Smart Touchless Control with Credit-Card Sized Radar Sensor and Microcomputer
A smart, low-cost, stand-alone, and reliable touchless human-computer interaction (HCI) using a tiny 60 GHz radar sensor and a small Raspberry Pi microcomputer with advanced radar signal processing and machine learning (ML), is proposed and implemented. Three feature extraction techniques and variou...
Saved in:
Published in | 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE) pp. 321 - 322 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
18.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A smart, low-cost, stand-alone, and reliable touchless human-computer interaction (HCI) using a tiny 60 GHz radar sensor and a small Raspberry Pi microcomputer with advanced radar signal processing and machine learning (ML), is proposed and implemented. Three feature extraction techniques and various ML algorithms are explored and compared. Smart gesture classification is realized by an ensemble ML model with 3 non-deep and deep learning (DL) algorithms and the majority voting scheme to improve classification accuracy. Both radar signal processing and ML algorithms are implemented in Python language in a Raspberry Pi microcomputer with an optimization by TensorFlow Lite, which reduces DL CPU time by 120 times. The proposed HCI is also integrated with a menu driven use case, which could be easily adapted to many other gesture control applications for home and industrial appliances. |
---|---|
AbstractList | A smart, low-cost, stand-alone, and reliable touchless human-computer interaction (HCI) using a tiny 60 GHz radar sensor and a small Raspberry Pi microcomputer with advanced radar signal processing and machine learning (ML), is proposed and implemented. Three feature extraction techniques and various ML algorithms are explored and compared. Smart gesture classification is realized by an ensemble ML model with 3 non-deep and deep learning (DL) algorithms and the majority voting scheme to improve classification accuracy. Both radar signal processing and ML algorithms are implemented in Python language in a Raspberry Pi microcomputer with an optimization by TensorFlow Lite, which reduces DL CPU time by 120 times. The proposed HCI is also integrated with a menu driven use case, which could be easily adapted to many other gesture control applications for home and industrial appliances. |
Author | Lu, Yilong Lee, Philip Hann Yung |
Author_xml | – sequence: 1 givenname: Philip Hann Yung surname: Lee fullname: Lee, Philip Hann Yung email: plee016@e.ntu.edu.sg organization: Nanyang Technological University, Singapore,School of Electrical and Electronic Engineering,Republic of Singapore – sequence: 2 givenname: Yilong surname: Lu fullname: Lu, Yilong email: eylu@ntu.edu.sg organization: Nanyang Technological University, Singapore,School of Electrical and Electronic Engineering,Republic of Singapore |
BookMark | eNo1z91KwzAYgOEIeqBzdyCYG-jMz5e0OZQwp7Ah2J6PNPnCAl0z0g7Rq1fQHb1nLzx35HrMIxLyyNmKc2aeNtaulYZarQQTYsUZ4yAUuyJLUzdcawVGSAG3ZNceXZlpl8_-MOA0UZvHueSBfqb5QG3BkObKuhJom74x0A8XXKEtjlMu1I2B7pIv2efj6TxjuSc30Q0TLv-7IN3LurOv1fZ982aft1UCo6voQEQVPdcQoebCi-A9SsNQuL4B0Ez1Thqpm2iMZlD3CJExFesmROFALsjD3zYh4v5U0q_ha39Byh8-ykvt |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/GCCE56475.2022.10014250 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665492324 1665492325 |
EndPage | 322 |
ExternalDocumentID | 10014250 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i496-fa42f5fc164f4712c2dcce390e2ab844605ba39368f996047be4f005f78df2a43 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:28:17 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i496-fa42f5fc164f4712c2dcce390e2ab844605ba39368f996047be4f005f78df2a43 |
PageCount | 2 |
ParticipantIDs | ieee_primary_10014250 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-18 |
PublicationDateYYYYMMDD | 2022-10-18 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE) |
PublicationTitleAbbrev | GCCE |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8580266 |
Snippet | A smart, low-cost, stand-alone, and reliable touchless human-computer interaction (HCI) using a tiny 60 GHz radar sensor and a small Raspberry Pi microcomputer... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 321 |
SubjectTerms | hand gesture recognition Home appliances Human computer interaction Machine learning algorithms Microcomputers Radar radar sensing Radar signal processing Signal processing algorithms Touchless control |
Title | Smart Touchless Control with Credit-Card Sized Radar Sensor and Microcomputer |
URI | https://ieeexplore.ieee.org/document/10014250 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6_ttiRNm3PZHMKG2Aq7jfzEobZS2sv--r20naIgeCsloeXlJR_v5XvfQ-jemYhaol0gJJMBiyFmVZH0xDWqnZtY2qUGFks-f2GPq2jVF6u3tTDW2pZ8ZkP_2N7lm1I3PlU28npB4GMQoR_GQnTFWj1nazIWo4c0nUacxRGEfYSE-9E_-qa0sDE7Rsv9Bzu2yFvY1CrU219ajP_-oxM0_K7Qw09f2HOKDmxxhhbZBzgCzstGv77DCYbTjoeOfbIVpxWMrYMUXAJnm601-FkaWeEMAtmywrIweOHZebrv8zBE-Wyap_Ogb5cQbJjggZOMuMhpiH8cIA7RxGjtbW2JVAnz959KUkF54lpFllhZ5mAPujgxjkhGz9GgKAt7gTBMESKWnCWUA-CbRMGu514aTmvhxuQSDb0p1p-dIMZ6b4WrP95foyO_Iv7InyQ3aFBXjb0FLK_VXbuGOyY2npQ |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6iBz2pOPG3OXhttyVpmp7L5tR1iKuw20jzA4faSmkv--t9aTtFQfBWSkLLy0u_fi_few-hG6sDaoiyXiSZ9FgInDULpBOuUWXt0NA2NJDM-OSZ3S-CRZes3uTCGGMa8Znx3WVzlq8LVbtQWd_VCwIfA4a-Az_WgrfpWp1qaziI-rdxPAo4CwMgfoT4m_E_Oqc0wDHeR7PNI1u9yKtfV5mv1r-qMf77nQ5Q7ztHDz9-oc8h2jL5EUrm7-AKOC1q9fIG3zAct0p07MKtOC5hbOXF4BR4vlobjZ-kliWeA5UtSixzjROnz1Ndp4ceSsejNJ54XcMEb8Ui7lnJiA2sAgZkAXOIIlopZ21DZCaYOwHNJI0oF7apyRJmhlnYhTYU2hLJ6DHazovcnCAMU6IolJwJygHytchg33NXHE6pyA7IKeo5Uyw_2pIYy40Vzv64f412J2kyXU7vZg_naM-tjgOAobhA21VZm0tA9iq7atbzE6Lfod8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+11th+Global+Conference+on+Consumer+Electronics+%28GCCE%29&rft.atitle=Smart+Touchless+Control+with+Credit-Card+Sized+Radar+Sensor+and+Microcomputer&rft.au=Lee%2C+Philip+Hann+Yung&rft.au=Lu%2C+Yilong&rft.date=2022-10-18&rft.pub=IEEE&rft.spage=321&rft.epage=322&rft_id=info:doi/10.1109%2FGCCE56475.2022.10014250&rft.externalDocID=10014250 |