Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization

The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans ‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action,...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 34; no. 14; pp. 1925 - 1941
Main Authors Neuenkirchen, Nils, Englbrecht, Clemens, Ohmer, Jürgen, Ziegenhals, Thomas, Chari, Ashwin, Fischer, Utz
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 14.07.2015
Nature Publishing Group UK
Springer Nature B.V
John Wiley & Sons, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans ‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln‐Sm units are displaced by new pICln‐Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis‐assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. Synopsis By reconstituting the assembly of human U snRNPs in vitro , this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding defects in Spinal Muscular Atrophy. Reconstitution of the human snRNP assembly machinery from recombinant proteins. The PRMT5 complex acts as a scaffold for the stepwise organization of Sm proteins by the assembly chaperone pICln. Release of pICln‐Sm protein intermediates from the PRMT5 complex scaffold is feed‐forward‐driven by new pICln‐Sm protein precursors. The SMN complex acts as a Brownian machine, which enables Sm proteins to proofread cognate snRNAs and catalyzes faithful snRNP assembly. Spinal muscular atrophy‐causing mutations differentially affect snRNP assembly. Graphical Abstract By reconstituting the assembly of human U snRNPs in vitro , this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding the defects in spinal muscular atrophy.
AbstractList The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln‐Sm units are displaced by new pICln‐Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis‐assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. Synopsis By reconstituting the assembly of human U snRNPs in vitro, this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding defects in Spinal Muscular Atrophy. Reconstitution of the human snRNP assembly machinery from recombinant proteins. The PRMT5 complex acts as a scaffold for the stepwise organization of Sm proteins by the assembly chaperone pICln. Release of pICln‐Sm protein intermediates from the PRMT5 complex scaffold is feed‐forward‐driven by new pICln‐Sm protein precursors. The SMN complex acts as a Brownian machine, which enables Sm proteins to proofread cognate snRNAs and catalyzes faithful snRNP assembly. Spinal muscular atrophy‐causing mutations differentially affect snRNP assembly. By reconstituting the assembly of human U snRNPs in vitro, this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding the defects in spinal muscular atrophy.
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans ‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln‐Sm units are displaced by new pICln‐Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis‐assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. Synopsis By reconstituting the assembly of human U snRNPs in vitro , this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding defects in Spinal Muscular Atrophy. Reconstitution of the human snRNP assembly machinery from recombinant proteins. The PRMT5 complex acts as a scaffold for the stepwise organization of Sm proteins by the assembly chaperone pICln. Release of pICln‐Sm protein intermediates from the PRMT5 complex scaffold is feed‐forward‐driven by new pICln‐Sm protein precursors. The SMN complex acts as a Brownian machine, which enables Sm proteins to proofread cognate snRNAs and catalyzes faithful snRNP assembly. Spinal muscular atrophy‐causing mutations differentially affect snRNP assembly. Graphical Abstract By reconstituting the assembly of human U snRNPs in vitro , this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding the defects in spinal muscular atrophy.
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans -acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. Synopsis By reconstituting the assembly of human U snRNPs in vitro, this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding defects in Spinal Muscular Atrophy. Reconstitution of the human snRNP assembly machinery from recombinant proteins. The PRMT5 complex acts as a scaffold for the stepwise organization of Sm proteins by the assembly chaperone pICln. Release of pICln-Sm protein intermediates from the PRMT5 complex scaffold is feed-forward-driven by new pICln-Sm protein precursors. The SMN complex acts as a Brownian machine, which enables Sm proteins to proofread cognate snRNAs and catalyzes faithful snRNP assembly. Spinal muscular atrophy-causing mutations differentially affect snRNP assembly.
Author Englbrecht, Clemens
Ziegenhals, Thomas
Chari, Ashwin
Fischer, Utz
Neuenkirchen, Nils
Ohmer, Jürgen
Author_xml – sequence: 1
  givenname: Nils
  surname: Neuenkirchen
  fullname: Neuenkirchen, Nils
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
– sequence: 2
  givenname: Clemens
  surname: Englbrecht
  fullname: Englbrecht, Clemens
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
– sequence: 3
  givenname: Jürgen
  surname: Ohmer
  fullname: Ohmer, Jürgen
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
– sequence: 4
  givenname: Thomas
  surname: Ziegenhals
  fullname: Ziegenhals, Thomas
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
– sequence: 5
  givenname: Ashwin
  surname: Chari
  fullname: Chari, Ashwin
  email: Corresponding author. Tel: +49 931 318 4029; , utz.fischer@biozentrum.uni-wuerzburg.de, Corresponding author. Tel: +49 551 201 1654; , ashwin.chari@mpibpc.mpg.de
  organization: Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
– sequence: 6
  givenname: Utz
  surname: Fischer
  fullname: Fischer, Utz
  email: Corresponding author. Tel: +49 931 318 4029; , utz.fischer@biozentrum.uni-wuerzburg.de, Corresponding author. Tel: +49 551 201 1654; , ashwin.chari@mpibpc.mpg.de
  organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26069323$$D View this record in MEDLINE/PubMed
BookMark eNptkc1v1DAQxS1URLeFMzdkiQuXlLHjj4QDElSlgJZCS1G5WU7i7HpJ7MVOWpa_Hi9booI4Wfb83pvxvAO057wzCD0mcEQ45fS56avVEQXCSsg53EMzwgRkFCTfQzOggmSMFOU-OohxBQC8kOQB2qcCRJnTfIbUham9i4MdxsF6h32Lh6XBy7HXDn_B0V2cfcI6xtSn2-Be10vrTNjgYK6N7iKOg1nf2Gjw5x6vgx-MTR5hoZ39qbeGD9H9NnHm0e15iC7fnFwev83mH0_fHb-aZ5aVDLK8Iq0kFErNNAWmm7pNTw0lTVOArgCMqLRpdc1FXdW8KEilSy4lp6whNc8P0cud7XqsetPUxg1Bd2odbK_DRnlt1d8VZ5dq4a8V40wWpUgGz24Ngv8-mjio3sbadJ12xo9REVFKSgpCaUKf_oOu_Bhc-t2WEoSXabuJenJ3ommUP6tPwIsdcGM7s5nqBNTvZNU2WTUlq04-vH4_3ZIYduKYdG5hwp0Z_m-QJNlOYlNmP6Z-OnxTQuaSq6uzUyULOYfzr1fqPP8F7fa59Q
CODEN EMJODG
ContentType Journal Article
Copyright The Authors 2015
2015 The Authors
2015 The Authors.
2015 EMBO
2015 The Authors 2015
Copyright_xml – notice: The Authors 2015
– notice: 2015 The Authors
– notice: 2015 The Authors.
– notice: 2015 EMBO
– notice: 2015 The Authors 2015
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.201490350
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1460-2075
EndPage 1941
ExternalDocumentID PMC4547896
3743202701
26069323
EMBJ201490350
10_15252_embj_201490350
ark_67375_WNG_787L0QXW_Q
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: DFG
  grantid: FI573‐8/1; CH1098‐1/1
– fundername: Rudolf‐Virchow‐Centre of Experimental Medicine, Würzburg
– fundername: DFG
  funderid: FI573‐8/1; CH1098‐1/1
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
G-S
GROUPED_DOAJ
GX1
H13
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
AAJSJ
AAYCA
ACYXJ
AFWVQ
AAMMB
AASML
ABZEH
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NAO
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-i4940-3b1f71209a4a204adcf3b1d21dd80ab00e6baefac56cbc5881ba9577524d1c53
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:07:28 EDT 2025
Fri Jul 11 11:12:08 EDT 2025
Fri Jul 25 10:50:46 EDT 2025
Mon Jul 21 05:59:35 EDT 2025
Wed Jan 22 16:21:19 EST 2025
Fri Feb 21 02:37:33 EST 2025
Wed Oct 30 09:57:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords pICln
assembly
PRMT5
SMN
snRNP
Language English
License 2015 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4940-3b1f71209a4a204adcf3b1d21dd80ab00e6baefac56cbc5881ba9577524d1c53
Notes istex:F46B9022781CBB891C5731DC6C659D78CFEDCF9E
ArticleID:EMBJ201490350
ark:/67375/WNG-787L0QXW-Q
Supplementary Figure S1Supplementary Figure S2Supplementary Figure S3Supplementary Figure S4Supplementary Figure S5Supplementary Figure S6Source Data for Supplementary Figure S2Source Data for Supplementary Figure S4Source Data for Supplementary Figure S5Supplementary Methods, Supplementary Figure Legends, Supplementary Table S1Review Process FileSource Data for Figure 2Source Data for Figure 4Source Data for Figure 5
Rudolf-Virchow-Centre of Experimental Medicine, Würzburg
DFG - No. FI573-8/1; No. CH1098-1/1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present address: Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
Subject Categories RNA Biology
These authors contributed equally to this work
PMID 26069323
PQID 1696159606
PQPubID 35985
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547896
proquest_miscellaneous_1697218122
proquest_journals_1696159606
pubmed_primary_26069323
wiley_primary_10_15252_embj_201490350_EMBJ201490350
springer_journals_10_15252_embj_201490350
istex_primary_ark_67375_WNG_787L0QXW_Q
PublicationCentury 2000
PublicationDate 14 July 2015
PublicationDateYYYYMMDD 2015-07-14
PublicationDate_xml – month: 07
  year: 2015
  text: 14 July 2015
  day: 14
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Chichester, UK
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
John Wiley & Sons, Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley & Sons, Ltd
References Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178: 733-740
Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15: 108-121
Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G (1999) Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 147: 1181-1194
Carissimi C, Baccon J, Straccia M, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2005) Unrip is a component of SMN complexes active in snRNP assembly. FEBS Lett 579: 2348-2354
Sumpter V, Kahrs A, Fischer U, Kornstadt U, Lührmann R (1992) In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA. Mol Biol Rep 16: 229-240
Zemp I, Wild T, O'Donohue MF, Wandrey F, Widmann B, Gleizes PE, Kutay U (2009) Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J Cell Biol 185: 1167-1180
Fischer U, Englbrecht C, Chari A (2011) Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA 2: 718-731
Sarachan KL, Valentine KG, Gupta K, Moorman VR, Gledhill JM Jr, Bernens M, Tommos C, Wand AJ, Van Duyne GD (2012) Solution structure of the core SMN-Gemin2 complex. Biochem J 445: 361-370
Raker VA, Plessel G, Lührmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15: 2256-2269
Carissimi C, Saieva L, Gabanella F, Pellizzoni L (2006b) Gemin8 is required for the architecture and function of the survival motor neuron complex. J Biol Chem 281: 37009-37016
Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277: 3537-3543
Chari A, Golas MM, Klingenhäger M, Neuenkirchen N, Sander B, Englbrecht C, Sickmann A, Stark H, Fischer U (2008) An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135: 497-509
Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165
Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109: 17960-17965
Wan L, Battle DJ, Yong J, Gubitz AK, Kolb SJ, Wang J, Dreyfuss G (2005) The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol 25: 5543-5551
Gubitz AK, Mourelatos Z, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J Biol Chem 277: 5631-5636
Shpargel KB, Praveen K, Rajendra TK, Matera AG (2009) Gemin3 is an essential gene required for larval motor function and pupation in Drosophila. Mol Biol Cell 20: 90-101
Baccon J, Pellizzoni L, Rappsilber J, Mann M, Dreyfuss G (2002) Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex. J Biol Chem 277: 31957-31962
Friesen WJ, Dreyfuss G (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J Biol Chem 275: 26370-26375
Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10: 597-609
Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21: 8289-8300
Grimm C, Chari A, Pelz JP, Kuper J, Kisker C, Diederichs K, Stark H, Schindelin H, Fischer U (2013) Structural basis of assembly chaperone- mediated snRNP formation. Mol Cell 49: 692-703
Battle DJ, Kasim M, Wang J, Dreyfuss G (2007) SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate. J Biol Chem 282: 27953-27959
Yong J, Kasim M, Bachorik JL, Wan L, Dreyfuss G (2010) Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis. Mol Cell 38: 551-562
Myers LC, Leuther K, Bushnell DA, Gustafsson CM, Kornberg RD (1997) Yeast RNA polymerase II transcription reconstituted with purified proteins. Methods 12: 212-216
Kolb SJ, Kissel JT (2011) Spinal muscular atrophy: a timely review. Arch Neurol 68: 979-984
Rodnina MV, Wintermeyer W (1995) GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc Natl Acad Sci USA 92: 1945-1949
Cho S, Dreyfuss G (2010) A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 24: 438-442
Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14: 305-312
Brahms H, Meheus L, de Brabandere V, Fischer U, Lührmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7: 1531-1542
Fisher DE, Conner GE, Reeves WH, Wisniewolski R, Blobel G (1985) Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA-free core precursor and posttranslational modification. Cell 42: 751-758
Otter S, Grimmler M, Neuenkirchen N, Chari A, Sickmann A, Fischer U (2007) A comprehensive interaction map of the human survival of motor neuron (SMN) complex. J Biol Chem 282: 5825-5833
Meister G, Bühler D, Pillai R, Lottspeich F, Fischer U (2001a) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3: 945-949
Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22: 1583-1587
Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371: 2120-2133
Shpargel KB, Matera AG (2005) Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci USA 102: 17372-17377
Gonsalvez GB, Praveen K, Hicks AJ, Tian L, Matera AG (2008) Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster. RNA 14: 878-887
Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G (2000) Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 148: 1177-1186
Grimmler M, Otter S, Peter C, Muller F, Chari A, Fischer U (2005) Unrip, a factor implicated in cap-independent translation, associates with the cytosolic SMN complex and influences its intracellular localization. Hum Mol Genet 14: 3099-3111
Carissimi C, Saieva L, Baccon J, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2006a) Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J Biol Chem 281: 8126-8134
Palfi Z, Jae N, Preusser C, Kaminska KH, Bujnicki JM, Lee JH, Gunzl A, Kambach C, Urlaub H, Bindereif A (2009) SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. Genes Dev 23: 1650-1664
Pisarev AV, Unbehaun A, Hellen CU, Pestova TV (2007) Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol 430: 147-177
Bühler D, Raker V, Lührmann R, Fischer U (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet 8: 2351-2357
Wang J, Dreyfuss G (2001) Characterization of functional domains of the SMN protein in vivo. J Biol Chem 276: 45387-45393
Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15: 228-237
O'Reilly DR, Miller LK, Luckow VA (1993) Baculovirus Expression Vectors: A Laboratory Manual. Oxford: Oxford University Press
Praveen K, Wen Y, Gray KM, Noto JJ, Patlolla AR, Van Duyne GD, Matera AG (2014) SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila. PLoS Genet 10: e1004489
Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K (1999) Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96: 375-387
Pellizzoni L, Yong J, Dreyfuss G (2002b) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298: 1775-1779
Zhang R, So BR, Li P, Yong J, Glisovic T, Wan L, Dreyfuss G (2011) Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly. Cell 146: 384-395
Meister G, Eggert C, Bühler D, Brahms H, Kambach C, Fischer U (2001b) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11: 1990-1994
Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18: 1414-1420
Ellis RJ (2006) Molecular chaperones: assisting assembly in addition to folding. Trends Biochem Sci 31: 395-401
Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90: 1023-1029
Hamm J, Kazmaier M, Mattaj IW (1987) In vitro assembly of U1 snRNPs. EMBO J 6: 3479-3485
Kroiss M, Schultz J, Wiesner J, Chari A, Sickmann A, Fischer U (2008) E
Carissimi, Saieva, Baccon, Chiarella, Maiolica, Sawyer, Rappsilber, Pellizzoni (CR10) 2006; 281
Raker, Plessel, Lührmann (CR51) 1996; 15
Charroux, Pellizzoni, Perkinson, Yong, Shevchenko, Mann, Dreyfuss (CR15) 2000; 148
Otter, Grimmler, Neuenkirchen, Chari, Sickmann, Fischer (CR44) 2007; 282
Gubitz, Mourelatos, Abel, Rappsilber, Mann, Dreyfuss (CR29) 2002; 277
Pisarev, Unbehaun, Hellen, Pestova (CR49) 2007; 430
O'Reilly, Miller, Luckow (CR43) 1993
Kambach, Walke, Young, Avis, de la Fortelle, Raker, Lührmann, Li, Nagai (CR31) 1999; 96
Berger, Fitzgerald, Richmond (CR5) 2004; 22
Lefebvre, Bürglen, Reboullet, Clermont, Burlet, Viollet, Benichou, Cruaud, Millasseau, Zeviani, Le Paslier, Frézal, Cohen, Weissenbach, Munnich, Melki (CR34) 1995; 80
Sumpter, Kahrs, Fischer, Kornstadt, Lührmann (CR56) 1992; 16
Wan, Battle, Yong, Gubitz, Kolb, Wang, Dreyfuss (CR58) 2005; 25
Lunn, Wang (CR36) 2008; 371
Battle, Kasim, Wang, Dreyfuss (CR4) 2007; 282
Meister, Eggert, Bühler, Brahms, Kambach, Fischer (CR40) 2001; 11
Fisher, Conner, Reeves, Wisniewolski, Blobel (CR21) 1985; 42
Praveen, Wen, Gray, Noto, Patlolla, Van Duyne, Matera (CR50) 2014; 10
Sarachan, Valentine, Gupta, Moorman, Gledhill, Bernens, Tommos, Wand, Van Duyne (CR53) 2012; 445
Zhang, So, Li, Yong, Glisovic, Wan, Dreyfuss (CR63) 2011; 146
Bühler, Raker, Lührmann, Fischer (CR7) 1999; 8
Grimm, Chari, Pelz, Kuper, Kisker, Diederichs, Stark, Schindelin, Fischer (CR27) 2013; 49
Pellizzoni, Baccon, Rappsilber, Mann, Dreyfuss (CR47) 2002; 277
Matera, Wang (CR38) 2014; 15
Kolb, Kissel (CR32) 2011; 68
Yong, Kasim, Bachorik, Wan, Dreyfuss (CR61) 2010; 38
Liu, Young, Starling‐Windhof, Bracher, Saschenbrecker, Rao, Rao, Berninghausen, Mielke, Hartl, Beckmann, Hayer‐Hartl (CR35) 2010; 463
Wang, Dreyfuss (CR59) 2001; 276
Carissimi, Baccon, Straccia, Chiarella, Maiolica, Sawyer, Rappsilber, Pellizzoni (CR9) 2005; 579
Fischer, Liu, Dreyfuss (CR19) 1997; 90
Antonysamy, Bonday, Campbell, Doyle, Druzina, Gheyi, Han, Jungheim, Qian, Rauch, Russell, Sauder, Wasserman, Weichert, Willard, Zhang, Emtage (CR1) 2012; 109
Tripsianes, Madl, Machyna, Fessas, Englbrecht, Fischer, Neugebauer, Sattler (CR57) 2011; 18
Wirth (CR60) 2000; 15
Paushkin, Gubitz, Massenet, Dreyfuss (CR46) 2002; 14
Feng, Gubitz, Wan, Battle, Dostie, Golembe, Dreyfuss (CR18) 2005; 14
Battle, Lau, Wan, Deng, Lotti, Dreyfuss (CR3) 2006; 23
Burghes, Beattie (CR8) 2009; 10
Brahms, Meheus, de Brabandere, Fischer, Lührmann (CR6) 2001; 7
Hamm, Kazmaier, Mattaj (CR30) 1987; 6
Shpargel, Matera (CR54) 2005; 102
Grimmler, Otter, Peter, Muller, Chari, Fischer (CR28) 2005; 14
Carissimi, Saieva, Gabanella, Pellizzoni (CR11) 2006; 281
Chari, Fischer (CR13) 2010; 35
Gonsalvez, Praveen, Hicks, Tian, Matera (CR26) 2008; 14
Meister, Bühler, Pillai, Lottspeich, Fischer (CR39) 2001; 3
Chari, Golas, Klingenhäger, Neuenkirchen, Sander, Englbrecht, Sickmann, Stark, Fischer (CR12) 2008; 135
Baccon, Pellizzoni, Rappsilber, Mann, Dreyfuss (CR2) 2002; 277
Zemp, Wild, O'Donohue, Wandrey, Widmann, Gleizes, Kutay (CR62) 2009; 185
Friesen, Paushkin, Wyce, Massenet, Pesiridis, Van Duyne, Rappsilber, Mann, Dreyfuss (CR24) 2001; 21
Gonsalvez, Tian, Ospina, Boisvert, Lamond, Matera (CR25) 2007; 178
Cho, Dreyfuss (CR16) 2010; 24
Shpargel, Praveen, Rajendra, Matera (CR55) 2009; 20
Kroiss, Schultz, Wiesner, Chari, Sickmann, Fischer (CR33) 2008; 105
Myers, Leuther, Bushnell, Gustafsson, Kornberg (CR42) 1997; 12
Palfi, Jae, Preusser, Kaminska, Bujnicki, Lee, Gunzl, Kambach, Urlaub, Bindereif (CR45) 2009; 23
Fischer, Englbrecht, Chari (CR20) 2011; 2
Charroux, Pellizzoni, Perkinson, Shevchenko, Mann, Dreyfuss (CR14) 1999; 147
Friesen, Dreyfuss (CR23) 2000; 275
Ellis (CR17) 2006; 31
Rodnina, Wintermeyer (CR52) 1995; 92
Meister, Eggert, Fischer (CR41) 2002; 12
Frankel, Yadav, Lee, Branscombe, Clarke, Bedford (CR22) 2002; 277
Martin, Gupta, Ninan, Perry, Van Duyne (CR37) 2012; 20
Pellizzoni, Yong, Dreyfuss (CR48) 2002; 298
2004; 22
2002; 14
2006a; 281
2006; 31
2002; 12
1987; 6
2002; 277
2005; 579
2010; 463
2008; 105
2006b; 281
1992; 16
2012; 445
2011; 18
2002a; 277
2005; 25
1997; 90
2001a; 3
2007; 178
2009; 10
2010; 24
2006; 23
2000; 15
2005; 102
1997; 12
2014; 15
2011; 68
1999; 96
2012; 20
2014; 10
2009; 23
2010; 38
1995; 92
2011; 2
2010; 35
2013; 49
2009; 20
2007; 282
2008; 14
1999; 147
2000; 275
1993
1999; 8
1985; 42
1996; 15
2012; 109
2001; 21
2001; 276
2011; 146
1995; 80
2001; 7
2000; 148
2002b; 298
2007; 430
2001b; 11
2009; 185
2008; 135
2008; 371
2005; 14
7813012 - Cell. 1995 Jan 13;80(1):155-65
20727772 - Trends Biochem Sci. 2010 Dec;35(12):676-83
10725331 - J Cell Biol. 2000 Mar 20;148(6):1177-86
11714716 - J Biol Chem. 2002 Feb 15;277(7):5631-6
21823231 - Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):718-31
11747828 - Curr Biol. 2001 Dec 11;11(24):1990-4
16159890 - Hum Mol Genet. 2005 Oct 15;14(20):3099-111
17913638 - Methods Enzymol. 2007;430:147-77
15568020 - Nat Biotechnol. 2004 Dec;22(12):1583-7
16301532 - Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17372-7
8641291 - EMBO J. 1996 May 1;15(9):2256-69
18984161 - Cell. 2008 Oct 31;135(3):497-509
23022347 - Structure. 2012 Nov 7;20(11):1929-39
20513430 - Mol Cell. 2010 May 28;38(4):551-62
12441251 - Trends Cell Biol. 2002 Oct;12(10):472-8
10851237 - J Biol Chem. 2000 Aug 25;275(34):26370-5
15964810 - Mol Cell Biol. 2005 Jul;25(13):5543-51
9323130 - Cell. 1997 Sep 19;90(6):1023-9
2932224 - Cell. 1985 Oct;42(3):751-8
11724789 - J Biol Chem. 2002 Feb 1;277(5):3537-43
23071334 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17960-5
23333303 - Mol Cell. 2013 Feb 21;49(4):692-703
11715014 - Nat Cell Biol. 2001 Nov;3(11):945-9
18572081 - Lancet. 2008 Jun 21;371(9630):2120-33
1454055 - Mol Biol Rep. 1992 Sep;16(4):229-40
25144193 - PLoS Genet. 2014 Aug;10(8):e1004489
10601333 - J Cell Biol. 1999 Dec 13;147(6):1181-94
10556282 - Hum Mol Genet. 1999 Dec;8(13):2351-7
11720283 - RNA. 2001 Nov;7(11):1531-42
17023415 - J Biol Chem. 2006 Dec 1;281(48):37009-16
20194437 - Genes Dev. 2010 Mar 1;24(5):438-42
17709427 - J Cell Biol. 2007 Aug 27;178(5):733-40
22607171 - Biochem J. 2012 Aug 1;445(3):361-70
10679938 - Hum Mutat. 2000;15(3):228-37
12065586 - J Biol Chem. 2002 Aug 30;277(35):31957-62
18621711 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10045-50
19564402 - J Cell Biol. 2009 Jun 29;185(7):1167-80
21482919 - Arch Neurol. 2011 Aug;68(8):979-84
10025403 - Cell. 1999 Feb 5;96(3):375-87
15848170 - FEBS Lett. 2005 Apr 25;579(11):2348-54
11713266 - Mol Cell Biol. 2001 Dec;21(24):8289-300
24452469 - Nat Rev Mol Cell Biol. 2014 Feb;15(2):108-21
9237165 - Methods. 1997 Jul;12(3):212-6
11572858 - J Biol Chem. 2001 Nov 30;276(48):45387-93
16857593 - Mol Cell. 2006 Jul 21;23(2):273-9
21816274 - Cell. 2011 Aug 5;146(3):384-95
22101937 - Nat Struct Mol Biol. 2011 Dec;18(12):1414-20
12459587 - Science. 2002 Nov 29;298(5599):1775-9
18369183 - RNA. 2008 May;14(5):878-87
19605687 - Genes Dev. 2009 Jul 15;23(14):1650-64
18923150 - Mol Biol Cell. 2009 Jan;20(1):90-101
11748230 - J Biol Chem. 2002 Mar 1;277(9):7540-5
16716593 - Trends Biochem Sci. 2006 Jul;31(7):395-401
19584893 - Nat Rev Neurosci. 2009 Aug;10(8):597-609
20075914 - Nature. 2010 Jan 14;463(7278):197-202
12067652 - Curr Opin Cell Biol. 2002 Jun;14(3):305-12
15843395 - Hum Mol Genet. 2005 Jun 15;14(12):1605-11
2962858 - EMBO J. 1987 Nov;6(11):3479-85
16434402 - J Biol Chem. 2006 Mar 24;281(12):8126-34
7892205 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1945-9
17640873 - J Biol Chem. 2007 Sep 21;282(38):27953-9
17178713 - J Biol Chem. 2007 Feb 23;282(8):5825-33
References_xml – reference: Wan L, Battle DJ, Yong J, Gubitz AK, Kolb SJ, Wang J, Dreyfuss G (2005) The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol 25: 5543-5551
– reference: Carissimi C, Saieva L, Baccon J, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2006a) Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J Biol Chem 281: 8126-8134
– reference: Gonsalvez GB, Praveen K, Hicks AJ, Tian L, Matera AG (2008) Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster. RNA 14: 878-887
– reference: Carissimi C, Saieva L, Gabanella F, Pellizzoni L (2006b) Gemin8 is required for the architecture and function of the survival motor neuron complex. J Biol Chem 281: 37009-37016
– reference: Martin R, Gupta K, Ninan NS, Perry K, Van Duyne GD (2012) The survival motor neuron protein forms soluble glycine zipper oligomers. Structure 20: 1929-1939
– reference: Feng W, Gubitz AK, Wan L, Battle DJ, Dostie J, Golembe TJ, Dreyfuss G (2005) Gemins modulate the expression and activity of the SMN complex. Hum Mol Genet 14: 1605-1611
– reference: Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K (1999) Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96: 375-387
– reference: Praveen K, Wen Y, Gray KM, Noto JJ, Patlolla AR, Van Duyne GD, Matera AG (2014) SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila. PLoS Genet 10: e1004489
– reference: Battle DJ, Kasim M, Wang J, Dreyfuss G (2007) SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate. J Biol Chem 282: 27953-27959
– reference: Carissimi C, Baccon J, Straccia M, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2005) Unrip is a component of SMN complexes active in snRNP assembly. FEBS Lett 579: 2348-2354
– reference: Zhang R, So BR, Li P, Yong J, Glisovic T, Wan L, Dreyfuss G (2011) Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly. Cell 146: 384-395
– reference: Kroiss M, Schultz J, Wiesner J, Chari A, Sickmann A, Fischer U (2008) Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster. Proc Natl Acad Sci USA 105: 10045-10050
– reference: Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10: 597-609
– reference: Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15: 108-121
– reference: Zemp I, Wild T, O'Donohue MF, Wandrey F, Widmann B, Gleizes PE, Kutay U (2009) Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J Cell Biol 185: 1167-1180
– reference: Shpargel KB, Praveen K, Rajendra TK, Matera AG (2009) Gemin3 is an essential gene required for larval motor function and pupation in Drosophila. Mol Biol Cell 20: 90-101
– reference: Fisher DE, Conner GE, Reeves WH, Wisniewolski R, Blobel G (1985) Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA-free core precursor and posttranslational modification. Cell 42: 751-758
– reference: Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165
– reference: Grimmler M, Otter S, Peter C, Muller F, Chari A, Fischer U (2005) Unrip, a factor implicated in cap-independent translation, associates with the cytosolic SMN complex and influences its intracellular localization. Hum Mol Genet 14: 3099-3111
– reference: Hamm J, Kazmaier M, Mattaj IW (1987) In vitro assembly of U1 snRNPs. EMBO J 6: 3479-3485
– reference: Meister G, Eggert C, Bühler D, Brahms H, Kambach C, Fischer U (2001b) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11: 1990-1994
– reference: Shpargel KB, Matera AG (2005) Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci USA 102: 17372-17377
– reference: Meister G, Bühler D, Pillai R, Lottspeich F, Fischer U (2001a) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3: 945-949
– reference: Otter S, Grimmler M, Neuenkirchen N, Chari A, Sickmann A, Fischer U (2007) A comprehensive interaction map of the human survival of motor neuron (SMN) complex. J Biol Chem 282: 5825-5833
– reference: Fischer U, Englbrecht C, Chari A (2011) Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA 2: 718-731
– reference: Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463: 197-202
– reference: Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178: 733-740
– reference: Battle DJ, Lau CK, Wan L, Deng H, Lotti F, Dreyfuss G (2006) The Gemin5 protein of the SMN complex identifies snRNAs. Mol Cell 23: 273-279
– reference: Pellizzoni L, Yong J, Dreyfuss G (2002b) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298: 1775-1779
– reference: O'Reilly DR, Miller LK, Luckow VA (1993) Baculovirus Expression Vectors: A Laboratory Manual. Oxford: Oxford University Press
– reference: Cho S, Dreyfuss G (2010) A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 24: 438-442
– reference: Wang J, Dreyfuss G (2001) Characterization of functional domains of the SMN protein in vivo. J Biol Chem 276: 45387-45393
– reference: Pisarev AV, Unbehaun A, Hellen CU, Pestova TV (2007) Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol 430: 147-177
– reference: Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G (1999) Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 147: 1181-1194
– reference: Friesen WJ, Dreyfuss G (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J Biol Chem 275: 26370-26375
– reference: Palfi Z, Jae N, Preusser C, Kaminska KH, Bujnicki JM, Lee JH, Gunzl A, Kambach C, Urlaub H, Bindereif A (2009) SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. Genes Dev 23: 1650-1664
– reference: Sumpter V, Kahrs A, Fischer U, Kornstadt U, Lührmann R (1992) In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA. Mol Biol Rep 16: 229-240
– reference: Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14: 305-312
– reference: Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22: 1583-1587
– reference: Myers LC, Leuther K, Bushnell DA, Gustafsson CM, Kornberg RD (1997) Yeast RNA polymerase II transcription reconstituted with purified proteins. Methods 12: 212-216
– reference: Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12: 472-478
– reference: Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90: 1023-1029
– reference: Gubitz AK, Mourelatos Z, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J Biol Chem 277: 5631-5636
– reference: Chari A, Golas MM, Klingenhäger M, Neuenkirchen N, Sander B, Englbrecht C, Sickmann A, Stark H, Fischer U (2008) An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135: 497-509
– reference: Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15: 228-237
– reference: Baccon J, Pellizzoni L, Rappsilber J, Mann M, Dreyfuss G (2002) Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex. J Biol Chem 277: 31957-31962
– reference: Yong J, Kasim M, Bachorik JL, Wan L, Dreyfuss G (2010) Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis. Mol Cell 38: 551-562
– reference: Raker VA, Plessel G, Lührmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15: 2256-2269
– reference: Bühler D, Raker V, Lührmann R, Fischer U (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet 8: 2351-2357
– reference: Kolb SJ, Kissel JT (2011) Spinal muscular atrophy: a timely review. Arch Neurol 68: 979-984
– reference: Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21: 8289-8300
– reference: Pellizzoni L, Baccon J, Rappsilber J, Mann M, Dreyfuss G (2002a) Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component. J Biol Chem 277: 7540-7545
– reference: Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371: 2120-2133
– reference: Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277: 3537-3543
– reference: Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109: 17960-17965
– reference: Ellis RJ (2006) Molecular chaperones: assisting assembly in addition to folding. Trends Biochem Sci 31: 395-401
– reference: Rodnina MV, Wintermeyer W (1995) GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc Natl Acad Sci USA 92: 1945-1949
– reference: Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18: 1414-1420
– reference: Chari A, Fischer U (2010) Cellular strategies for the assembly of molecular machines. Trends Biochem Sci 35: 676-683
– reference: Sarachan KL, Valentine KG, Gupta K, Moorman VR, Gledhill JM Jr, Bernens M, Tommos C, Wand AJ, Van Duyne GD (2012) Solution structure of the core SMN-Gemin2 complex. Biochem J 445: 361-370
– reference: Brahms H, Meheus L, de Brabandere V, Fischer U, Lührmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7: 1531-1542
– reference: Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G (2000) Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 148: 1177-1186
– reference: Grimm C, Chari A, Pelz JP, Kuper J, Kisker C, Diederichs K, Stark H, Schindelin H, Fischer U (2013) Structural basis of assembly chaperone- mediated snRNP formation. Mol Cell 49: 692-703
– volume: 20
  start-page: 1929
  year: 2012
  end-page: 1939
  ident: CR37
  article-title: The survival motor neuron protein forms soluble glycine zipper oligomers
  publication-title: Structure
– volume: 277
  start-page: 3537
  year: 2002
  end-page: 3543
  ident: CR22
  article-title: The novel human protein arginine N‐methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity
  publication-title: J Biol Chem
– volume: 14
  start-page: 305
  year: 2002
  end-page: 312
  ident: CR46
  article-title: The SMN complex, an assemblyosome of ribonucleoproteins
  publication-title: Curr Opin Cell Biol
– volume: 38
  start-page: 551
  year: 2010
  end-page: 562
  ident: CR61
  article-title: Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis
  publication-title: Mol Cell
– volume: 68
  start-page: 979
  year: 2011
  end-page: 984
  ident: CR32
  article-title: Spinal muscular atrophy: a timely review
  publication-title: Arch Neurol
– volume: 277
  start-page: 7540
  year: 2002
  end-page: 7545
  ident: CR47
  article-title: Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component
  publication-title: J Biol Chem
– volume: 281
  start-page: 37009
  year: 2006
  end-page: 37016
  ident: CR11
  article-title: Gemin8 is required for the architecture and function of the survival motor neuron complex
  publication-title: J Biol Chem
– volume: 109
  start-page: 17960
  year: 2012
  end-page: 17965
  ident: CR1
  article-title: Crystal structure of the human PRMT5:MEP50 complex
  publication-title: Proc Natl Acad Sci USA
– volume: 277
  start-page: 31957
  year: 2002
  end-page: 31962
  ident: CR2
  article-title: Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex
  publication-title: J Biol Chem
– volume: 7
  start-page: 1531
  year: 2001
  end-page: 1542
  ident: CR6
  article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm‐like protein LSm4, and their interaction with the SMN protein
  publication-title: RNA
– volume: 25
  start-page: 5543
  year: 2005
  end-page: 5551
  ident: CR58
  article-title: The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy
  publication-title: Mol Cell Biol
– volume: 14
  start-page: 878
  year: 2008
  end-page: 887
  ident: CR26
  article-title: Sm protein methylation is dispensable for snRNP assembly in
  publication-title: RNA
– volume: 430
  start-page: 147
  year: 2007
  end-page: 177
  ident: CR49
  article-title: Assembly and analysis of eukaryotic translation initiation complexes
  publication-title: Methods Enzymol
– volume: 178
  start-page: 733
  year: 2007
  end-page: 740
  ident: CR25
  article-title: Two distinct arginine methyltransferases are required for biogenesis of Sm‐class ribonucleoproteins
  publication-title: J Cell Biol
– volume: 15
  start-page: 108
  year: 2014
  end-page: 121
  ident: CR38
  article-title: A day in the life of the spliceosome
  publication-title: Nat Rev Mol Cell Biol
– volume: 92
  start-page: 1945
  year: 1995
  end-page: 1949
  ident: CR52
  article-title: GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 212
  year: 1997
  end-page: 216
  ident: CR42
  article-title: Yeast RNA polymerase II transcription reconstituted with purified proteins
  publication-title: Methods
– volume: 3
  start-page: 945
  year: 2001
  end-page: 949
  ident: CR39
  article-title: A multiprotein complex mediates the ATP‐dependent assembly of spliceosomal U snRNPs
  publication-title: Nat Cell Biol
– volume: 147
  start-page: 1181
  year: 1999
  end-page: 1194
  ident: CR14
  article-title: Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems
  publication-title: J Cell Biol
– volume: 23
  start-page: 1650
  year: 2009
  end-page: 1664
  ident: CR45
  article-title: SMN‐assisted assembly of snRNP‐specific Sm cores in trypanosomes
  publication-title: Genes Dev
– volume: 10
  start-page: e1004489
  year: 2014
  ident: CR50
  article-title: SMA‐causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila
  publication-title: PLoS Genet
– volume: 23
  start-page: 273
  year: 2006
  end-page: 279
  ident: CR3
  article-title: The Gemin5 protein of the SMN complex identifies snRNAs
  publication-title: Mol Cell
– year: 1993
  ident: CR43
  publication-title: Baculovirus Expression Vectors: A Laboratory Manual
– volume: 445
  start-page: 361
  year: 2012
  end-page: 370
  ident: CR53
  article-title: Solution structure of the core SMN‐Gemin2 complex
  publication-title: Biochem J
– volume: 15
  start-page: 228
  year: 2000
  end-page: 237
  ident: CR60
  article-title: An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA)
  publication-title: Hum Mutat
– volume: 12
  start-page: 472
  year: 2002
  end-page: 478
  ident: CR41
  article-title: SMN‐mediated assembly of RNPs: a complex story
  publication-title: Trends Cell Biol
– volume: 42
  start-page: 751
  year: 1985
  end-page: 758
  ident: CR21
  article-title: Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA‐free core precursor and posttranslational modification
  publication-title: Cell
– volume: 579
  start-page: 2348
  year: 2005
  end-page: 2354
  ident: CR9
  article-title: Unrip is a component of SMN complexes active in snRNP assembly
  publication-title: FEBS Lett
– volume: 16
  start-page: 229
  year: 1992
  end-page: 240
  ident: CR56
  article-title: In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA
  publication-title: Mol Biol Rep
– volume: 8
  start-page: 2351
  year: 1999
  end-page: 2357
  ident: CR7
  article-title: Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy
  publication-title: Hum Mol Genet
– volume: 148
  start-page: 1177
  year: 2000
  end-page: 1186
  ident: CR15
  article-title: Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli
  publication-title: J Cell Biol
– volume: 2
  start-page: 718
  year: 2011
  end-page: 731
  ident: CR20
  article-title: Biogenesis of spliceosomal small nuclear ribonucleoproteins
  publication-title: Wiley Interdiscip Rev RNA
– volume: 277
  start-page: 5631
  year: 2002
  end-page: 5636
  ident: CR29
  article-title: Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins
  publication-title: J Biol Chem
– volume: 135
  start-page: 497
  year: 2008
  end-page: 509
  ident: CR12
  article-title: An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs
  publication-title: Cell
– volume: 21
  start-page: 8289
  year: 2001
  end-page: 8300
  ident: CR24
  article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine‐modified Sm proteins
  publication-title: Mol Cell Biol
– volume: 80
  start-page: 155
  year: 1995
  end-page: 165
  ident: CR34
  article-title: Identification and characterization of a spinal muscular atrophy‐determining gene
  publication-title: Cell
– volume: 31
  start-page: 395
  year: 2006
  end-page: 401
  ident: CR17
  article-title: Molecular chaperones: assisting assembly in addition to folding
  publication-title: Trends Biochem Sci
– volume: 6
  start-page: 3479
  year: 1987
  end-page: 3485
  ident: CR30
  article-title: In vitro assembly of U1 snRNPs
  publication-title: EMBO J
– volume: 10
  start-page: 597
  year: 2009
  end-page: 609
  ident: CR8
  article-title: Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?
  publication-title: Nat Rev Neurosci
– volume: 281
  start-page: 8126
  year: 2006
  end-page: 8134
  ident: CR10
  article-title: Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly
  publication-title: J Biol Chem
– volume: 14
  start-page: 1605
  year: 2005
  end-page: 1611
  ident: CR18
  article-title: Gemins modulate the expression and activity of the SMN complex
  publication-title: Hum Mol Genet
– volume: 20
  start-page: 90
  year: 2009
  end-page: 101
  ident: CR55
  article-title: Gemin3 is an essential gene required for larval motor function and pupation in
  publication-title: Mol Biol Cell
– volume: 11
  start-page: 1990
  year: 2001
  end-page: 1994
  ident: CR40
  article-title: Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln
  publication-title: Curr Biol
– volume: 18
  start-page: 1414
  year: 2011
  end-page: 1420
  ident: CR57
  article-title: Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins
  publication-title: Nat Struct Mol Biol
– volume: 14
  start-page: 3099
  year: 2005
  end-page: 3111
  ident: CR28
  article-title: Unrip, a factor implicated in cap‐independent translation, associates with the cytosolic SMN complex and influences its intracellular localization
  publication-title: Hum Mol Genet
– volume: 15
  start-page: 2256
  year: 1996
  end-page: 2269
  ident: CR51
  article-title: The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro
  publication-title: EMBO J
– volume: 49
  start-page: 692
  year: 2013
  end-page: 703
  ident: CR27
  article-title: Structural basis of assembly chaperone‐ mediated snRNP formation
  publication-title: Mol Cell
– volume: 185
  start-page: 1167
  year: 2009
  end-page: 1180
  ident: CR62
  article-title: Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2
  publication-title: J Cell Biol
– volume: 282
  start-page: 5825
  year: 2007
  end-page: 5833
  ident: CR44
  article-title: A comprehensive interaction map of the human survival of motor neuron (SMN) complex
  publication-title: J Biol Chem
– volume: 22
  start-page: 1583
  year: 2004
  end-page: 1587
  ident: CR5
  article-title: Baculovirus expression system for heterologous multiprotein complexes
  publication-title: Nat Biotechnol
– volume: 298
  start-page: 1775
  year: 2002
  end-page: 1779
  ident: CR48
  article-title: Essential role for the SMN complex in the specificity of snRNP assembly
  publication-title: Science
– volume: 24
  start-page: 438
  year: 2010
  end-page: 442
  ident: CR16
  article-title: A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity
  publication-title: Genes Dev
– volume: 105
  start-page: 10045
  year: 2008
  end-page: 10050
  ident: CR33
  article-title: Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 17372
  year: 2005
  end-page: 17377
  ident: CR54
  article-title: Gemin proteins are required for efficient assembly of Sm‐class ribonucleoproteins
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: 676
  year: 2010
  end-page: 683
  ident: CR13
  article-title: Cellular strategies for the assembly of molecular machines
  publication-title: Trends Biochem Sci
– volume: 371
  start-page: 2120
  year: 2008
  end-page: 2133
  ident: CR36
  article-title: Spinal muscular atrophy
  publication-title: Lancet
– volume: 463
  start-page: 197
  year: 2010
  end-page: 202
  ident: CR35
  article-title: Coupled chaperone action in folding and assembly of hexadecameric Rubisco
  publication-title: Nature
– volume: 276
  start-page: 45387
  year: 2001
  end-page: 45393
  ident: CR59
  article-title: Characterization of functional domains of the SMN protein in vivo
  publication-title: J Biol Chem
– volume: 96
  start-page: 375
  year: 1999
  end-page: 387
  ident: CR31
  article-title: Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs
  publication-title: Cell
– volume: 146
  start-page: 384
  year: 2011
  end-page: 395
  ident: CR63
  article-title: Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly
  publication-title: Cell
– volume: 90
  start-page: 1023
  year: 1997
  end-page: 1029
  ident: CR19
  article-title: The SMN‐SIP1 complex has an essential role in spliceosomal snRNP biogenesis
  publication-title: Cell
– volume: 275
  start-page: 26370
  year: 2000
  end-page: 26375
  ident: CR23
  article-title: Specific sequences of the Sm and Sm‐like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN)
  publication-title: J Biol Chem
– volume: 282
  start-page: 27953
  year: 2007
  end-page: 27959
  ident: CR4
  article-title: SMN‐independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate
  publication-title: J Biol Chem
– volume: 445
  start-page: 361
  year: 2012
  end-page: 370
  article-title: Solution structure of the core SMN‐Gemin2 complex
  publication-title: Biochem J
– volume: 20
  start-page: 90
  year: 2009
  end-page: 101
  article-title: Gemin3 is an essential gene required for larval motor function and pupation in
  publication-title: Mol Biol Cell
– volume: 3
  start-page: 945
  year: 2001a
  end-page: 949
  article-title: A multiprotein complex mediates the ATP‐dependent assembly of spliceosomal U snRNPs
  publication-title: Nat Cell Biol
– volume: 15
  start-page: 228
  year: 2000
  end-page: 237
  article-title: An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA)
  publication-title: Hum Mutat
– volume: 22
  start-page: 1583
  year: 2004
  end-page: 1587
  article-title: Baculovirus expression system for heterologous multiprotein complexes
  publication-title: Nat Biotechnol
– volume: 15
  start-page: 108
  year: 2014
  end-page: 121
  article-title: A day in the life of the spliceosome
  publication-title: Nat Rev Mol Cell Biol
– volume: 16
  start-page: 229
  year: 1992
  end-page: 240
  article-title: In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA
  publication-title: Mol Biol Rep
– volume: 25
  start-page: 5543
  year: 2005
  end-page: 5551
  article-title: The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy
  publication-title: Mol Cell Biol
– volume: 282
  start-page: 5825
  year: 2007
  end-page: 5833
  article-title: A comprehensive interaction map of the human survival of motor neuron (SMN) complex
  publication-title: J Biol Chem
– volume: 92
  start-page: 1945
  year: 1995
  end-page: 1949
  article-title: GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: 676
  year: 2010
  end-page: 683
  article-title: Cellular strategies for the assembly of molecular machines
  publication-title: Trends Biochem Sci
– volume: 42
  start-page: 751
  year: 1985
  end-page: 758
  article-title: Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA‐free core precursor and posttranslational modification
  publication-title: Cell
– volume: 10
  start-page: e1004489
  year: 2014
  article-title: SMA‐causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila
  publication-title: PLoS Genet
– volume: 185
  start-page: 1167
  year: 2009
  end-page: 1180
  article-title: Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2
  publication-title: J Cell Biol
– volume: 282
  start-page: 27953
  year: 2007
  end-page: 27959
  article-title: SMN‐independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate
  publication-title: J Biol Chem
– volume: 49
  start-page: 692
  year: 2013
  end-page: 703
  article-title: Structural basis of assembly chaperone‐ mediated snRNP formation
  publication-title: Mol Cell
– volume: 14
  start-page: 878
  year: 2008
  end-page: 887
  article-title: Sm protein methylation is dispensable for snRNP assembly in
  publication-title: RNA
– volume: 276
  start-page: 45387
  year: 2001
  end-page: 45393
  article-title: Characterization of functional domains of the SMN protein in vivo
  publication-title: J Biol Chem
– volume: 146
  start-page: 384
  year: 2011
  end-page: 395
  article-title: Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly
  publication-title: Cell
– volume: 90
  start-page: 1023
  year: 1997
  end-page: 1029
  article-title: The SMN‐SIP1 complex has an essential role in spliceosomal snRNP biogenesis
  publication-title: Cell
– volume: 277
  start-page: 5631
  year: 2002
  end-page: 5636
  article-title: Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins
  publication-title: J Biol Chem
– volume: 102
  start-page: 17372
  year: 2005
  end-page: 17377
  article-title: Gemin proteins are required for efficient assembly of Sm‐class ribonucleoproteins
  publication-title: Proc Natl Acad Sci USA
– volume: 68
  start-page: 979
  year: 2011
  end-page: 984
  article-title: Spinal muscular atrophy: a timely review
  publication-title: Arch Neurol
– volume: 371
  start-page: 2120
  year: 2008
  end-page: 2133
  article-title: Spinal muscular atrophy
  publication-title: Lancet
– volume: 281
  start-page: 37009
  year: 2006b
  end-page: 37016
  article-title: Gemin8 is required for the architecture and function of the survival motor neuron complex
  publication-title: J Biol Chem
– volume: 14
  start-page: 3099
  year: 2005
  end-page: 3111
  article-title: Unrip, a factor implicated in cap‐independent translation, associates with the cytosolic SMN complex and influences its intracellular localization
  publication-title: Hum Mol Genet
– volume: 38
  start-page: 551
  year: 2010
  end-page: 562
  article-title: Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis
  publication-title: Mol Cell
– volume: 12
  start-page: 212
  year: 1997
  end-page: 216
  article-title: Yeast RNA polymerase II transcription reconstituted with purified proteins
  publication-title: Methods
– volume: 277
  start-page: 31957
  year: 2002
  end-page: 31962
  article-title: Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex
  publication-title: J Biol Chem
– volume: 23
  start-page: 273
  year: 2006
  end-page: 279
  article-title: The Gemin5 protein of the SMN complex identifies snRNAs
  publication-title: Mol Cell
– volume: 24
  start-page: 438
  year: 2010
  end-page: 442
  article-title: A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity
  publication-title: Genes Dev
– volume: 7
  start-page: 1531
  year: 2001
  end-page: 1542
  article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm‐like protein LSm4, and their interaction with the SMN protein
  publication-title: RNA
– volume: 281
  start-page: 8126
  year: 2006a
  end-page: 8134
  article-title: Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly
  publication-title: J Biol Chem
– year: 1993
– volume: 21
  start-page: 8289
  year: 2001
  end-page: 8300
  article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine‐modified Sm proteins
  publication-title: Mol Cell Biol
– volume: 430
  start-page: 147
  year: 2007
  end-page: 177
  article-title: Assembly and analysis of eukaryotic translation initiation complexes
  publication-title: Methods Enzymol
– volume: 96
  start-page: 375
  year: 1999
  end-page: 387
  article-title: Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs
  publication-title: Cell
– volume: 12
  start-page: 472
  year: 2002
  end-page: 478
  article-title: SMN‐mediated assembly of RNPs: a complex story
  publication-title: Trends Cell Biol
– volume: 148
  start-page: 1177
  year: 2000
  end-page: 1186
  article-title: Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli
  publication-title: J Cell Biol
– volume: 23
  start-page: 1650
  year: 2009
  end-page: 1664
  article-title: SMN‐assisted assembly of snRNP‐specific Sm cores in trypanosomes
  publication-title: Genes Dev
– volume: 579
  start-page: 2348
  year: 2005
  end-page: 2354
  article-title: Unrip is a component of SMN complexes active in snRNP assembly
  publication-title: FEBS Lett
– volume: 105
  start-page: 10045
  year: 2008
  end-page: 10050
  article-title: Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in
  publication-title: Proc Natl Acad Sci USA
– volume: 80
  start-page: 155
  year: 1995
  end-page: 165
  article-title: Identification and characterization of a spinal muscular atrophy‐determining gene
  publication-title: Cell
– volume: 277
  start-page: 7540
  year: 2002a
  end-page: 7545
  article-title: Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component
  publication-title: J Biol Chem
– volume: 14
  start-page: 305
  year: 2002
  end-page: 312
  article-title: The SMN complex, an assemblyosome of ribonucleoproteins
  publication-title: Curr Opin Cell Biol
– volume: 18
  start-page: 1414
  year: 2011
  end-page: 1420
  article-title: Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins
  publication-title: Nat Struct Mol Biol
– volume: 2
  start-page: 718
  year: 2011
  end-page: 731
  article-title: Biogenesis of spliceosomal small nuclear ribonucleoproteins
  publication-title: Wiley Interdiscip Rev RNA
– volume: 178
  start-page: 733
  year: 2007
  end-page: 740
  article-title: Two distinct arginine methyltransferases are required for biogenesis of Sm‐class ribonucleoproteins
  publication-title: J Cell Biol
– volume: 20
  start-page: 1929
  year: 2012
  end-page: 1939
  article-title: The survival motor neuron protein forms soluble glycine zipper oligomers
  publication-title: Structure
– volume: 298
  start-page: 1775
  year: 2002b
  end-page: 1779
  article-title: Essential role for the SMN complex in the specificity of snRNP assembly
  publication-title: Science
– volume: 135
  start-page: 497
  year: 2008
  end-page: 509
  article-title: An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs
  publication-title: Cell
– volume: 147
  start-page: 1181
  year: 1999
  end-page: 1194
  article-title: Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems
  publication-title: J Cell Biol
– volume: 10
  start-page: 597
  year: 2009
  end-page: 609
  article-title: Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick?
  publication-title: Nat Rev Neurosci
– volume: 14
  start-page: 1605
  year: 2005
  end-page: 1611
  article-title: Gemins modulate the expression and activity of the SMN complex
  publication-title: Hum Mol Genet
– volume: 11
  start-page: 1990
  year: 2001b
  end-page: 1994
  article-title: Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln
  publication-title: Curr Biol
– volume: 463
  start-page: 197
  year: 2010
  end-page: 202
  article-title: Coupled chaperone action in folding and assembly of hexadecameric Rubisco
  publication-title: Nature
– volume: 31
  start-page: 395
  year: 2006
  end-page: 401
  article-title: Molecular chaperones: assisting assembly in addition to folding
  publication-title: Trends Biochem Sci
– volume: 275
  start-page: 26370
  year: 2000
  end-page: 26375
  article-title: Specific sequences of the Sm and Sm‐like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN)
  publication-title: J Biol Chem
– volume: 109
  start-page: 17960
  year: 2012
  end-page: 17965
  article-title: Crystal structure of the human PRMT5:MEP50 complex
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 2351
  year: 1999
  end-page: 2357
  article-title: Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy
  publication-title: Hum Mol Genet
– volume: 277
  start-page: 3537
  year: 2002
  end-page: 3543
  article-title: The novel human protein arginine N‐methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity
  publication-title: J Biol Chem
– volume: 15
  start-page: 2256
  year: 1996
  end-page: 2269
  article-title: The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro
  publication-title: EMBO J
– volume: 6
  start-page: 3479
  year: 1987
  end-page: 3485
  article-title: In vitro assembly of U1 snRNPs
  publication-title: EMBO J
– reference: 9237165 - Methods. 1997 Jul;12(3):212-6
– reference: 16301532 - Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17372-7
– reference: 19605687 - Genes Dev. 2009 Jul 15;23(14):1650-64
– reference: 16434402 - J Biol Chem. 2006 Mar 24;281(12):8126-34
– reference: 17709427 - J Cell Biol. 2007 Aug 27;178(5):733-40
– reference: 20194437 - Genes Dev. 2010 Mar 1;24(5):438-42
– reference: 11713266 - Mol Cell Biol. 2001 Dec;21(24):8289-300
– reference: 17640873 - J Biol Chem. 2007 Sep 21;282(38):27953-9
– reference: 18984161 - Cell. 2008 Oct 31;135(3):497-509
– reference: 22101937 - Nat Struct Mol Biol. 2011 Dec;18(12):1414-20
– reference: 9323130 - Cell. 1997 Sep 19;90(6):1023-9
– reference: 15964810 - Mol Cell Biol. 2005 Jul;25(13):5543-51
– reference: 17178713 - J Biol Chem. 2007 Feb 23;282(8):5825-33
– reference: 23071334 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17960-5
– reference: 10851237 - J Biol Chem. 2000 Aug 25;275(34):26370-5
– reference: 17023415 - J Biol Chem. 2006 Dec 1;281(48):37009-16
– reference: 10679938 - Hum Mutat. 2000;15(3):228-37
– reference: 18572081 - Lancet. 2008 Jun 21;371(9630):2120-33
– reference: 7813012 - Cell. 1995 Jan 13;80(1):155-65
– reference: 10601333 - J Cell Biol. 1999 Dec 13;147(6):1181-94
– reference: 16716593 - Trends Biochem Sci. 2006 Jul;31(7):395-401
– reference: 7892205 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1945-9
– reference: 12067652 - Curr Opin Cell Biol. 2002 Jun;14(3):305-12
– reference: 21816274 - Cell. 2011 Aug 5;146(3):384-95
– reference: 18923150 - Mol Biol Cell. 2009 Jan;20(1):90-101
– reference: 20075914 - Nature. 2010 Jan 14;463(7278):197-202
– reference: 21823231 - Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):718-31
– reference: 10556282 - Hum Mol Genet. 1999 Dec;8(13):2351-7
– reference: 16857593 - Mol Cell. 2006 Jul 21;23(2):273-9
– reference: 10725331 - J Cell Biol. 2000 Mar 20;148(6):1177-86
– reference: 18369183 - RNA. 2008 May;14(5):878-87
– reference: 21482919 - Arch Neurol. 2011 Aug;68(8):979-84
– reference: 2932224 - Cell. 1985 Oct;42(3):751-8
– reference: 10025403 - Cell. 1999 Feb 5;96(3):375-87
– reference: 20513430 - Mol Cell. 2010 May 28;38(4):551-62
– reference: 11715014 - Nat Cell Biol. 2001 Nov;3(11):945-9
– reference: 1454055 - Mol Biol Rep. 1992 Sep;16(4):229-40
– reference: 12065586 - J Biol Chem. 2002 Aug 30;277(35):31957-62
– reference: 23333303 - Mol Cell. 2013 Feb 21;49(4):692-703
– reference: 22607171 - Biochem J. 2012 Aug 1;445(3):361-70
– reference: 2962858 - EMBO J. 1987 Nov;6(11):3479-85
– reference: 11572858 - J Biol Chem. 2001 Nov 30;276(48):45387-93
– reference: 12441251 - Trends Cell Biol. 2002 Oct;12(10):472-8
– reference: 17913638 - Methods Enzymol. 2007;430:147-77
– reference: 11720283 - RNA. 2001 Nov;7(11):1531-42
– reference: 8641291 - EMBO J. 1996 May 1;15(9):2256-69
– reference: 19564402 - J Cell Biol. 2009 Jun 29;185(7):1167-80
– reference: 11714716 - J Biol Chem. 2002 Feb 15;277(7):5631-6
– reference: 19584893 - Nat Rev Neurosci. 2009 Aug;10(8):597-609
– reference: 11747828 - Curr Biol. 2001 Dec 11;11(24):1990-4
– reference: 16159890 - Hum Mol Genet. 2005 Oct 15;14(20):3099-111
– reference: 24452469 - Nat Rev Mol Cell Biol. 2014 Feb;15(2):108-21
– reference: 15843395 - Hum Mol Genet. 2005 Jun 15;14(12):1605-11
– reference: 11748230 - J Biol Chem. 2002 Mar 1;277(9):7540-5
– reference: 11724789 - J Biol Chem. 2002 Feb 1;277(5):3537-43
– reference: 20727772 - Trends Biochem Sci. 2010 Dec;35(12):676-83
– reference: 23022347 - Structure. 2012 Nov 7;20(11):1929-39
– reference: 15848170 - FEBS Lett. 2005 Apr 25;579(11):2348-54
– reference: 15568020 - Nat Biotechnol. 2004 Dec;22(12):1583-7
– reference: 12459587 - Science. 2002 Nov 29;298(5599):1775-9
– reference: 18621711 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10045-50
– reference: 25144193 - PLoS Genet. 2014 Aug;10(8):e1004489
SSID ssj0005871
Score 2.3773158
Snippet The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans ‐acting factors enable the faithful...
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans‐acting factors enable the faithful...
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful...
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans -acting factors enable the faithful...
SourceID pubmedcentral
proquest
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1925
SubjectTerms Animals
assembly
DEAD Box Protein 20 - genetics
DEAD Box Protein 20 - metabolism
EMBO36
Humans
Minor Histocompatibility Antigens
Mode of action
Molecular biology
Muscular Atrophy, Spinal - genetics
Mutation
pICln
PRMT5
Protein-Arginine N-Methyltransferases - genetics
Protein-Arginine N-Methyltransferases - metabolism
Proteins
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Ribonucleoproteins, Small Nuclear - genetics
Ribonucleoproteins, Small Nuclear - metabolism
RNA, Small Nuclear - metabolism
SMN
SMN Complex Proteins - genetics
SMN Complex Proteins - metabolism
snRNP
Thermal energy
Title Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization
URI https://api.istex.fr/ark:/67375/WNG-787L0QXW-Q/fulltext.pdf
https://link.springer.com/article/10.15252/embj.201490350
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201490350
https://www.ncbi.nlm.nih.gov/pubmed/26069323
https://www.proquest.com/docview/1696159606
https://www.proquest.com/docview/1697218122
https://pubmed.ncbi.nlm.nih.gov/PMC4547896
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NpgleEGNjhAHypGnSHqrViZ3Ej6PiQ2hUYwPRN8uOHa1AU9SCWP_73blpaAU87C2JrfPpfHZ-Z98HwGfppBVUI4ynVrZEoWhJFXkrz4syM2nCTQgSO-2mxxfipCd7dZIkioWZv7-XsYy_-YG9Ig8soegObAleS55kVKOhk3YefTnyYFmFwxTBc1Xn8HmGAGJQEt_f5wDlU7_I5nJ0EbqGf8_hOqzVoJF9n87yW3jlqw14My0jOdmAlc6sats70GRP1g4AKHI2LBlCPBZK8bELNq5-dX8yBMzI782EDYIrpR9NGGVyQk1kyPXtQ3_s2e8BCzkc-khjLl7zPZwfHpx3jlt1EYVWXyiBe6zlZUYBskaYuC2MK0r85GLuXN42uOh8ao0vTSHTwhYyRxhrlMwyGQvHC5lswnI1rPwWMKmsRVLWlaUR1iZGOOFM7jxuCSpuJxF8CaLVt9M8GdqMrsltLJP6snukcWf40T7rXeqzCHZmstf1ihlrnioEV2RPRfCpaUbh0QWGqfzwPvTJAiSJI_gwnapmMLTLUsSiyEW2MIlNB8qjvdhS9f-EfNohp5nCcb_OpnuOLbSRSI00qZFu1CiCJOhDQ_2FfvrgdP-kedv-jxE-wio-SzpG5mIHlu9G934X8c-d3Qu6v0f_IPkP9SD_bg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTmh7QWN8LLCBkRASDxV1Yif2Y5k2Smkrxjqtb5YdO6JA06ndBP3vObtJWMV44DG2dbbOd87vfOc7gNfccsN8jTCaGt5mufQqlYu2EHmR6TShOjwSG47S3gXrT_hkC2j9FiZEu9cuyXBSVzV64nduZr75WCwmvTfsHmwLngregu1ut3_e_xPXIYKVFS5WGBWyyudzBwnEo56Vv-4Cl3_HSDaO0k0YG_5Dp3vwoAKQpLve8Yew5cp9uL8uKbnah53juoLbI1DetqyCAZD9ZF4QhHsklOUjF2RZfhl9Jgiecb0_VmQWwirdYkV8VieUSoKrvvo5XTpyPiMhn8MUadx6u_kYxqcn4-Neuyqo0J4yyfC8NbTI_GNZzXTcYdrmBTbZmForOhoV0KVGu0LnPM1NzgVCWi15lvGYWZrz5Am0ynnpDoBwaQySMrYoNDMm0cwyq4V1eDzIuJNE8CawVl2tc2YovfjuQ8gyri5HHxSeEoPO2eRSnUVwWPNeVdqzVDSVCLS8bRXBq6YbmeedGbp085swJgvwJI7g6XqrmsnQRksRl-Iqso1NbAb4nNqbPeX0a8itHfKbSZz3bb3dt5aF9pIXI-XFSDViFEES5KGh_o9x6mT4vt98PfuPGV7CTm88HKjBx9Gn57CL7dxfL1N2CK3rxY07Qlx0bV5UmvAbPMwG-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8gRuGFKAosoNbEmPhw4brb7m4f9eREhAsohHtr2m03HHB7l7sjeP-90-4HXMQHH7dtps3MtPubznQG4AM3XDNXI4zGmrdYJtyWytJWmmZ5ouKIKv9I7LgXH5yzwz7vV7E50zravXZJlm8aXJamYrY3Nnldryfcs0N95eKymHCesSfwFM0U6myvTty5j_BIvb3lr1gYTUWV2ecRAohMHVN_PwYz_46WbFymi4DW_5G6L2CtgpLkcyn7l7Bki3V4VhaXnK_DSqeu5fYKpLMyq7AAFAQZ5QSBH_EF-sg5mRY_eycEYTSu92ZOhj7A0k7mxOV3Qv0kuOrx3WBqya8h8ZkdBkjjwSvO13DW3T_rHLSq0gqtARMMT15N88Q9m1VMhW2mTJZjkwmpMWlb4Va0sVY2VxmPM53xFMGtEjxJeMgMzXi0AcvFqLBbQLjQGklpk-eKaR0pZphRqbF4UIiwHQXw0bNWjsvsGVJNrl0wWcLlRe-bxPPiqH3av5CnAezWvJfVPppKGguEXM7KCuB9043Mc24NVdjRrR-TeKASBrBZiqqZDK21GBEqriJZEGIzwGXXXuwpBpc-y7bPdCZw3k-1uB8sCy0np0bSqZFs1CiAyOtDQ_0f4-T-8ZfD5mv7P2Z4B89Pvnbl0ffejx1YxWbu7pkp24Xl2eTWvkGANNNv_Tb4A4SRCdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstitution+of+the+human+U+snRNP+assembly+machinery+reveals+stepwise+Sm+protein+organization&rft.jtitle=The+EMBO+journal&rft.au=Neuenkirchen%2C+Nils&rft.au=Englbrecht%2C+Clemens&rft.au=Ohmer%2C+J%C3%BCrgen&rft.au=Ziegenhals%2C+Thomas&rft.date=2015-07-14&rft.eissn=1460-2075&rft.volume=34&rft.issue=14&rft.spage=1925&rft_id=info:doi/10.15252%2Fembj.201490350&rft_id=info%3Apmid%2F26069323&rft.externalDocID=26069323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon