Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans ‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action,...
Saved in:
Published in | The EMBO journal Vol. 34; no. 14; pp. 1925 - 1941 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
14.07.2015
Nature Publishing Group UK Springer Nature B.V John Wiley & Sons, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes
in vivo
. These
trans
‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln‐Sm units are displaced by new pICln‐Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis‐assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.
Synopsis
By reconstituting the assembly of human U snRNPs
in vitro
, this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding defects in Spinal Muscular Atrophy.
Reconstitution of the human snRNP assembly machinery from recombinant proteins.
The PRMT5 complex acts as a scaffold for the stepwise organization of Sm proteins by the assembly chaperone pICln.
Release of pICln‐Sm protein intermediates from the PRMT5 complex scaffold is feed‐forward‐driven by new pICln‐Sm protein precursors.
The SMN complex acts as a Brownian machine, which enables Sm proteins to proofread cognate snRNAs and catalyzes faithful snRNP assembly.
Spinal muscular atrophy‐causing mutations differentially affect snRNP assembly.
Graphical Abstract
By reconstituting the assembly of human U snRNPs
in vitro
, this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding the defects in spinal muscular atrophy. |
---|---|
AbstractList | The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln‐Sm units are displaced by new pICln‐Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis‐assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.
Synopsis
By reconstituting the assembly of human U snRNPs in vitro, this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding defects in Spinal Muscular Atrophy.
Reconstitution of the human snRNP assembly machinery from recombinant proteins.
The PRMT5 complex acts as a scaffold for the stepwise organization of Sm proteins by the assembly chaperone pICln.
Release of pICln‐Sm protein intermediates from the PRMT5 complex scaffold is feed‐forward‐driven by new pICln‐Sm protein precursors.
The SMN complex acts as a Brownian machine, which enables Sm proteins to proofread cognate snRNAs and catalyzes faithful snRNP assembly.
Spinal muscular atrophy‐causing mutations differentially affect snRNP assembly.
By reconstituting the assembly of human U snRNPs in vitro, this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding the defects in spinal muscular atrophy. The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans ‐acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln‐Sm units are displaced by new pICln‐Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis‐assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. Synopsis By reconstituting the assembly of human U snRNPs in vitro , this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding defects in Spinal Muscular Atrophy. Reconstitution of the human snRNP assembly machinery from recombinant proteins. The PRMT5 complex acts as a scaffold for the stepwise organization of Sm proteins by the assembly chaperone pICln. Release of pICln‐Sm protein intermediates from the PRMT5 complex scaffold is feed‐forward‐driven by new pICln‐Sm protein precursors. The SMN complex acts as a Brownian machine, which enables Sm proteins to proofread cognate snRNAs and catalyzes faithful snRNP assembly. Spinal muscular atrophy‐causing mutations differentially affect snRNP assembly. Graphical Abstract By reconstituting the assembly of human U snRNPs in vitro , this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding the defects in spinal muscular atrophy. The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans -acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction. Synopsis By reconstituting the assembly of human U snRNPs in vitro, this study establishes the sequential action of distinct Sm protein complexes and provides a basis for understanding defects in Spinal Muscular Atrophy. Reconstitution of the human snRNP assembly machinery from recombinant proteins. The PRMT5 complex acts as a scaffold for the stepwise organization of Sm proteins by the assembly chaperone pICln. Release of pICln-Sm protein intermediates from the PRMT5 complex scaffold is feed-forward-driven by new pICln-Sm protein precursors. The SMN complex acts as a Brownian machine, which enables Sm proteins to proofread cognate snRNAs and catalyzes faithful snRNP assembly. Spinal muscular atrophy-causing mutations differentially affect snRNP assembly. |
Author | Englbrecht, Clemens Ziegenhals, Thomas Chari, Ashwin Fischer, Utz Neuenkirchen, Nils Ohmer, Jürgen |
Author_xml | – sequence: 1 givenname: Nils surname: Neuenkirchen fullname: Neuenkirchen, Nils organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany – sequence: 2 givenname: Clemens surname: Englbrecht fullname: Englbrecht, Clemens organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany – sequence: 3 givenname: Jürgen surname: Ohmer fullname: Ohmer, Jürgen organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany – sequence: 4 givenname: Thomas surname: Ziegenhals fullname: Ziegenhals, Thomas organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany – sequence: 5 givenname: Ashwin surname: Chari fullname: Chari, Ashwin email: Corresponding author. Tel: +49 931 318 4029; , utz.fischer@biozentrum.uni-wuerzburg.de, Corresponding author. Tel: +49 551 201 1654; , ashwin.chari@mpibpc.mpg.de organization: Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany – sequence: 6 givenname: Utz surname: Fischer fullname: Fischer, Utz email: Corresponding author. Tel: +49 931 318 4029; , utz.fischer@biozentrum.uni-wuerzburg.de, Corresponding author. Tel: +49 551 201 1654; , ashwin.chari@mpibpc.mpg.de organization: Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26069323$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1v1DAQxS1URLeFMzdkiQuXlLHjj4QDElSlgJZCS1G5WU7i7HpJ7MVOWpa_Hi9booI4Wfb83pvxvAO057wzCD0mcEQ45fS56avVEQXCSsg53EMzwgRkFCTfQzOggmSMFOU-OohxBQC8kOQB2qcCRJnTfIbUham9i4MdxsF6h32Lh6XBy7HXDn_B0V2cfcI6xtSn2-Be10vrTNjgYK6N7iKOg1nf2Gjw5x6vgx-MTR5hoZ39qbeGD9H9NnHm0e15iC7fnFwev83mH0_fHb-aZ5aVDLK8Iq0kFErNNAWmm7pNTw0lTVOArgCMqLRpdc1FXdW8KEilSy4lp6whNc8P0cud7XqsetPUxg1Bd2odbK_DRnlt1d8VZ5dq4a8V40wWpUgGz24Ngv8-mjio3sbadJ12xo9REVFKSgpCaUKf_oOu_Bhc-t2WEoSXabuJenJ3ommUP6tPwIsdcGM7s5nqBNTvZNU2WTUlq04-vH4_3ZIYduKYdG5hwp0Z_m-QJNlOYlNmP6Z-OnxTQuaSq6uzUyULOYfzr1fqPP8F7fa59Q |
CODEN | EMJODG |
ContentType | Journal Article |
Copyright | The Authors 2015 2015 The Authors 2015 The Authors. 2015 EMBO 2015 The Authors 2015 |
Copyright_xml | – notice: The Authors 2015 – notice: 2015 The Authors – notice: 2015 The Authors. – notice: 2015 EMBO – notice: 2015 The Authors 2015 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.201490350 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1460-2075 |
EndPage | 1941 |
ExternalDocumentID | PMC4547896 3743202701 26069323 EMBJ201490350 10_15252_embj_201490350 ark_67375_WNG_787L0QXW_Q |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: DFG grantid: FI573‐8/1; CH1098‐1/1 – fundername: Rudolf‐Virchow‐Centre of Experimental Medicine, Würzburg – fundername: DFG funderid: FI573‐8/1; CH1098‐1/1 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BSCLL BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P G-S GROUPED_DOAJ GX1 H13 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM AAJSJ AAYCA ACYXJ AFWVQ AAMMB AASML ABZEH AEFGJ AGQPQ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NAO NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-i4940-3b1f71209a4a204adcf3b1d21dd80ab00e6baefac56cbc5881ba9577524d1c53 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:07:28 EDT 2025 Fri Jul 11 11:12:08 EDT 2025 Fri Jul 25 10:50:46 EDT 2025 Mon Jul 21 05:59:35 EDT 2025 Wed Jan 22 16:21:19 EST 2025 Fri Feb 21 02:37:33 EST 2025 Wed Oct 30 09:57:40 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | pICln assembly PRMT5 SMN snRNP |
Language | English |
License | 2015 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4940-3b1f71209a4a204adcf3b1d21dd80ab00e6baefac56cbc5881ba9577524d1c53 |
Notes | istex:F46B9022781CBB891C5731DC6C659D78CFEDCF9E ArticleID:EMBJ201490350 ark:/67375/WNG-787L0QXW-Q Supplementary Figure S1Supplementary Figure S2Supplementary Figure S3Supplementary Figure S4Supplementary Figure S5Supplementary Figure S6Source Data for Supplementary Figure S2Source Data for Supplementary Figure S4Source Data for Supplementary Figure S5Supplementary Methods, Supplementary Figure Legends, Supplementary Table S1Review Process FileSource Data for Figure 2Source Data for Figure 4Source Data for Figure 5 Rudolf-Virchow-Centre of Experimental Medicine, Würzburg DFG - No. FI573-8/1; No. CH1098-1/1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present address: Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA Subject Categories RNA Biology These authors contributed equally to this work |
PMID | 26069323 |
PQID | 1696159606 |
PQPubID | 35985 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547896 proquest_miscellaneous_1697218122 proquest_journals_1696159606 pubmed_primary_26069323 wiley_primary_10_15252_embj_201490350_EMBJ201490350 springer_journals_10_15252_embj_201490350 istex_primary_ark_67375_WNG_787L0QXW_Q |
PublicationCentury | 2000 |
PublicationDate | 14 July 2015 |
PublicationDateYYYYMMDD | 2015-07-14 |
PublicationDate_xml | – month: 07 year: 2015 text: 14 July 2015 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Chichester, UK |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group UK Springer Nature B.V John Wiley & Sons, Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley & Sons, Ltd |
References | Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178: 733-740 Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15: 108-121 Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G (1999) Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 147: 1181-1194 Carissimi C, Baccon J, Straccia M, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2005) Unrip is a component of SMN complexes active in snRNP assembly. FEBS Lett 579: 2348-2354 Sumpter V, Kahrs A, Fischer U, Kornstadt U, Lührmann R (1992) In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA. Mol Biol Rep 16: 229-240 Zemp I, Wild T, O'Donohue MF, Wandrey F, Widmann B, Gleizes PE, Kutay U (2009) Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J Cell Biol 185: 1167-1180 Fischer U, Englbrecht C, Chari A (2011) Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA 2: 718-731 Sarachan KL, Valentine KG, Gupta K, Moorman VR, Gledhill JM Jr, Bernens M, Tommos C, Wand AJ, Van Duyne GD (2012) Solution structure of the core SMN-Gemin2 complex. Biochem J 445: 361-370 Raker VA, Plessel G, Lührmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15: 2256-2269 Carissimi C, Saieva L, Gabanella F, Pellizzoni L (2006b) Gemin8 is required for the architecture and function of the survival motor neuron complex. J Biol Chem 281: 37009-37016 Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277: 3537-3543 Chari A, Golas MM, Klingenhäger M, Neuenkirchen N, Sander B, Englbrecht C, Sickmann A, Stark H, Fischer U (2008) An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135: 497-509 Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165 Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109: 17960-17965 Wan L, Battle DJ, Yong J, Gubitz AK, Kolb SJ, Wang J, Dreyfuss G (2005) The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol 25: 5543-5551 Gubitz AK, Mourelatos Z, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J Biol Chem 277: 5631-5636 Shpargel KB, Praveen K, Rajendra TK, Matera AG (2009) Gemin3 is an essential gene required for larval motor function and pupation in Drosophila. Mol Biol Cell 20: 90-101 Baccon J, Pellizzoni L, Rappsilber J, Mann M, Dreyfuss G (2002) Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex. J Biol Chem 277: 31957-31962 Friesen WJ, Dreyfuss G (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J Biol Chem 275: 26370-26375 Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10: 597-609 Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21: 8289-8300 Grimm C, Chari A, Pelz JP, Kuper J, Kisker C, Diederichs K, Stark H, Schindelin H, Fischer U (2013) Structural basis of assembly chaperone- mediated snRNP formation. Mol Cell 49: 692-703 Battle DJ, Kasim M, Wang J, Dreyfuss G (2007) SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate. J Biol Chem 282: 27953-27959 Yong J, Kasim M, Bachorik JL, Wan L, Dreyfuss G (2010) Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis. Mol Cell 38: 551-562 Myers LC, Leuther K, Bushnell DA, Gustafsson CM, Kornberg RD (1997) Yeast RNA polymerase II transcription reconstituted with purified proteins. Methods 12: 212-216 Kolb SJ, Kissel JT (2011) Spinal muscular atrophy: a timely review. Arch Neurol 68: 979-984 Rodnina MV, Wintermeyer W (1995) GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc Natl Acad Sci USA 92: 1945-1949 Cho S, Dreyfuss G (2010) A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 24: 438-442 Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14: 305-312 Brahms H, Meheus L, de Brabandere V, Fischer U, Lührmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7: 1531-1542 Fisher DE, Conner GE, Reeves WH, Wisniewolski R, Blobel G (1985) Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA-free core precursor and posttranslational modification. Cell 42: 751-758 Otter S, Grimmler M, Neuenkirchen N, Chari A, Sickmann A, Fischer U (2007) A comprehensive interaction map of the human survival of motor neuron (SMN) complex. J Biol Chem 282: 5825-5833 Meister G, Bühler D, Pillai R, Lottspeich F, Fischer U (2001a) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3: 945-949 Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22: 1583-1587 Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371: 2120-2133 Shpargel KB, Matera AG (2005) Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci USA 102: 17372-17377 Gonsalvez GB, Praveen K, Hicks AJ, Tian L, Matera AG (2008) Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster. RNA 14: 878-887 Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G (2000) Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 148: 1177-1186 Grimmler M, Otter S, Peter C, Muller F, Chari A, Fischer U (2005) Unrip, a factor implicated in cap-independent translation, associates with the cytosolic SMN complex and influences its intracellular localization. Hum Mol Genet 14: 3099-3111 Carissimi C, Saieva L, Baccon J, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2006a) Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J Biol Chem 281: 8126-8134 Palfi Z, Jae N, Preusser C, Kaminska KH, Bujnicki JM, Lee JH, Gunzl A, Kambach C, Urlaub H, Bindereif A (2009) SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. Genes Dev 23: 1650-1664 Pisarev AV, Unbehaun A, Hellen CU, Pestova TV (2007) Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol 430: 147-177 Bühler D, Raker V, Lührmann R, Fischer U (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet 8: 2351-2357 Wang J, Dreyfuss G (2001) Characterization of functional domains of the SMN protein in vivo. J Biol Chem 276: 45387-45393 Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15: 228-237 O'Reilly DR, Miller LK, Luckow VA (1993) Baculovirus Expression Vectors: A Laboratory Manual. Oxford: Oxford University Press Praveen K, Wen Y, Gray KM, Noto JJ, Patlolla AR, Van Duyne GD, Matera AG (2014) SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila. PLoS Genet 10: e1004489 Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K (1999) Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96: 375-387 Pellizzoni L, Yong J, Dreyfuss G (2002b) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298: 1775-1779 Zhang R, So BR, Li P, Yong J, Glisovic T, Wan L, Dreyfuss G (2011) Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly. Cell 146: 384-395 Meister G, Eggert C, Bühler D, Brahms H, Kambach C, Fischer U (2001b) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11: 1990-1994 Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18: 1414-1420 Ellis RJ (2006) Molecular chaperones: assisting assembly in addition to folding. Trends Biochem Sci 31: 395-401 Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90: 1023-1029 Hamm J, Kazmaier M, Mattaj IW (1987) In vitro assembly of U1 snRNPs. EMBO J 6: 3479-3485 Kroiss M, Schultz J, Wiesner J, Chari A, Sickmann A, Fischer U (2008) E Carissimi, Saieva, Baccon, Chiarella, Maiolica, Sawyer, Rappsilber, Pellizzoni (CR10) 2006; 281 Raker, Plessel, Lührmann (CR51) 1996; 15 Charroux, Pellizzoni, Perkinson, Yong, Shevchenko, Mann, Dreyfuss (CR15) 2000; 148 Otter, Grimmler, Neuenkirchen, Chari, Sickmann, Fischer (CR44) 2007; 282 Gubitz, Mourelatos, Abel, Rappsilber, Mann, Dreyfuss (CR29) 2002; 277 Pisarev, Unbehaun, Hellen, Pestova (CR49) 2007; 430 O'Reilly, Miller, Luckow (CR43) 1993 Kambach, Walke, Young, Avis, de la Fortelle, Raker, Lührmann, Li, Nagai (CR31) 1999; 96 Berger, Fitzgerald, Richmond (CR5) 2004; 22 Lefebvre, Bürglen, Reboullet, Clermont, Burlet, Viollet, Benichou, Cruaud, Millasseau, Zeviani, Le Paslier, Frézal, Cohen, Weissenbach, Munnich, Melki (CR34) 1995; 80 Sumpter, Kahrs, Fischer, Kornstadt, Lührmann (CR56) 1992; 16 Wan, Battle, Yong, Gubitz, Kolb, Wang, Dreyfuss (CR58) 2005; 25 Lunn, Wang (CR36) 2008; 371 Battle, Kasim, Wang, Dreyfuss (CR4) 2007; 282 Meister, Eggert, Bühler, Brahms, Kambach, Fischer (CR40) 2001; 11 Fisher, Conner, Reeves, Wisniewolski, Blobel (CR21) 1985; 42 Praveen, Wen, Gray, Noto, Patlolla, Van Duyne, Matera (CR50) 2014; 10 Sarachan, Valentine, Gupta, Moorman, Gledhill, Bernens, Tommos, Wand, Van Duyne (CR53) 2012; 445 Zhang, So, Li, Yong, Glisovic, Wan, Dreyfuss (CR63) 2011; 146 Bühler, Raker, Lührmann, Fischer (CR7) 1999; 8 Grimm, Chari, Pelz, Kuper, Kisker, Diederichs, Stark, Schindelin, Fischer (CR27) 2013; 49 Pellizzoni, Baccon, Rappsilber, Mann, Dreyfuss (CR47) 2002; 277 Matera, Wang (CR38) 2014; 15 Kolb, Kissel (CR32) 2011; 68 Yong, Kasim, Bachorik, Wan, Dreyfuss (CR61) 2010; 38 Liu, Young, Starling‐Windhof, Bracher, Saschenbrecker, Rao, Rao, Berninghausen, Mielke, Hartl, Beckmann, Hayer‐Hartl (CR35) 2010; 463 Wang, Dreyfuss (CR59) 2001; 276 Carissimi, Baccon, Straccia, Chiarella, Maiolica, Sawyer, Rappsilber, Pellizzoni (CR9) 2005; 579 Fischer, Liu, Dreyfuss (CR19) 1997; 90 Antonysamy, Bonday, Campbell, Doyle, Druzina, Gheyi, Han, Jungheim, Qian, Rauch, Russell, Sauder, Wasserman, Weichert, Willard, Zhang, Emtage (CR1) 2012; 109 Tripsianes, Madl, Machyna, Fessas, Englbrecht, Fischer, Neugebauer, Sattler (CR57) 2011; 18 Wirth (CR60) 2000; 15 Paushkin, Gubitz, Massenet, Dreyfuss (CR46) 2002; 14 Feng, Gubitz, Wan, Battle, Dostie, Golembe, Dreyfuss (CR18) 2005; 14 Battle, Lau, Wan, Deng, Lotti, Dreyfuss (CR3) 2006; 23 Burghes, Beattie (CR8) 2009; 10 Brahms, Meheus, de Brabandere, Fischer, Lührmann (CR6) 2001; 7 Hamm, Kazmaier, Mattaj (CR30) 1987; 6 Shpargel, Matera (CR54) 2005; 102 Grimmler, Otter, Peter, Muller, Chari, Fischer (CR28) 2005; 14 Carissimi, Saieva, Gabanella, Pellizzoni (CR11) 2006; 281 Chari, Fischer (CR13) 2010; 35 Gonsalvez, Praveen, Hicks, Tian, Matera (CR26) 2008; 14 Meister, Bühler, Pillai, Lottspeich, Fischer (CR39) 2001; 3 Chari, Golas, Klingenhäger, Neuenkirchen, Sander, Englbrecht, Sickmann, Stark, Fischer (CR12) 2008; 135 Baccon, Pellizzoni, Rappsilber, Mann, Dreyfuss (CR2) 2002; 277 Zemp, Wild, O'Donohue, Wandrey, Widmann, Gleizes, Kutay (CR62) 2009; 185 Friesen, Paushkin, Wyce, Massenet, Pesiridis, Van Duyne, Rappsilber, Mann, Dreyfuss (CR24) 2001; 21 Gonsalvez, Tian, Ospina, Boisvert, Lamond, Matera (CR25) 2007; 178 Cho, Dreyfuss (CR16) 2010; 24 Shpargel, Praveen, Rajendra, Matera (CR55) 2009; 20 Kroiss, Schultz, Wiesner, Chari, Sickmann, Fischer (CR33) 2008; 105 Myers, Leuther, Bushnell, Gustafsson, Kornberg (CR42) 1997; 12 Palfi, Jae, Preusser, Kaminska, Bujnicki, Lee, Gunzl, Kambach, Urlaub, Bindereif (CR45) 2009; 23 Fischer, Englbrecht, Chari (CR20) 2011; 2 Charroux, Pellizzoni, Perkinson, Shevchenko, Mann, Dreyfuss (CR14) 1999; 147 Friesen, Dreyfuss (CR23) 2000; 275 Ellis (CR17) 2006; 31 Rodnina, Wintermeyer (CR52) 1995; 92 Meister, Eggert, Fischer (CR41) 2002; 12 Frankel, Yadav, Lee, Branscombe, Clarke, Bedford (CR22) 2002; 277 Martin, Gupta, Ninan, Perry, Van Duyne (CR37) 2012; 20 Pellizzoni, Yong, Dreyfuss (CR48) 2002; 298 2004; 22 2002; 14 2006a; 281 2006; 31 2002; 12 1987; 6 2002; 277 2005; 579 2010; 463 2008; 105 2006b; 281 1992; 16 2012; 445 2011; 18 2002a; 277 2005; 25 1997; 90 2001a; 3 2007; 178 2009; 10 2010; 24 2006; 23 2000; 15 2005; 102 1997; 12 2014; 15 2011; 68 1999; 96 2012; 20 2014; 10 2009; 23 2010; 38 1995; 92 2011; 2 2010; 35 2013; 49 2009; 20 2007; 282 2008; 14 1999; 147 2000; 275 1993 1999; 8 1985; 42 1996; 15 2012; 109 2001; 21 2001; 276 2011; 146 1995; 80 2001; 7 2000; 148 2002b; 298 2007; 430 2001b; 11 2009; 185 2008; 135 2008; 371 2005; 14 7813012 - Cell. 1995 Jan 13;80(1):155-65 20727772 - Trends Biochem Sci. 2010 Dec;35(12):676-83 10725331 - J Cell Biol. 2000 Mar 20;148(6):1177-86 11714716 - J Biol Chem. 2002 Feb 15;277(7):5631-6 21823231 - Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):718-31 11747828 - Curr Biol. 2001 Dec 11;11(24):1990-4 16159890 - Hum Mol Genet. 2005 Oct 15;14(20):3099-111 17913638 - Methods Enzymol. 2007;430:147-77 15568020 - Nat Biotechnol. 2004 Dec;22(12):1583-7 16301532 - Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17372-7 8641291 - EMBO J. 1996 May 1;15(9):2256-69 18984161 - Cell. 2008 Oct 31;135(3):497-509 23022347 - Structure. 2012 Nov 7;20(11):1929-39 20513430 - Mol Cell. 2010 May 28;38(4):551-62 12441251 - Trends Cell Biol. 2002 Oct;12(10):472-8 10851237 - J Biol Chem. 2000 Aug 25;275(34):26370-5 15964810 - Mol Cell Biol. 2005 Jul;25(13):5543-51 9323130 - Cell. 1997 Sep 19;90(6):1023-9 2932224 - Cell. 1985 Oct;42(3):751-8 11724789 - J Biol Chem. 2002 Feb 1;277(5):3537-43 23071334 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17960-5 23333303 - Mol Cell. 2013 Feb 21;49(4):692-703 11715014 - Nat Cell Biol. 2001 Nov;3(11):945-9 18572081 - Lancet. 2008 Jun 21;371(9630):2120-33 1454055 - Mol Biol Rep. 1992 Sep;16(4):229-40 25144193 - PLoS Genet. 2014 Aug;10(8):e1004489 10601333 - J Cell Biol. 1999 Dec 13;147(6):1181-94 10556282 - Hum Mol Genet. 1999 Dec;8(13):2351-7 11720283 - RNA. 2001 Nov;7(11):1531-42 17023415 - J Biol Chem. 2006 Dec 1;281(48):37009-16 20194437 - Genes Dev. 2010 Mar 1;24(5):438-42 17709427 - J Cell Biol. 2007 Aug 27;178(5):733-40 22607171 - Biochem J. 2012 Aug 1;445(3):361-70 10679938 - Hum Mutat. 2000;15(3):228-37 12065586 - J Biol Chem. 2002 Aug 30;277(35):31957-62 18621711 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10045-50 19564402 - J Cell Biol. 2009 Jun 29;185(7):1167-80 21482919 - Arch Neurol. 2011 Aug;68(8):979-84 10025403 - Cell. 1999 Feb 5;96(3):375-87 15848170 - FEBS Lett. 2005 Apr 25;579(11):2348-54 11713266 - Mol Cell Biol. 2001 Dec;21(24):8289-300 24452469 - Nat Rev Mol Cell Biol. 2014 Feb;15(2):108-21 9237165 - Methods. 1997 Jul;12(3):212-6 11572858 - J Biol Chem. 2001 Nov 30;276(48):45387-93 16857593 - Mol Cell. 2006 Jul 21;23(2):273-9 21816274 - Cell. 2011 Aug 5;146(3):384-95 22101937 - Nat Struct Mol Biol. 2011 Dec;18(12):1414-20 12459587 - Science. 2002 Nov 29;298(5599):1775-9 18369183 - RNA. 2008 May;14(5):878-87 19605687 - Genes Dev. 2009 Jul 15;23(14):1650-64 18923150 - Mol Biol Cell. 2009 Jan;20(1):90-101 11748230 - J Biol Chem. 2002 Mar 1;277(9):7540-5 16716593 - Trends Biochem Sci. 2006 Jul;31(7):395-401 19584893 - Nat Rev Neurosci. 2009 Aug;10(8):597-609 20075914 - Nature. 2010 Jan 14;463(7278):197-202 12067652 - Curr Opin Cell Biol. 2002 Jun;14(3):305-12 15843395 - Hum Mol Genet. 2005 Jun 15;14(12):1605-11 2962858 - EMBO J. 1987 Nov;6(11):3479-85 16434402 - J Biol Chem. 2006 Mar 24;281(12):8126-34 7892205 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1945-9 17640873 - J Biol Chem. 2007 Sep 21;282(38):27953-9 17178713 - J Biol Chem. 2007 Feb 23;282(8):5825-33 |
References_xml | – reference: Wan L, Battle DJ, Yong J, Gubitz AK, Kolb SJ, Wang J, Dreyfuss G (2005) The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy. Mol Cell Biol 25: 5543-5551 – reference: Carissimi C, Saieva L, Baccon J, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2006a) Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J Biol Chem 281: 8126-8134 – reference: Gonsalvez GB, Praveen K, Hicks AJ, Tian L, Matera AG (2008) Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster. RNA 14: 878-887 – reference: Carissimi C, Saieva L, Gabanella F, Pellizzoni L (2006b) Gemin8 is required for the architecture and function of the survival motor neuron complex. J Biol Chem 281: 37009-37016 – reference: Martin R, Gupta K, Ninan NS, Perry K, Van Duyne GD (2012) The survival motor neuron protein forms soluble glycine zipper oligomers. Structure 20: 1929-1939 – reference: Feng W, Gubitz AK, Wan L, Battle DJ, Dostie J, Golembe TJ, Dreyfuss G (2005) Gemins modulate the expression and activity of the SMN complex. Hum Mol Genet 14: 1605-1611 – reference: Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K (1999) Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96: 375-387 – reference: Praveen K, Wen Y, Gray KM, Noto JJ, Patlolla AR, Van Duyne GD, Matera AG (2014) SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila. PLoS Genet 10: e1004489 – reference: Battle DJ, Kasim M, Wang J, Dreyfuss G (2007) SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate. J Biol Chem 282: 27953-27959 – reference: Carissimi C, Baccon J, Straccia M, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2005) Unrip is a component of SMN complexes active in snRNP assembly. FEBS Lett 579: 2348-2354 – reference: Zhang R, So BR, Li P, Yong J, Glisovic T, Wan L, Dreyfuss G (2011) Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly. Cell 146: 384-395 – reference: Kroiss M, Schultz J, Wiesner J, Chari A, Sickmann A, Fischer U (2008) Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster. Proc Natl Acad Sci USA 105: 10045-10050 – reference: Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10: 597-609 – reference: Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15: 108-121 – reference: Zemp I, Wild T, O'Donohue MF, Wandrey F, Widmann B, Gleizes PE, Kutay U (2009) Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J Cell Biol 185: 1167-1180 – reference: Shpargel KB, Praveen K, Rajendra TK, Matera AG (2009) Gemin3 is an essential gene required for larval motor function and pupation in Drosophila. Mol Biol Cell 20: 90-101 – reference: Fisher DE, Conner GE, Reeves WH, Wisniewolski R, Blobel G (1985) Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA-free core precursor and posttranslational modification. Cell 42: 751-758 – reference: Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80: 155-165 – reference: Grimmler M, Otter S, Peter C, Muller F, Chari A, Fischer U (2005) Unrip, a factor implicated in cap-independent translation, associates with the cytosolic SMN complex and influences its intracellular localization. Hum Mol Genet 14: 3099-3111 – reference: Hamm J, Kazmaier M, Mattaj IW (1987) In vitro assembly of U1 snRNPs. EMBO J 6: 3479-3485 – reference: Meister G, Eggert C, Bühler D, Brahms H, Kambach C, Fischer U (2001b) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11: 1990-1994 – reference: Shpargel KB, Matera AG (2005) Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci USA 102: 17372-17377 – reference: Meister G, Bühler D, Pillai R, Lottspeich F, Fischer U (2001a) A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3: 945-949 – reference: Otter S, Grimmler M, Neuenkirchen N, Chari A, Sickmann A, Fischer U (2007) A comprehensive interaction map of the human survival of motor neuron (SMN) complex. J Biol Chem 282: 5825-5833 – reference: Fischer U, Englbrecht C, Chari A (2011) Biogenesis of spliceosomal small nuclear ribonucleoproteins. Wiley Interdiscip Rev RNA 2: 718-731 – reference: Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463: 197-202 – reference: Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178: 733-740 – reference: Battle DJ, Lau CK, Wan L, Deng H, Lotti F, Dreyfuss G (2006) The Gemin5 protein of the SMN complex identifies snRNAs. Mol Cell 23: 273-279 – reference: Pellizzoni L, Yong J, Dreyfuss G (2002b) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298: 1775-1779 – reference: O'Reilly DR, Miller LK, Luckow VA (1993) Baculovirus Expression Vectors: A Laboratory Manual. Oxford: Oxford University Press – reference: Cho S, Dreyfuss G (2010) A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 24: 438-442 – reference: Wang J, Dreyfuss G (2001) Characterization of functional domains of the SMN protein in vivo. J Biol Chem 276: 45387-45393 – reference: Pisarev AV, Unbehaun A, Hellen CU, Pestova TV (2007) Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol 430: 147-177 – reference: Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G (1999) Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 147: 1181-1194 – reference: Friesen WJ, Dreyfuss G (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J Biol Chem 275: 26370-26375 – reference: Palfi Z, Jae N, Preusser C, Kaminska KH, Bujnicki JM, Lee JH, Gunzl A, Kambach C, Urlaub H, Bindereif A (2009) SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. Genes Dev 23: 1650-1664 – reference: Sumpter V, Kahrs A, Fischer U, Kornstadt U, Lührmann R (1992) In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA. Mol Biol Rep 16: 229-240 – reference: Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14: 305-312 – reference: Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22: 1583-1587 – reference: Myers LC, Leuther K, Bushnell DA, Gustafsson CM, Kornberg RD (1997) Yeast RNA polymerase II transcription reconstituted with purified proteins. Methods 12: 212-216 – reference: Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12: 472-478 – reference: Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90: 1023-1029 – reference: Gubitz AK, Mourelatos Z, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J Biol Chem 277: 5631-5636 – reference: Chari A, Golas MM, Klingenhäger M, Neuenkirchen N, Sander B, Englbrecht C, Sickmann A, Stark H, Fischer U (2008) An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135: 497-509 – reference: Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15: 228-237 – reference: Baccon J, Pellizzoni L, Rappsilber J, Mann M, Dreyfuss G (2002) Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex. J Biol Chem 277: 31957-31962 – reference: Yong J, Kasim M, Bachorik JL, Wan L, Dreyfuss G (2010) Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis. Mol Cell 38: 551-562 – reference: Raker VA, Plessel G, Lührmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15: 2256-2269 – reference: Bühler D, Raker V, Lührmann R, Fischer U (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet 8: 2351-2357 – reference: Kolb SJ, Kissel JT (2011) Spinal muscular atrophy: a timely review. Arch Neurol 68: 979-984 – reference: Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21: 8289-8300 – reference: Pellizzoni L, Baccon J, Rappsilber J, Mann M, Dreyfuss G (2002a) Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component. J Biol Chem 277: 7540-7545 – reference: Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371: 2120-2133 – reference: Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem 277: 3537-3543 – reference: Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, Han B, Jungheim LN, Qian Y, Rauch C, Russell M, Sauder JM, Wasserman SR, Weichert K, Willard FS, Zhang A, Emtage S (2012) Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci USA 109: 17960-17965 – reference: Ellis RJ (2006) Molecular chaperones: assisting assembly in addition to folding. Trends Biochem Sci 31: 395-401 – reference: Rodnina MV, Wintermeyer W (1995) GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc Natl Acad Sci USA 92: 1945-1949 – reference: Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18: 1414-1420 – reference: Chari A, Fischer U (2010) Cellular strategies for the assembly of molecular machines. Trends Biochem Sci 35: 676-683 – reference: Sarachan KL, Valentine KG, Gupta K, Moorman VR, Gledhill JM Jr, Bernens M, Tommos C, Wand AJ, Van Duyne GD (2012) Solution structure of the core SMN-Gemin2 complex. Biochem J 445: 361-370 – reference: Brahms H, Meheus L, de Brabandere V, Fischer U, Lührmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7: 1531-1542 – reference: Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G (2000) Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 148: 1177-1186 – reference: Grimm C, Chari A, Pelz JP, Kuper J, Kisker C, Diederichs K, Stark H, Schindelin H, Fischer U (2013) Structural basis of assembly chaperone- mediated snRNP formation. Mol Cell 49: 692-703 – volume: 20 start-page: 1929 year: 2012 end-page: 1939 ident: CR37 article-title: The survival motor neuron protein forms soluble glycine zipper oligomers publication-title: Structure – volume: 277 start-page: 3537 year: 2002 end-page: 3543 ident: CR22 article-title: The novel human protein arginine N‐methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity publication-title: J Biol Chem – volume: 14 start-page: 305 year: 2002 end-page: 312 ident: CR46 article-title: The SMN complex, an assemblyosome of ribonucleoproteins publication-title: Curr Opin Cell Biol – volume: 38 start-page: 551 year: 2010 end-page: 562 ident: CR61 article-title: Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis publication-title: Mol Cell – volume: 68 start-page: 979 year: 2011 end-page: 984 ident: CR32 article-title: Spinal muscular atrophy: a timely review publication-title: Arch Neurol – volume: 277 start-page: 7540 year: 2002 end-page: 7545 ident: CR47 article-title: Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component publication-title: J Biol Chem – volume: 281 start-page: 37009 year: 2006 end-page: 37016 ident: CR11 article-title: Gemin8 is required for the architecture and function of the survival motor neuron complex publication-title: J Biol Chem – volume: 109 start-page: 17960 year: 2012 end-page: 17965 ident: CR1 article-title: Crystal structure of the human PRMT5:MEP50 complex publication-title: Proc Natl Acad Sci USA – volume: 277 start-page: 31957 year: 2002 end-page: 31962 ident: CR2 article-title: Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex publication-title: J Biol Chem – volume: 7 start-page: 1531 year: 2001 end-page: 1542 ident: CR6 article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm‐like protein LSm4, and their interaction with the SMN protein publication-title: RNA – volume: 25 start-page: 5543 year: 2005 end-page: 5551 ident: CR58 article-title: The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy publication-title: Mol Cell Biol – volume: 14 start-page: 878 year: 2008 end-page: 887 ident: CR26 article-title: Sm protein methylation is dispensable for snRNP assembly in publication-title: RNA – volume: 430 start-page: 147 year: 2007 end-page: 177 ident: CR49 article-title: Assembly and analysis of eukaryotic translation initiation complexes publication-title: Methods Enzymol – volume: 178 start-page: 733 year: 2007 end-page: 740 ident: CR25 article-title: Two distinct arginine methyltransferases are required for biogenesis of Sm‐class ribonucleoproteins publication-title: J Cell Biol – volume: 15 start-page: 108 year: 2014 end-page: 121 ident: CR38 article-title: A day in the life of the spliceosome publication-title: Nat Rev Mol Cell Biol – volume: 92 start-page: 1945 year: 1995 end-page: 1949 ident: CR52 article-title: GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 212 year: 1997 end-page: 216 ident: CR42 article-title: Yeast RNA polymerase II transcription reconstituted with purified proteins publication-title: Methods – volume: 3 start-page: 945 year: 2001 end-page: 949 ident: CR39 article-title: A multiprotein complex mediates the ATP‐dependent assembly of spliceosomal U snRNPs publication-title: Nat Cell Biol – volume: 147 start-page: 1181 year: 1999 end-page: 1194 ident: CR14 article-title: Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems publication-title: J Cell Biol – volume: 23 start-page: 1650 year: 2009 end-page: 1664 ident: CR45 article-title: SMN‐assisted assembly of snRNP‐specific Sm cores in trypanosomes publication-title: Genes Dev – volume: 10 start-page: e1004489 year: 2014 ident: CR50 article-title: SMA‐causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila publication-title: PLoS Genet – volume: 23 start-page: 273 year: 2006 end-page: 279 ident: CR3 article-title: The Gemin5 protein of the SMN complex identifies snRNAs publication-title: Mol Cell – year: 1993 ident: CR43 publication-title: Baculovirus Expression Vectors: A Laboratory Manual – volume: 445 start-page: 361 year: 2012 end-page: 370 ident: CR53 article-title: Solution structure of the core SMN‐Gemin2 complex publication-title: Biochem J – volume: 15 start-page: 228 year: 2000 end-page: 237 ident: CR60 article-title: An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA) publication-title: Hum Mutat – volume: 12 start-page: 472 year: 2002 end-page: 478 ident: CR41 article-title: SMN‐mediated assembly of RNPs: a complex story publication-title: Trends Cell Biol – volume: 42 start-page: 751 year: 1985 end-page: 758 ident: CR21 article-title: Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA‐free core precursor and posttranslational modification publication-title: Cell – volume: 579 start-page: 2348 year: 2005 end-page: 2354 ident: CR9 article-title: Unrip is a component of SMN complexes active in snRNP assembly publication-title: FEBS Lett – volume: 16 start-page: 229 year: 1992 end-page: 240 ident: CR56 article-title: In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA publication-title: Mol Biol Rep – volume: 8 start-page: 2351 year: 1999 end-page: 2357 ident: CR7 article-title: Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy publication-title: Hum Mol Genet – volume: 148 start-page: 1177 year: 2000 end-page: 1186 ident: CR15 article-title: Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli publication-title: J Cell Biol – volume: 2 start-page: 718 year: 2011 end-page: 731 ident: CR20 article-title: Biogenesis of spliceosomal small nuclear ribonucleoproteins publication-title: Wiley Interdiscip Rev RNA – volume: 277 start-page: 5631 year: 2002 end-page: 5636 ident: CR29 article-title: Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins publication-title: J Biol Chem – volume: 135 start-page: 497 year: 2008 end-page: 509 ident: CR12 article-title: An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs publication-title: Cell – volume: 21 start-page: 8289 year: 2001 end-page: 8300 ident: CR24 article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine‐modified Sm proteins publication-title: Mol Cell Biol – volume: 80 start-page: 155 year: 1995 end-page: 165 ident: CR34 article-title: Identification and characterization of a spinal muscular atrophy‐determining gene publication-title: Cell – volume: 31 start-page: 395 year: 2006 end-page: 401 ident: CR17 article-title: Molecular chaperones: assisting assembly in addition to folding publication-title: Trends Biochem Sci – volume: 6 start-page: 3479 year: 1987 end-page: 3485 ident: CR30 article-title: In vitro assembly of U1 snRNPs publication-title: EMBO J – volume: 10 start-page: 597 year: 2009 end-page: 609 ident: CR8 article-title: Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? publication-title: Nat Rev Neurosci – volume: 281 start-page: 8126 year: 2006 end-page: 8134 ident: CR10 article-title: Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly publication-title: J Biol Chem – volume: 14 start-page: 1605 year: 2005 end-page: 1611 ident: CR18 article-title: Gemins modulate the expression and activity of the SMN complex publication-title: Hum Mol Genet – volume: 20 start-page: 90 year: 2009 end-page: 101 ident: CR55 article-title: Gemin3 is an essential gene required for larval motor function and pupation in publication-title: Mol Biol Cell – volume: 11 start-page: 1990 year: 2001 end-page: 1994 ident: CR40 article-title: Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln publication-title: Curr Biol – volume: 18 start-page: 1414 year: 2011 end-page: 1420 ident: CR57 article-title: Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins publication-title: Nat Struct Mol Biol – volume: 14 start-page: 3099 year: 2005 end-page: 3111 ident: CR28 article-title: Unrip, a factor implicated in cap‐independent translation, associates with the cytosolic SMN complex and influences its intracellular localization publication-title: Hum Mol Genet – volume: 15 start-page: 2256 year: 1996 end-page: 2269 ident: CR51 article-title: The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro publication-title: EMBO J – volume: 49 start-page: 692 year: 2013 end-page: 703 ident: CR27 article-title: Structural basis of assembly chaperone‐ mediated snRNP formation publication-title: Mol Cell – volume: 185 start-page: 1167 year: 2009 end-page: 1180 ident: CR62 article-title: Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2 publication-title: J Cell Biol – volume: 282 start-page: 5825 year: 2007 end-page: 5833 ident: CR44 article-title: A comprehensive interaction map of the human survival of motor neuron (SMN) complex publication-title: J Biol Chem – volume: 22 start-page: 1583 year: 2004 end-page: 1587 ident: CR5 article-title: Baculovirus expression system for heterologous multiprotein complexes publication-title: Nat Biotechnol – volume: 298 start-page: 1775 year: 2002 end-page: 1779 ident: CR48 article-title: Essential role for the SMN complex in the specificity of snRNP assembly publication-title: Science – volume: 24 start-page: 438 year: 2010 end-page: 442 ident: CR16 article-title: A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity publication-title: Genes Dev – volume: 105 start-page: 10045 year: 2008 end-page: 10050 ident: CR33 article-title: Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in publication-title: Proc Natl Acad Sci USA – volume: 102 start-page: 17372 year: 2005 end-page: 17377 ident: CR54 article-title: Gemin proteins are required for efficient assembly of Sm‐class ribonucleoproteins publication-title: Proc Natl Acad Sci USA – volume: 35 start-page: 676 year: 2010 end-page: 683 ident: CR13 article-title: Cellular strategies for the assembly of molecular machines publication-title: Trends Biochem Sci – volume: 371 start-page: 2120 year: 2008 end-page: 2133 ident: CR36 article-title: Spinal muscular atrophy publication-title: Lancet – volume: 463 start-page: 197 year: 2010 end-page: 202 ident: CR35 article-title: Coupled chaperone action in folding and assembly of hexadecameric Rubisco publication-title: Nature – volume: 276 start-page: 45387 year: 2001 end-page: 45393 ident: CR59 article-title: Characterization of functional domains of the SMN protein in vivo publication-title: J Biol Chem – volume: 96 start-page: 375 year: 1999 end-page: 387 ident: CR31 article-title: Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs publication-title: Cell – volume: 146 start-page: 384 year: 2011 end-page: 395 ident: CR63 article-title: Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly publication-title: Cell – volume: 90 start-page: 1023 year: 1997 end-page: 1029 ident: CR19 article-title: The SMN‐SIP1 complex has an essential role in spliceosomal snRNP biogenesis publication-title: Cell – volume: 275 start-page: 26370 year: 2000 end-page: 26375 ident: CR23 article-title: Specific sequences of the Sm and Sm‐like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN) publication-title: J Biol Chem – volume: 282 start-page: 27953 year: 2007 end-page: 27959 ident: CR4 article-title: SMN‐independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate publication-title: J Biol Chem – volume: 445 start-page: 361 year: 2012 end-page: 370 article-title: Solution structure of the core SMN‐Gemin2 complex publication-title: Biochem J – volume: 20 start-page: 90 year: 2009 end-page: 101 article-title: Gemin3 is an essential gene required for larval motor function and pupation in publication-title: Mol Biol Cell – volume: 3 start-page: 945 year: 2001a end-page: 949 article-title: A multiprotein complex mediates the ATP‐dependent assembly of spliceosomal U snRNPs publication-title: Nat Cell Biol – volume: 15 start-page: 228 year: 2000 end-page: 237 article-title: An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA) publication-title: Hum Mutat – volume: 22 start-page: 1583 year: 2004 end-page: 1587 article-title: Baculovirus expression system for heterologous multiprotein complexes publication-title: Nat Biotechnol – volume: 15 start-page: 108 year: 2014 end-page: 121 article-title: A day in the life of the spliceosome publication-title: Nat Rev Mol Cell Biol – volume: 16 start-page: 229 year: 1992 end-page: 240 article-title: In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA publication-title: Mol Biol Rep – volume: 25 start-page: 5543 year: 2005 end-page: 5551 article-title: The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy publication-title: Mol Cell Biol – volume: 282 start-page: 5825 year: 2007 end-page: 5833 article-title: A comprehensive interaction map of the human survival of motor neuron (SMN) complex publication-title: J Biol Chem – volume: 92 start-page: 1945 year: 1995 end-page: 1949 article-title: GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs publication-title: Proc Natl Acad Sci USA – volume: 35 start-page: 676 year: 2010 end-page: 683 article-title: Cellular strategies for the assembly of molecular machines publication-title: Trends Biochem Sci – volume: 42 start-page: 751 year: 1985 end-page: 758 article-title: Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA‐free core precursor and posttranslational modification publication-title: Cell – volume: 10 start-page: e1004489 year: 2014 article-title: SMA‐causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila publication-title: PLoS Genet – volume: 185 start-page: 1167 year: 2009 end-page: 1180 article-title: Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2 publication-title: J Cell Biol – volume: 282 start-page: 27953 year: 2007 end-page: 27959 article-title: SMN‐independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate publication-title: J Biol Chem – volume: 49 start-page: 692 year: 2013 end-page: 703 article-title: Structural basis of assembly chaperone‐ mediated snRNP formation publication-title: Mol Cell – volume: 14 start-page: 878 year: 2008 end-page: 887 article-title: Sm protein methylation is dispensable for snRNP assembly in publication-title: RNA – volume: 276 start-page: 45387 year: 2001 end-page: 45393 article-title: Characterization of functional domains of the SMN protein in vivo publication-title: J Biol Chem – volume: 146 start-page: 384 year: 2011 end-page: 395 article-title: Structure of a key intermediate of the SMN complex reveals Gemin2's crucial function in snRNP assembly publication-title: Cell – volume: 90 start-page: 1023 year: 1997 end-page: 1029 article-title: The SMN‐SIP1 complex has an essential role in spliceosomal snRNP biogenesis publication-title: Cell – volume: 277 start-page: 5631 year: 2002 end-page: 5636 article-title: Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins publication-title: J Biol Chem – volume: 102 start-page: 17372 year: 2005 end-page: 17377 article-title: Gemin proteins are required for efficient assembly of Sm‐class ribonucleoproteins publication-title: Proc Natl Acad Sci USA – volume: 68 start-page: 979 year: 2011 end-page: 984 article-title: Spinal muscular atrophy: a timely review publication-title: Arch Neurol – volume: 371 start-page: 2120 year: 2008 end-page: 2133 article-title: Spinal muscular atrophy publication-title: Lancet – volume: 281 start-page: 37009 year: 2006b end-page: 37016 article-title: Gemin8 is required for the architecture and function of the survival motor neuron complex publication-title: J Biol Chem – volume: 14 start-page: 3099 year: 2005 end-page: 3111 article-title: Unrip, a factor implicated in cap‐independent translation, associates with the cytosolic SMN complex and influences its intracellular localization publication-title: Hum Mol Genet – volume: 38 start-page: 551 year: 2010 end-page: 562 article-title: Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis publication-title: Mol Cell – volume: 12 start-page: 212 year: 1997 end-page: 216 article-title: Yeast RNA polymerase II transcription reconstituted with purified proteins publication-title: Methods – volume: 277 start-page: 31957 year: 2002 end-page: 31962 article-title: Identification and characterization of Gemin7, a novel component of the survival of motor neuron complex publication-title: J Biol Chem – volume: 23 start-page: 273 year: 2006 end-page: 279 article-title: The Gemin5 protein of the SMN complex identifies snRNAs publication-title: Mol Cell – volume: 24 start-page: 438 year: 2010 end-page: 442 article-title: A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity publication-title: Genes Dev – volume: 7 start-page: 1531 year: 2001 end-page: 1542 article-title: Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm‐like protein LSm4, and their interaction with the SMN protein publication-title: RNA – volume: 281 start-page: 8126 year: 2006a end-page: 8134 article-title: Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly publication-title: J Biol Chem – year: 1993 – volume: 21 start-page: 8289 year: 2001 end-page: 8300 article-title: The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine‐modified Sm proteins publication-title: Mol Cell Biol – volume: 430 start-page: 147 year: 2007 end-page: 177 article-title: Assembly and analysis of eukaryotic translation initiation complexes publication-title: Methods Enzymol – volume: 96 start-page: 375 year: 1999 end-page: 387 article-title: Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs publication-title: Cell – volume: 12 start-page: 472 year: 2002 end-page: 478 article-title: SMN‐mediated assembly of RNPs: a complex story publication-title: Trends Cell Biol – volume: 148 start-page: 1177 year: 2000 end-page: 1186 article-title: Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli publication-title: J Cell Biol – volume: 23 start-page: 1650 year: 2009 end-page: 1664 article-title: SMN‐assisted assembly of snRNP‐specific Sm cores in trypanosomes publication-title: Genes Dev – volume: 579 start-page: 2348 year: 2005 end-page: 2354 article-title: Unrip is a component of SMN complexes active in snRNP assembly publication-title: FEBS Lett – volume: 105 start-page: 10045 year: 2008 end-page: 10050 article-title: Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in publication-title: Proc Natl Acad Sci USA – volume: 80 start-page: 155 year: 1995 end-page: 165 article-title: Identification and characterization of a spinal muscular atrophy‐determining gene publication-title: Cell – volume: 277 start-page: 7540 year: 2002a end-page: 7545 article-title: Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component publication-title: J Biol Chem – volume: 14 start-page: 305 year: 2002 end-page: 312 article-title: The SMN complex, an assemblyosome of ribonucleoproteins publication-title: Curr Opin Cell Biol – volume: 18 start-page: 1414 year: 2011 end-page: 1420 article-title: Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins publication-title: Nat Struct Mol Biol – volume: 2 start-page: 718 year: 2011 end-page: 731 article-title: Biogenesis of spliceosomal small nuclear ribonucleoproteins publication-title: Wiley Interdiscip Rev RNA – volume: 178 start-page: 733 year: 2007 end-page: 740 article-title: Two distinct arginine methyltransferases are required for biogenesis of Sm‐class ribonucleoproteins publication-title: J Cell Biol – volume: 20 start-page: 1929 year: 2012 end-page: 1939 article-title: The survival motor neuron protein forms soluble glycine zipper oligomers publication-title: Structure – volume: 298 start-page: 1775 year: 2002b end-page: 1779 article-title: Essential role for the SMN complex in the specificity of snRNP assembly publication-title: Science – volume: 135 start-page: 497 year: 2008 end-page: 509 article-title: An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs publication-title: Cell – volume: 147 start-page: 1181 year: 1999 end-page: 1194 article-title: Gemin3: a novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems publication-title: J Cell Biol – volume: 10 start-page: 597 year: 2009 end-page: 609 article-title: Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? publication-title: Nat Rev Neurosci – volume: 14 start-page: 1605 year: 2005 end-page: 1611 article-title: Gemins modulate the expression and activity of the SMN complex publication-title: Hum Mol Genet – volume: 11 start-page: 1990 year: 2001b end-page: 1994 article-title: Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln publication-title: Curr Biol – volume: 463 start-page: 197 year: 2010 end-page: 202 article-title: Coupled chaperone action in folding and assembly of hexadecameric Rubisco publication-title: Nature – volume: 31 start-page: 395 year: 2006 end-page: 401 article-title: Molecular chaperones: assisting assembly in addition to folding publication-title: Trends Biochem Sci – volume: 275 start-page: 26370 year: 2000 end-page: 26375 article-title: Specific sequences of the Sm and Sm‐like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN) publication-title: J Biol Chem – volume: 109 start-page: 17960 year: 2012 end-page: 17965 article-title: Crystal structure of the human PRMT5:MEP50 complex publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 2351 year: 1999 end-page: 2357 article-title: Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy publication-title: Hum Mol Genet – volume: 277 start-page: 3537 year: 2002 end-page: 3543 article-title: The novel human protein arginine N‐methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity publication-title: J Biol Chem – volume: 15 start-page: 2256 year: 1996 end-page: 2269 article-title: The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro publication-title: EMBO J – volume: 6 start-page: 3479 year: 1987 end-page: 3485 article-title: In vitro assembly of U1 snRNPs publication-title: EMBO J – reference: 9237165 - Methods. 1997 Jul;12(3):212-6 – reference: 16301532 - Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17372-7 – reference: 19605687 - Genes Dev. 2009 Jul 15;23(14):1650-64 – reference: 16434402 - J Biol Chem. 2006 Mar 24;281(12):8126-34 – reference: 17709427 - J Cell Biol. 2007 Aug 27;178(5):733-40 – reference: 20194437 - Genes Dev. 2010 Mar 1;24(5):438-42 – reference: 11713266 - Mol Cell Biol. 2001 Dec;21(24):8289-300 – reference: 17640873 - J Biol Chem. 2007 Sep 21;282(38):27953-9 – reference: 18984161 - Cell. 2008 Oct 31;135(3):497-509 – reference: 22101937 - Nat Struct Mol Biol. 2011 Dec;18(12):1414-20 – reference: 9323130 - Cell. 1997 Sep 19;90(6):1023-9 – reference: 15964810 - Mol Cell Biol. 2005 Jul;25(13):5543-51 – reference: 17178713 - J Biol Chem. 2007 Feb 23;282(8):5825-33 – reference: 23071334 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17960-5 – reference: 10851237 - J Biol Chem. 2000 Aug 25;275(34):26370-5 – reference: 17023415 - J Biol Chem. 2006 Dec 1;281(48):37009-16 – reference: 10679938 - Hum Mutat. 2000;15(3):228-37 – reference: 18572081 - Lancet. 2008 Jun 21;371(9630):2120-33 – reference: 7813012 - Cell. 1995 Jan 13;80(1):155-65 – reference: 10601333 - J Cell Biol. 1999 Dec 13;147(6):1181-94 – reference: 16716593 - Trends Biochem Sci. 2006 Jul;31(7):395-401 – reference: 7892205 - Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1945-9 – reference: 12067652 - Curr Opin Cell Biol. 2002 Jun;14(3):305-12 – reference: 21816274 - Cell. 2011 Aug 5;146(3):384-95 – reference: 18923150 - Mol Biol Cell. 2009 Jan;20(1):90-101 – reference: 20075914 - Nature. 2010 Jan 14;463(7278):197-202 – reference: 21823231 - Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):718-31 – reference: 10556282 - Hum Mol Genet. 1999 Dec;8(13):2351-7 – reference: 16857593 - Mol Cell. 2006 Jul 21;23(2):273-9 – reference: 10725331 - J Cell Biol. 2000 Mar 20;148(6):1177-86 – reference: 18369183 - RNA. 2008 May;14(5):878-87 – reference: 21482919 - Arch Neurol. 2011 Aug;68(8):979-84 – reference: 2932224 - Cell. 1985 Oct;42(3):751-8 – reference: 10025403 - Cell. 1999 Feb 5;96(3):375-87 – reference: 20513430 - Mol Cell. 2010 May 28;38(4):551-62 – reference: 11715014 - Nat Cell Biol. 2001 Nov;3(11):945-9 – reference: 1454055 - Mol Biol Rep. 1992 Sep;16(4):229-40 – reference: 12065586 - J Biol Chem. 2002 Aug 30;277(35):31957-62 – reference: 23333303 - Mol Cell. 2013 Feb 21;49(4):692-703 – reference: 22607171 - Biochem J. 2012 Aug 1;445(3):361-70 – reference: 2962858 - EMBO J. 1987 Nov;6(11):3479-85 – reference: 11572858 - J Biol Chem. 2001 Nov 30;276(48):45387-93 – reference: 12441251 - Trends Cell Biol. 2002 Oct;12(10):472-8 – reference: 17913638 - Methods Enzymol. 2007;430:147-77 – reference: 11720283 - RNA. 2001 Nov;7(11):1531-42 – reference: 8641291 - EMBO J. 1996 May 1;15(9):2256-69 – reference: 19564402 - J Cell Biol. 2009 Jun 29;185(7):1167-80 – reference: 11714716 - J Biol Chem. 2002 Feb 15;277(7):5631-6 – reference: 19584893 - Nat Rev Neurosci. 2009 Aug;10(8):597-609 – reference: 11747828 - Curr Biol. 2001 Dec 11;11(24):1990-4 – reference: 16159890 - Hum Mol Genet. 2005 Oct 15;14(20):3099-111 – reference: 24452469 - Nat Rev Mol Cell Biol. 2014 Feb;15(2):108-21 – reference: 15843395 - Hum Mol Genet. 2005 Jun 15;14(12):1605-11 – reference: 11748230 - J Biol Chem. 2002 Mar 1;277(9):7540-5 – reference: 11724789 - J Biol Chem. 2002 Feb 1;277(5):3537-43 – reference: 20727772 - Trends Biochem Sci. 2010 Dec;35(12):676-83 – reference: 23022347 - Structure. 2012 Nov 7;20(11):1929-39 – reference: 15848170 - FEBS Lett. 2005 Apr 25;579(11):2348-54 – reference: 15568020 - Nat Biotechnol. 2004 Dec;22(12):1583-7 – reference: 12459587 - Science. 2002 Nov 29;298(5599):1775-9 – reference: 18621711 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10045-50 – reference: 25144193 - PLoS Genet. 2014 Aug;10(8):e1004489 |
SSID | ssj0005871 |
Score | 2.3773158 |
Snippet | The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes
in vivo
. These
trans
‐acting factors enable the faithful... The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans‐acting factors enable the faithful... The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful... The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo . These trans -acting factors enable the faithful... |
SourceID | pubmedcentral proquest pubmed wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1925 |
SubjectTerms | Animals assembly DEAD Box Protein 20 - genetics DEAD Box Protein 20 - metabolism EMBO36 Humans Minor Histocompatibility Antigens Mode of action Molecular biology Muscular Atrophy, Spinal - genetics Mutation pICln PRMT5 Protein-Arginine N-Methyltransferases - genetics Protein-Arginine N-Methyltransferases - metabolism Proteins Recombinant Proteins - genetics Recombinant Proteins - metabolism Ribonucleoproteins, Small Nuclear - genetics Ribonucleoproteins, Small Nuclear - metabolism RNA, Small Nuclear - metabolism SMN SMN Complex Proteins - genetics SMN Complex Proteins - metabolism snRNP Thermal energy |
Title | Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization |
URI | https://api.istex.fr/ark:/67375/WNG-787L0QXW-Q/fulltext.pdf https://link.springer.com/article/10.15252/embj.201490350 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201490350 https://www.ncbi.nlm.nih.gov/pubmed/26069323 https://www.proquest.com/docview/1696159606 https://www.proquest.com/docview/1697218122 https://pubmed.ncbi.nlm.nih.gov/PMC4547896 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NpgleEGNjhAHypGnSHqrViZ3Ej6PiQ2hUYwPRN8uOHa1AU9SCWP_73blpaAU87C2JrfPpfHZ-Z98HwGfppBVUI4ynVrZEoWhJFXkrz4syM2nCTQgSO-2mxxfipCd7dZIkioWZv7-XsYy_-YG9Ig8soegObAleS55kVKOhk3YefTnyYFmFwxTBc1Xn8HmGAGJQEt_f5wDlU7_I5nJ0EbqGf8_hOqzVoJF9n87yW3jlqw14My0jOdmAlc6sats70GRP1g4AKHI2LBlCPBZK8bELNq5-dX8yBMzI782EDYIrpR9NGGVyQk1kyPXtQ3_s2e8BCzkc-khjLl7zPZwfHpx3jlt1EYVWXyiBe6zlZUYBskaYuC2MK0r85GLuXN42uOh8ao0vTSHTwhYyRxhrlMwyGQvHC5lswnI1rPwWMKmsRVLWlaUR1iZGOOFM7jxuCSpuJxF8CaLVt9M8GdqMrsltLJP6snukcWf40T7rXeqzCHZmstf1ihlrnioEV2RPRfCpaUbh0QWGqfzwPvTJAiSJI_gwnapmMLTLUsSiyEW2MIlNB8qjvdhS9f-EfNohp5nCcb_OpnuOLbSRSI00qZFu1CiCJOhDQ_2FfvrgdP-kedv-jxE-wio-SzpG5mIHlu9G934X8c-d3Qu6v0f_IPkP9SD_bg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTmh7QWN8LLCBkRASDxV1Yif2Y5k2Smkrxjqtb5YdO6JA06ndBP3vObtJWMV44DG2dbbOd87vfOc7gNfccsN8jTCaGt5mufQqlYu2EHmR6TShOjwSG47S3gXrT_hkC2j9FiZEu9cuyXBSVzV64nduZr75WCwmvTfsHmwLngregu1ut3_e_xPXIYKVFS5WGBWyyudzBwnEo56Vv-4Cl3_HSDaO0k0YG_5Dp3vwoAKQpLve8Yew5cp9uL8uKbnah53juoLbI1DetqyCAZD9ZF4QhHsklOUjF2RZfhl9Jgiecb0_VmQWwirdYkV8VieUSoKrvvo5XTpyPiMhn8MUadx6u_kYxqcn4-Neuyqo0J4yyfC8NbTI_GNZzXTcYdrmBTbZmForOhoV0KVGu0LnPM1NzgVCWi15lvGYWZrz5Am0ynnpDoBwaQySMrYoNDMm0cwyq4V1eDzIuJNE8CawVl2tc2YovfjuQ8gyri5HHxSeEoPO2eRSnUVwWPNeVdqzVDSVCLS8bRXBq6YbmeedGbp085swJgvwJI7g6XqrmsnQRksRl-Iqso1NbAb4nNqbPeX0a8itHfKbSZz3bb3dt5aF9pIXI-XFSDViFEES5KGh_o9x6mT4vt98PfuPGV7CTm88HKjBx9Gn57CL7dxfL1N2CK3rxY07Qlx0bV5UmvAbPMwG-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8gRuGFKAosoNbEmPhw4brb7m4f9eREhAsohHtr2m03HHB7l7sjeP-90-4HXMQHH7dtps3MtPubznQG4AM3XDNXI4zGmrdYJtyWytJWmmZ5ouKIKv9I7LgXH5yzwz7vV7E50zravXZJlm8aXJamYrY3Nnldryfcs0N95eKymHCesSfwFM0U6myvTty5j_BIvb3lr1gYTUWV2ecRAohMHVN_PwYz_46WbFymi4DW_5G6L2CtgpLkcyn7l7Bki3V4VhaXnK_DSqeu5fYKpLMyq7AAFAQZ5QSBH_EF-sg5mRY_eycEYTSu92ZOhj7A0k7mxOV3Qv0kuOrx3WBqya8h8ZkdBkjjwSvO13DW3T_rHLSq0gqtARMMT15N88Q9m1VMhW2mTJZjkwmpMWlb4Va0sVY2VxmPM53xFMGtEjxJeMgMzXi0AcvFqLBbQLjQGklpk-eKaR0pZphRqbF4UIiwHQXw0bNWjsvsGVJNrl0wWcLlRe-bxPPiqH3av5CnAezWvJfVPppKGguEXM7KCuB9043Mc24NVdjRrR-TeKASBrBZiqqZDK21GBEqriJZEGIzwGXXXuwpBpc-y7bPdCZw3k-1uB8sCy0np0bSqZFs1CiAyOtDQ_0f4-T-8ZfD5mv7P2Z4B89Pvnbl0ffejx1YxWbu7pkp24Xl2eTWvkGANNNv_Tb4A4SRCdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstitution+of+the+human+U+snRNP+assembly+machinery+reveals+stepwise+Sm+protein+organization&rft.jtitle=The+EMBO+journal&rft.au=Neuenkirchen%2C+Nils&rft.au=Englbrecht%2C+Clemens&rft.au=Ohmer%2C+J%C3%BCrgen&rft.au=Ziegenhals%2C+Thomas&rft.date=2015-07-14&rft.eissn=1460-2075&rft.volume=34&rft.issue=14&rft.spage=1925&rft_id=info:doi/10.15252%2Fembj.201490350&rft_id=info%3Apmid%2F26069323&rft.externalDocID=26069323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |