJExFesmROFALsjD3zYh4v5U0q_ha39Byh8-ykvt
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GCCE56475.2022.10014250
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665492324
1665492325
EndPage 322
ExternalDocumentID 10014250
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i496-fa42f5fc164f4712c2dcce390e2ab844605ba39368f996047be4f005f78df2a43
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:17 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i496-fa42f5fc164f4712c2dcce390e2ab844605ba39368f996047be4f005f78df2a43
PageCount 2
ParticipantIDs ieee_primary_10014250
PublicationCentury 2000
PublicationDate 2022-Oct.-18
PublicationDateYYYYMMDD 2022-10-18
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-18
  day: 18
PublicationDecade 2020
PublicationTitle 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE)
PublicationTitleAbbrev GCCE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8580266
Snippet A smart, low-cost, stand-alone, and reliable touchless human-computer interaction (HCI) using a tiny 60 GHz radar sensor and a small Raspberry Pi microcomputer...
SourceID ieee
SourceType Publisher
StartPage 321
SubjectTerms hand gesture recognition
Home appliances
Human computer interaction
Machine learning algorithms
Microcomputers
Radar
radar sensing
Radar signal processing
Signal processing algorithms
Touchless control
Title Smart Touchless Control with Credit-Card Sized Radar Sensor and Microcomputer
URI https://ieeexplore.ieee.org/document/10014250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6_ttiRNm3PZHMKG2Aq7jfzEobZS2sv--r20naIgeCsloeXlJR_v5XvfQ-jemYhaol0gJJMBiyFmVZH0xDWqnZtY2qUGFks-f2GPq2jVF6u3tTDW2pZ8ZkP_2N7lm1I3PlU28npB4GMQoR_GQnTFWj1nazIWo4c0nUacxRGEfYSE-9E_-qa0sDE7Rsv9Bzu2yFvY1CrU219ajP_-oxM0_K7Qw09f2HOKDmxxhhbZBzgCzstGv77DCYbTjoeOfbIVpxWMrYMUXAJnm601-FkaWeEMAtmywrIweOHZebrv8zBE-Wyap_Ogb5cQbJjggZOMuMhpiH8cIA7RxGjtbW2JVAnz959KUkF54lpFllhZ5mAPujgxjkhGz9GgKAt7gTBMESKWnCWUA-CbRMGu514aTmvhxuQSDb0p1p-dIMZ6b4WrP95foyO_Iv7InyQ3aFBXjb0FLK_VXbuGOyY2npQ
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6iBz2pOPG3OXhttyVpmp7L5tR1iKuw20jzA4faSmkv--t9aTtFQfBWSkLLy0u_fi_few-hG6sDaoiyXiSZ9FgInDULpBOuUWXt0NA2NJDM-OSZ3S-CRZes3uTCGGMa8Znx3WVzlq8LVbtQWd_VCwIfA4a-Az_WgrfpWp1qaziI-rdxPAo4CwMgfoT4m_E_Oqc0wDHeR7PNI1u9yKtfV5mv1r-qMf77nQ5Q7ztHDz9-oc8h2jL5EUrm7-AKOC1q9fIG3zAct0p07MKtOC5hbOXF4BR4vlobjZ-kliWeA5UtSixzjROnz1Ndp4ceSsejNJ54XcMEb8Ui7lnJiA2sAgZkAXOIIlopZ21DZCaYOwHNJI0oF7apyRJmhlnYhTYU2hLJ6DHazovcnCAMU6IolJwJygHytchg33NXHE6pyA7IKeo5Uyw_2pIYy40Vzv64f412J2kyXU7vZg_naM-tjgOAobhA21VZm0tA9iq7atbzE6Lfod8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+11th+Global+Conference+on+Consumer+Electronics+%28GCCE%29&rft.atitle=Smart+Touchless+Control+with+Credit-Card+Sized+Radar+Sensor+and+Microcomputer&rft.au=Lee%2C+Philip+Hann+Yung&rft.au=Lu%2C+Yilong&rft.date=2022-10-18&rft.pub=IEEE&rft.spage=321&rft.epage=322&rft_id=info:doi/10.1109%2FGCCE56475.2022.10014250&rft.externalDocID=10014250