Deinterleaving Pulse Trains via RPMA-TConv for Parameter-Agile Radar

Radar pulse trains deinterleaving is a challenging task in modern electronic reconnaissance. The RPMA-TConv model based on multi-branch atrous convolution and feature reconstruction is proposed to solve the problem of deinterleaving parameter-agile emitters. The time of arrival (TOA), center frequen...

Full description

Saved in:
Bibliographic Details
Published in2024 IEEE Radar Conference (RadarConf24) pp. 1 - 6
Main Authors Liang, Caiyu, Tang, Han, Huo, Weibo, Zhang, Yin, Pei, Jifang, Huang, Yulin
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Radar pulse trains deinterleaving is a challenging task in modern electronic reconnaissance. The RPMA-TConv model based on multi-branch atrous convolution and feature reconstruction is proposed to solve the problem of deinterleaving parameter-agile emitters. The time of arrival (TOA), center frequency (CF) and pulse width (PW) are used to characterize the relative position and variation pattern of pulse trains. Multi-branch atrous convolutions with different receptive fields are applied to extract multi-scale temporal patterns, ensuring a comprehensive representation of agile parameter characteristics. The feature reconstruction module reconstructs the pulse train information through a learnable process and attributes each pulse to the corresponding emitter. The proposed method can correlate multiple modes of pulse trains generated by the same parameter-agile emitter. Compared with the traditional methods, it will not cause the problem of more clusters than emitters. The method also performs well in scenarios with parameter overlap and noise. Experimental results and performance analysis based on interleaved parameter-agile pulse trains are provided to demonstrate the effectiveness and robustness of the method.
AbstractList Radar pulse trains deinterleaving is a challenging task in modern electronic reconnaissance. The RPMA-TConv model based on multi-branch atrous convolution and feature reconstruction is proposed to solve the problem of deinterleaving parameter-agile emitters. The time of arrival (TOA), center frequency (CF) and pulse width (PW) are used to characterize the relative position and variation pattern of pulse trains. Multi-branch atrous convolutions with different receptive fields are applied to extract multi-scale temporal patterns, ensuring a comprehensive representation of agile parameter characteristics. The feature reconstruction module reconstructs the pulse train information through a learnable process and attributes each pulse to the corresponding emitter. The proposed method can correlate multiple modes of pulse trains generated by the same parameter-agile emitter. Compared with the traditional methods, it will not cause the problem of more clusters than emitters. The method also performs well in scenarios with parameter overlap and noise. Experimental results and performance analysis based on interleaved parameter-agile pulse trains are provided to demonstrate the effectiveness and robustness of the method.
Author Tang, Han
Zhang, Yin
Liang, Caiyu
Huo, Weibo
Pei, Jifang
Huang, Yulin
Author_xml – sequence: 1
  givenname: Caiyu
  surname: Liang
  fullname: Liang, Caiyu
  email: caiyu_liang@std.uestc.edu.cn
  organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731
– sequence: 2
  givenname: Han
  surname: Tang
  fullname: Tang, Han
  organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731
– sequence: 3
  givenname: Weibo
  surname: Huo
  fullname: Huo, Weibo
  organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731
– sequence: 4
  givenname: Yin
  surname: Zhang
  fullname: Zhang, Yin
  organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731
– sequence: 5
  givenname: Jifang
  surname: Pei
  fullname: Pei, Jifang
  organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731
– sequence: 6
  givenname: Yulin
  surname: Huang
  fullname: Huang, Yulin
  organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731
BookMark eNo1j0tLw0AUhUdRsK39By5m5S71zjuzLKkvqFhK9uWmc6eMtIlMNOC_N_hYHTjwnceUXbRdS4zdClgIAf5uiwFz1bVRalM6ZxYSpF4IMLq0VpyxuXe-VAaU9BL8OZtI5UxhlCiv2LTv3wCMGq0JW60otR-Uj4RDag9883nsidcZU9vzISHfbl6WRT1WDTx2mW8w44lGoFge0pH4z5Brdhlx5OZ_OmP1w31dPRXr18fnarkukva2CKBtI0NppbLkA-rGgW9AgCKLRqjQYHT7xu2lMwhqHyFiDFFbHT0SSjVjN7-xiYh27zmdMH_t_k-rb_eXUEI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/RadarConf2458775.2024.10548661
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350329209
EISSN 2375-5318
EndPage 6
ExternalDocumentID 10548661
Genre orig-research
GroupedDBID 6IE
6IH
6IK
6IM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
JC5
RIE
RIO
ID FETCH-LOGICAL-i496-d046b2d86236e9da4b709b0103e6a513dbaf7cb7c275a03cf0fafdf464f9aea23
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:23 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i496-d046b2d86236e9da4b709b0103e6a513dbaf7cb7c275a03cf0fafdf464f9aea23
PageCount 6
ParticipantIDs ieee_primary_10548661
PublicationCentury 2000
PublicationDate 2024-May-6
PublicationDateYYYYMMDD 2024-05-06
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-6
  day: 06
PublicationDecade 2020
PublicationTitle 2024 IEEE Radar Conference (RadarConf24)
PublicationTitleAbbrev RADARCONF24
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053237
Score 1.9193616
Snippet Radar pulse trains deinterleaving is a challenging task in modern electronic reconnaissance. The RPMA-TConv model based on multi-branch atrous convolution and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Convolution
Deep learning
Deinterleaving
Feature extraction
Measurement errors
Multi-branch atrous convolution
Noise
Radar
Reconnaissance
Time-frequency analysis
Title Deinterleaving Pulse Trains via RPMA-TConv for Parameter-Agile Radar
URI https://ieeexplore.ieee.org/document/10548661
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA3ahejGV8U3WYi7jNM8m2WxShFahjJCd-VmkkhRWqmdLvx6k2nHFwjuhoEJeTA59yT3nIvQVfRYYwGoSapBEO4NEJAtIMZaQ0XhHcioRu4PZO-RP4zEaC1Wr7Qwzrkq-cwl8bG6y7ezooxHZeEPD_G1jGRnU2m9EmvV265glKktdL020bwZQuDhUTVHuWgrJQIVpDypW_hRS6WCkvtdNKg7scogeU7KhUmK91_-jP_u5R5qfqn2cPaJR_tow00P0M43w8FD1O266A8xf3EQDxJwVgZkxHksE_GGlxPAw6zfIXlocIlDNIsziLlb4QPSeQrbB66G20T5_V1-2yPrOgpkwrUkNlBgQ22gLkw6bYEblWoT6zs4CaLFrAGvCqMKqgSkrPCpB289l9xrcEDZEWpMZ1N3jDBrp0xbZloFddyAaoOjBadeURpDI32CmnE-xq8rp4xxPRWnf7w_Q9txWaoEQnmOGot56S4CyC_MZbW4H1oAppM
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA2i4OXF28S7eRDfUrskTdrH4RxTt1FGhb2NL00iQ9lkrnvw15t0qzcQfCuFhlxozneS75wPoUvvscYcUJMwgYhwq4CAqANRWisa5daA8Grkbk-0H_n9IBosxeqlFsYYUyafmcA_lnf5epIX_qjM_eEuvhae7Ky5wDoWC7lWtfFGjDK5jq6WNprXfXBM3OvmKI9iKSNHBikPqjZ-VFMpwaS1jXpVNxY5JM9BMVNB_v7LofHf_dxBtS_dHk4_EWkXrZjxHtr6Zjm4j5pN4x0ipi8G_FECTguHjTjzhSLe8HwEuJ92GyRzDc6xi2dxCj57y31AGk9uA8HlcGsoa91mN22yrKRARjwRRDsSrKh25IUJk2jgSoaJ8hUejICozrQCK3MlcyojCFluQwtWWy64TcAAZQdodTwZm0OEWRyyRDNVz6nhCmQMhuacWkmpD46SI1Tz8zF8XXhlDKupOP7j_QXaaGfdzrBz13s4QZt-icp0QnGKVmfTwpw5yJ-p83KhPwBAx6ne
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Radar+Conference+%28RadarConf24%29&rft.atitle=Deinterleaving+Pulse+Trains+via+RPMA-TConv+for+Parameter-Agile+Radar&rft.au=Liang%2C+Caiyu&rft.au=Tang%2C+Han&rft.au=Huo%2C+Weibo&rft.au=Zhang%2C+Yin&rft.date=2024-05-06&rft.pub=IEEE&rft.eissn=2375-5318&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FRadarConf2458775.2024.10548661&rft.externalDocID=10548661