Crack Image Classification: Performance Comparison Among Different Machine Learning Algorithms

Classification of surface crack images is an ever-evolving area of research that aims to develop machine learning models capable of identifying and categorizing cracks in materials. This study concentrates on evaluating and comparing the effectiveness of various machine learning algorithms when empl...

Full description

Saved in:
Bibliographic Details
Published in2024 8th International Conference on Image and Signal Processing and their Applications (ISPA) pp. 1 - 6
Main Authors Okba, Benelmir, Fathi, Dhiabi
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classification of surface crack images is an ever-evolving area of research that aims to develop machine learning models capable of identifying and categorizing cracks in materials. This study concentrates on evaluating and comparing the effectiveness of various machine learning algorithms when employed in the classification of crack images. The objective is to identify the most suitable classification technique for this purpose. To conduct this comparative study, several machine learning algorithms are selected, such as k-nearest neighbors (KNN), decision trees, support vector machines (SVM), random forests and neural networks (NN). Each of these algorithms is trained and evaluated on a dataset of previously annotated crack images.
AbstractList Classification of surface crack images is an ever-evolving area of research that aims to develop machine learning models capable of identifying and categorizing cracks in materials. This study concentrates on evaluating and comparing the effectiveness of various machine learning algorithms when employed in the classification of crack images. The objective is to identify the most suitable classification technique for this purpose. To conduct this comparative study, several machine learning algorithms are selected, such as k-nearest neighbors (KNN), decision trees, support vector machines (SVM), random forests and neural networks (NN). Each of these algorithms is trained and evaluated on a dataset of previously annotated crack images.
Author Okba, Benelmir
Fathi, Dhiabi
Author_xml – sequence: 1
  givenname: Benelmir
  surname: Okba
  fullname: Okba, Benelmir
  email: o.benelmir@univ-biskra.dz
  organization: University Mohamed Khider,Faculty of Sciences and Technology,Electrical Engeneering Departement,Biskra,Algeria
– sequence: 2
  givenname: Dhiabi
  surname: Fathi
  fullname: Fathi, Dhiabi
  email: f.dhiabi@univ-biskra.dz
  organization: University Mohamed Khider,Faculty of Sciences and Technology,Electrical Engeneering Departement,Biskra,Algeria
BookMark eNo1j91KwzAYQCPohc69gWBeoDU_TdJ4V6rOwcSBu3Z8zb50wTYZaW98ewfq1bk4cODckMuYIhJyz1nJObMP649to6xlVSmYqErOlNS1MBdkaY2tpWKSWVHZa_LZZnBfdD1Cj7QdYJqCDw7mkOIj3WL2KY8Q3dml8QQ5TCnSZkyxp0_Be8wYZ_oG7hgi0g1CjuGsmqFPOczHcbolVx6GCZd_XJDdy_OufS0276t122yKUFlecIvSC6bdAbVSldMgOlDGa2VczRQwKx3HDo3Q1lS8rk3nuHBW40E7xoxckLvfbEDE_SmHEfL3_v9a_gCSdFJF
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA59904.2024.10536827
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350309249
EndPage 6
ExternalDocumentID 10536827
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i491-19e3f206cde6554c6a2ba57f657c805a093c1ebe7269741887bc12c96ed6c0073
IEDL.DBID RIE
IngestDate Wed Jun 05 05:40:32 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i491-19e3f206cde6554c6a2ba57f657c805a093c1ebe7269741887bc12c96ed6c0073
PageCount 6
ParticipantIDs ieee_primary_10536827
PublicationCentury 2000
PublicationDate 2024-April-21
PublicationDateYYYYMMDD 2024-04-21
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-21
  day: 21
PublicationDecade 2020
PublicationTitle 2024 8th International Conference on Image and Signal Processing and their Applications (ISPA)
PublicationTitleAbbrev ISPA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9175862
Snippet Classification of surface crack images is an ever-evolving area of research that aims to develop machine learning models capable of identifying and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification algorithms
Data mining
deep learning
image classification
machine learning
Machine learning algorithms
Orange data mining
Prediction algorithms
Signal processing algorithms
Support vector machines
surface cracks
Vectors
Title Crack Image Classification: Performance Comparison Among Different Machine Learning Algorithms
URI https://ieeexplore.ieee.org/document/10536827
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA22J08qVvwmB6-7brKb7MZbqZYqtBSs0JMlH5Naalup24u_3iTdtigI3kIIJMyQTJJ5bx5CN2CUSUyqIiEtRFlOIRJMmojaTJI0U1RJn9Ht9njnJXsasmFFVg9cGAAI4DOIfTPk8s1Cr_xXmdvhLOUFzWuolguxJmtVmC2SiNvH536TudPVf5XQLN6M_qGbEsJG-wD1NhOu0SLTeFWqWH_9qsX47xUdosaOoYf729hzhPZgfoxeW0upp_hx5s4IHNQuPQ4omP4O93cMAdzaig_iphcbwveVTEqJuwFcCbiquzrGzffxYjkp32afDTRoPwxanajST4gmmSAREZBamnBtgLtLg-bSGZ7llrNcFwmTiUg1cT7MKRe-hk2RK02oFhwM1z6Dd4Lq88UcThG2Rrinj7LEKprZQkmiUybczU1SCpToM9Twthl9rCtkjDZmOf-j_wLtexf5rAwll6heLldw5YJ7qa6DU78B70Om3A
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pSI8bf9uB1c-3WbvVGUAIKhERMOEn6EwkyDI6Lf71tGRBNTLwtzZI138v6Xvq-730A3GglVKRiETBudJCkWAeMcBVgk3AUJwIL7jq6nS5tviSPAzIoxepeC6O19uQzHbpH38tXM7lwV2X2DycxzXC6DXZsYZ3RpVyrZG2hiN22nns1Ys9Xd1mCk3D1_g_nFJ84Gvugu_rkki8yCReFCOXXr2mM_97TAahuNHqwt84-h2BL50fgtT7ncgJbU3tKQO936ZhAHvw72NtoBGB9bT8Ia85uCN6XRikF7Hh6pYbl5NURrL2PZvNx8Tb9rIJ-46Ffbwalg0IwThgKENOxwRGVSlNbNkjKLfQkNZSkMosIj1gskY1iiilzU2yyVEiEJaNaUel6eMegks9yfQKgUcwCLgwyAicmExzJmDBbu3GMNUbyFFQdNsOP5YyM4QqWsz_Wr8Fus99pD9ut7tM52HPhcj0ajC5ApZgv9KVN9YW48gH-Btdqqic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+8th+International+Conference+on+Image+and+Signal+Processing+and+their+Applications+%28ISPA%29&rft.atitle=Crack+Image+Classification%3A+Performance+Comparison+Among+Different+Machine+Learning+Algorithms&rft.au=Okba%2C+Benelmir&rft.au=Fathi%2C+Dhiabi&rft.date=2024-04-21&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISPA59904.2024.10536827&rft.externalDocID=10536827