Deinterleaving Pulse Trains via RPMA-TConv for Parameter-Agile Radar
Radar pulse trains deinterleaving is a challenging task in modern electronic reconnaissance. The RPMA-TConv model based on multi-branch atrous convolution and feature reconstruction is proposed to solve the problem of deinterleaving parameter-agile emitters. The time of arrival (TOA), center frequen...
Saved in:
Published in | 2024 IEEE Radar Conference (RadarConf24) pp. 1 - 6 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
06.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Radar pulse trains deinterleaving is a challenging task in modern electronic reconnaissance. The RPMA-TConv model based on multi-branch atrous convolution and feature reconstruction is proposed to solve the problem of deinterleaving parameter-agile emitters. The time of arrival (TOA), center frequency (CF) and pulse width (PW) are used to characterize the relative position and variation pattern of pulse trains. Multi-branch atrous convolutions with different receptive fields are applied to extract multi-scale temporal patterns, ensuring a comprehensive representation of agile parameter characteristics. The feature reconstruction module reconstructs the pulse train information through a learnable process and attributes each pulse to the corresponding emitter. The proposed method can correlate multiple modes of pulse trains generated by the same parameter-agile emitter. Compared with the traditional methods, it will not cause the problem of more clusters than emitters. The method also performs well in scenarios with parameter overlap and noise. Experimental results and performance analysis based on interleaved parameter-agile pulse trains are provided to demonstrate the effectiveness and robustness of the method. |
---|---|
AbstractList | Radar pulse trains deinterleaving is a challenging task in modern electronic reconnaissance. The RPMA-TConv model based on multi-branch atrous convolution and feature reconstruction is proposed to solve the problem of deinterleaving parameter-agile emitters. The time of arrival (TOA), center frequency (CF) and pulse width (PW) are used to characterize the relative position and variation pattern of pulse trains. Multi-branch atrous convolutions with different receptive fields are applied to extract multi-scale temporal patterns, ensuring a comprehensive representation of agile parameter characteristics. The feature reconstruction module reconstructs the pulse train information through a learnable process and attributes each pulse to the corresponding emitter. The proposed method can correlate multiple modes of pulse trains generated by the same parameter-agile emitter. Compared with the traditional methods, it will not cause the problem of more clusters than emitters. The method also performs well in scenarios with parameter overlap and noise. Experimental results and performance analysis based on interleaved parameter-agile pulse trains are provided to demonstrate the effectiveness and robustness of the method. |
Author | Tang, Han Zhang, Yin Liang, Caiyu Huo, Weibo Pei, Jifang Huang, Yulin |
Author_xml | – sequence: 1 givenname: Caiyu surname: Liang fullname: Liang, Caiyu email: caiyu_liang@std.uestc.edu.cn organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731 – sequence: 2 givenname: Han surname: Tang fullname: Tang, Han organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731 – sequence: 3 givenname: Weibo surname: Huo fullname: Huo, Weibo organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731 – sequence: 4 givenname: Yin surname: Zhang fullname: Zhang, Yin organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731 – sequence: 5 givenname: Jifang surname: Pei fullname: Pei, Jifang organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731 – sequence: 6 givenname: Yulin surname: Huang fullname: Huang, Yulin organization: School of Information and Communication Engineering University of Electronic Science and Technology of China,Chengdu,Sichuan,P.R. China,611731 |
BookMark | eNo1j0tLw0AUhUdRsK39By5m5S71zjuzLKkvqFhK9uWmc6eMtIlMNOC_N_hYHTjwnceUXbRdS4zdClgIAf5uiwFz1bVRalM6ZxYSpF4IMLq0VpyxuXe-VAaU9BL8OZtI5UxhlCiv2LTv3wCMGq0JW60otR-Uj4RDag9883nsidcZU9vzISHfbl6WRT1WDTx2mW8w44lGoFge0pH4z5Brdhlx5OZ_OmP1w31dPRXr18fnarkukva2CKBtI0NppbLkA-rGgW9AgCKLRqjQYHT7xu2lMwhqHyFiDFFbHT0SSjVjN7-xiYh27zmdMH_t_k-rb_eXUEI |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/RadarConf2458775.2024.10548661 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350329209 |
EISSN | 2375-5318 |
EndPage | 6 |
ExternalDocumentID | 10548661 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IK 6IM ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI JC5 RIE RIO |
ID | FETCH-LOGICAL-i496-d046b2d86236e9da4b709b0103e6a513dbaf7cb7c275a03cf0fafdf464f9aea23 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 03 05:40:23 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i496-d046b2d86236e9da4b709b0103e6a513dbaf7cb7c275a03cf0fafdf464f9aea23 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10548661 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-6 |
PublicationDateYYYYMMDD | 2024-05-06 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | 2024 IEEE Radar Conference (RadarConf24) |
PublicationTitleAbbrev | RADARCONF24 |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0053237 |
Score | 1.9193616 |
Snippet | Radar pulse trains deinterleaving is a challenging task in modern electronic reconnaissance. The RPMA-TConv model based on multi-branch atrous convolution and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Convolution Deep learning Deinterleaving Feature extraction Measurement errors Multi-branch atrous convolution Noise Radar Reconnaissance Time-frequency analysis |
Title | Deinterleaving Pulse Trains via RPMA-TConv for Parameter-Agile Radar |
URI | https://ieeexplore.ieee.org/document/10548661 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA3ahejGV8U3WYi7jNM8m2WxShFahjJCd-VmkkhRWqmdLvx6k2nHFwjuhoEJeTA59yT3nIvQVfRYYwGoSapBEO4NEJAtIMZaQ0XhHcioRu4PZO-RP4zEaC1Wr7Qwzrkq-cwl8bG6y7ezooxHZeEPD_G1jGRnU2m9EmvV265glKktdL020bwZQuDhUTVHuWgrJQIVpDypW_hRS6WCkvtdNKg7scogeU7KhUmK91_-jP_u5R5qfqn2cPaJR_tow00P0M43w8FD1O266A8xf3EQDxJwVgZkxHksE_GGlxPAw6zfIXlocIlDNIsziLlb4QPSeQrbB66G20T5_V1-2yPrOgpkwrUkNlBgQ22gLkw6bYEblWoT6zs4CaLFrAGvCqMKqgSkrPCpB289l9xrcEDZEWpMZ1N3jDBrp0xbZloFddyAaoOjBadeURpDI32CmnE-xq8rp4xxPRWnf7w_Q9txWaoEQnmOGot56S4CyC_MZbW4H1oAppM |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA2i4OXF28S7eRDfUrskTdrH4RxTt1FGhb2NL00iQ9lkrnvw15t0qzcQfCuFhlxozneS75wPoUvvscYcUJMwgYhwq4CAqANRWisa5daA8Grkbk-0H_n9IBosxeqlFsYYUyafmcA_lnf5epIX_qjM_eEuvhae7Ky5wDoWC7lWtfFGjDK5jq6WNprXfXBM3OvmKI9iKSNHBikPqjZ-VFMpwaS1jXpVNxY5JM9BMVNB_v7LofHf_dxBtS_dHk4_EWkXrZjxHtr6Zjm4j5pN4x0ipi8G_FECTguHjTjzhSLe8HwEuJ92GyRzDc6xi2dxCj57y31AGk9uA8HlcGsoa91mN22yrKRARjwRRDsSrKh25IUJk2jgSoaJ8hUejICozrQCK3MlcyojCFluQwtWWy64TcAAZQdodTwZm0OEWRyyRDNVz6nhCmQMhuacWkmpD46SI1Tz8zF8XXhlDKupOP7j_QXaaGfdzrBz13s4QZt-icp0QnGKVmfTwpw5yJ-p83KhPwBAx6ne |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Radar+Conference+%28RadarConf24%29&rft.atitle=Deinterleaving+Pulse+Trains+via+RPMA-TConv+for+Parameter-Agile+Radar&rft.au=Liang%2C+Caiyu&rft.au=Tang%2C+Han&rft.au=Huo%2C+Weibo&rft.au=Zhang%2C+Yin&rft.date=2024-05-06&rft.pub=IEEE&rft.eissn=2375-5318&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FRadarConf2458775.2024.10548661&rft.externalDocID=10548661 |