Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC
Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contri...
Saved in:
Published in | The EMBO journal Vol. 31; no. 8; pp. 1931 - 1946 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
18.04.2012
Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation‐induced autophagy, we performed a genome‐wide siRNA screen in a stable human cell line expressing GFP–LC3, the marker‐protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled‐coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1‐binding protein. SCOC forms a starvation‐sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation‐induced autophagy but also acts as a potential negative regulator of the ubiquitin‐proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation.
A genome‐wide siRNA screen identifies autophagy regulators. The Golgi protein SCOC regulates the interaction between ULK1 kinase and the Beclin 1 complexes in a nutrient‐dependent manner; WAC enhances starvation‐induced autophagy, while inhibiting the ubiquitin‐proteasome system. |
---|---|
AbstractList | Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation‐induced autophagy, we performed a genome‐wide siRNA screen in a stable human cell line expressing GFP–LC3, the marker‐protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled‐coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1‐binding protein. SCOC forms a starvation‐sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation‐induced autophagy but also acts as a potential negative regulator of the ubiquitin‐proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation.
A genome‐wide siRNA screen identifies autophagy regulators. The Golgi protein SCOC regulates the interaction between ULK1 kinase and the Beclin 1 complexes in a nutrient‐dependent manner; WAC enhances starvation‐induced autophagy, while inhibiting the ubiquitin‐proteasome system. Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP-LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation. Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP-LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation. [PUBLICATION ABSTRACT] Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP-LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation.Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP-LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation. A genome-wide siRNA screen identifies autophagy regulators. The Golgi protein SCOC regulates the interaction between ULK1 kinase and the Beclin 1 complexes in a nutrient-dependent manner; WAC enhances starvation-induced autophagy, while inhibiting the ubiquitin-proteasome system. Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling recycling of these components and providing cells with amino acids during starvation. It is a highly regulated process and its deregulation contributes to multiple diseases. Despite its importance in cell homeostasis, autophagy is not fully understood. To find new proteins that modulate starvation-induced autophagy, we performed a genome-wide siRNA screen in a stable human cell line expressing GFP–LC3, the marker-protein for autophagosomes. Using stringent validation criteria, our screen identified nine novel autophagy regulators. Among the hits required for autophagosome formation are SCOC (short coiled-coil protein), a Golgi protein, which interacts with fasciculation and elongation protein zeta 1 (FEZ1), an ULK1-binding protein. SCOC forms a starvation-sensitive trimeric complex with UVRAG (UV radiation resistance associated gene) and FEZ1 and may regulate ULK1 and Beclin 1 complex activities. A second candidate WAC is required for starvation-induced autophagy but also acts as a potential negative regulator of the ubiquitin-proteasome system. The identification of these novel regulatory proteins with diverse functions in autophagy contributes towards a fuller understanding of autophagosome formation. |
Author | Howell, Michael Alemu, Endalkachew A McKnight, Nicole C Johansen, Terje Tooze, Sharon A Saunders, Rebecca E Jefferies, Harold B J |
Author_xml | – sequence: 1 givenname: Nicole C surname: McKnight fullname: McKnight, Nicole C organization: Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK – sequence: 2 givenname: Harold B J surname: Jefferies fullname: Jefferies, Harold B J organization: Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK – sequence: 3 givenname: Endalkachew A surname: Alemu fullname: Alemu, Endalkachew A organization: Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, Tromsø, Norway – sequence: 4 givenname: Rebecca E surname: Saunders fullname: Saunders, Rebecca E organization: High-Throughput Screening Lab, London Research Institute, Cancer Research UK, London, UK – sequence: 5 givenname: Michael surname: Howell fullname: Howell, Michael organization: High-Throughput Screening Lab, London Research Institute, Cancer Research UK, London, UK – sequence: 6 givenname: Terje surname: Johansen fullname: Johansen, Terje organization: Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, Tromsø, Norway – sequence: 7 givenname: Sharon A surname: Tooze fullname: Tooze, Sharon A email: sharon.tooze@cancer.org.uk organization: Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22354037$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEUhS1URB-wZItGYtPNBD_Gj9kgpVEJoDaVeJUVlmfmTuqQsVN7JiX_HoeUqCAWrGzpfufcc-17jA6cd4DQc4JHBDP1CrrKL0YUEzpi4hE6IoXAOcWSH6AjTAXJC6LKQ3Qc4wJjzJUkT9AhpYwXmMkj9G0KzneQ39kGsmg_zMZZrAOAywKswSxjZjrrfGZq22SxN2Fteutdbl0z1NBkZuj96sbMN4m_HWyAmH2cXE0y45rsejx5ih63yQSe3Z8n6POb80-Tt_nF1fTdZHyR20KVIhdclFhWsqJFyTmrGoUxbRnHtJI1Jk3TljXDUrYtVqRRBFglqJIGuFLtdpIT9HrnuxqqDpoaXB_MUq-C7UzYaG-s_rPi7I2e-7VmrGCMymRwem8Q_O0AsdedjTUsl8aBH6ImuGSFIEVB_wPFVJZpkG2sl3-hCz8El14iUUSJUhaCJ-rFw_D71L9_KQF8B9zZJWz2dYL1dgX0rxXQ2xXQTOjzy7P32zsTSTfa6WKSuDmEh-3_oU2CfCewsYcf-0YmfNdCMsn19WyqZ5ezL1M6PdNf2U_Yf8O1 |
CODEN | EMJODG |
ContentType | Journal Article |
Copyright | European Molecular Biology Organization 2012 Copyright © 2012 European Molecular Biology Organization Copyright Nature Publishing Group Apr 18, 2012 Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization |
Copyright_xml | – notice: European Molecular Biology Organization 2012 – notice: Copyright © 2012 European Molecular Biology Organization – notice: Copyright Nature Publishing Group Apr 18, 2012 – notice: Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/emboj.2012.36 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | SCOC, FEZ1 and WAC regulate autophagy |
EISSN | 1460-2075 |
EndPage | 1946 |
ExternalDocumentID | PMC3343327 2679362691 22354037 EMBJ201236 10_1038_emboj_2012_36 ark_67375_WNG_NMNVG2GB_X |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 15153 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 3V. 4.4 53G 5VS 70F 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CCPQU COF CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HVGLF HYE KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M0L M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W PCBAR PQQKQ PROAC PSQYO Q2X RHF RHI RIG RNS ROL RPM SV3 TN5 TR2 UKHRP WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM AAJSJ AANHP AAYCA ACRPL ACYXJ ADNMO AEUYN AFWVQ AAMMB AASML ABZEH AEFGJ AGQPQ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NAO NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-i4896-656907b7b249553bd8002f3502b7c01ddf9c3077ff081d81e3b6287ae588f5403 |
IEDL.DBID | 7X7 |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 14:12:55 EDT 2025 Fri Jul 11 08:56:11 EDT 2025 Fri Jul 11 11:52:43 EDT 2025 Fri Jul 25 10:44:31 EDT 2025 Mon Jul 21 06:06:30 EDT 2025 Wed Jan 22 16:28:36 EST 2025 Fri Feb 21 02:37:01 EST 2025 Wed Oct 30 09:53:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | WAC UVRAG SCOC FEZ1 siGenome screen |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4896-656907b7b249553bd8002f3502b7c01ddf9c3077ff081d81e3b6287ae588f5403 |
Notes | ark:/67375/WNG-NMNVG2GB-X istex:BDB2C9D42C20EE23364972171688033B7D28A667 ArticleID:EMBJ201236 Supplementary DataSupplementary Table 1Supplementary Table 3Supplementary Table 4Review Process File ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Present address: Department of Neurology, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3343327 |
PMID | 22354037 |
PQID | 1018697465 |
PQPubID | 35985 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3343327 proquest_miscellaneous_1093461442 proquest_miscellaneous_1002794950 proquest_journals_1018697465 pubmed_primary_22354037 wiley_primary_10_1038_emboj_2012_36_EMBJ201236 springer_journals_10_1038_emboj_2012_36 istex_primary_ark_67375_WNG_NMNVG2GB_X |
PublicationCentury | 2000 |
PublicationDate | April 18, 2012 |
PublicationDateYYYYMMDD | 2012-04-18 |
PublicationDate_xml | – month: 04 year: 2012 text: April 18, 2012 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: England – name: New York |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33: 517-527 Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11: 385-396 Rothenberg C, Srinivasan D, Mah L, Kaushik S, Peterhoff CM, Ugolino J, Fang S, Cuervo AM, Nixon RA, Monteiro MJ (2010) Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet 19: 3219-3232 Webber JL, Tooze SA (2010a) Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J 29: 27-40 Ponnambalam S, Girotti M, Yaspo ML, Owen CE, Perry AC, Suganuma T, Nilsson T, Fried M, Banting G, Warren G (1996) Primate homologues of rat TGN38: primary structure, expression and functional implications. J Cell Sci 109 (Part 3): 675-685 Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk VI, Kaushik S, Klionsky DJ (2009) In search of an 'autophagometer'. Autophagy 5: 585-589 Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19: 5360-5372 Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290-303 Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, Cha GH, Ukani L, Chepanoske CL, Zhen Y, Sahasrabudhe S, Olson J, Kurschner C, Ellerby LM, Peltier JM, Botas J et al (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3: e82 Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stenmark H, Simonsen A, Yamamoto A (2010) The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 38: 265-279 Lipinski MM, Hoffman G, Ng A, Zhou W, Py BF, Hsu E, Liu X, Eisenberg J, Liu J, Blenis J, Xavier RJ, Yuan J (2010) A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Devl Cell 18: 1041-1052 Chan EYW, Tooze SA (2009) Evolution and expansion of Atg1 function. Autophagy 5: 758-765 Jung C, Ro S-H, Cao J, Otto N, Kim D-H (2010) mTOR regulation of autophagy. FEBS Lett 584: 1287-1295 Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C (2008) Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 29: 381-389 Toda H, Mochizuki H, Flores III R, Josowitz R, Krasieva TB, Lamorte VJ, Suzuki E, Gindhart JG, Furukubo-Tokunaga K, Tomoda T (2008) UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev 22: 3292-3307 Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12: 814-822 Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284: 8023-8032 Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh B-H, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8: 688-698 N'Diaye E-N, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ (2009) PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 10: 173-179 Simonsen A, Tooze SA (2009) Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 186: 773-782 Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, Wang H-G (2011) Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 7: 61-73 Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447: 1121-1125 Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15: 1318-1329 Panic B, Whyte JR, Munro S (2003) The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol 13: 405-410 Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M (2011) OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 192: 839-853 Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131-24145 Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, Hollingsworth ZR, Collin F, Synek B, Holmans PA, Young AB, Wexler NS, Delorenzi M, Kooperberg C, Augood SJ, Faull RL et al (2006) Regional and cellular gene expression changes in human Huntington's disease brain. Hum Mol Genet 15: 965-977 Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075 Totsukawa G, Kaneko Y, Uchiyama K, Toh H, Tamura K, Kondo H (2011) VCIP135 deubiquitinase and its binding protein, WAC, in p97ATPase-mediated membrane fusion. EMBO J 30: 3581-3593 Kuma A, Mizushima N (2010) Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Sem Cell Dev Bio 21: 683-690 Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabasi AL, Vidal M, Zoghbi HY (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125: 801-814 Zhang F, Yu X (2011) WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 41: 384-397 Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, Krainc D (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proc Natl Acad Sci USA 102: 11023-11028 Van Valkenburgh H, Shern JF, Sharer JD, Zhu X, Kahn RA (2001) ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J Biol Chem 276: 22826-22837 Su CW, Tharin S, Jin Y, Wightman B, Spector M, Meili D, Tsung N, Rhiner C, Bourikas D, Stoeckli E, Garriga G, Horvitz HR, Hengartner MO (2006) The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans. J Biol 5: 9 Yamamoto A, Cremona ML, Rothman JE (2006) Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol 172: 719-731 Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11: 468-476 Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170: 1101-1111 Menéndez-Benito V, Verhoef LGGC, Masucci MG, Dantuma NP (2005) Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum Mol Genet 14: 2787-2799 Li X, Su V, Kurata WE, Jin C, Lau AF (2008) A novel connexin43-interacting protein, CIP75, which belongs to the UbL-UBA protein family, regulates the turnover of connexin43. J Biol Chem 283: 5748-5759 Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432: 1032-1036 Young ARJ, Chan EYW, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119: 3888-3900 Assmann EM, Alborghetti MR, Camargo ME, Kobarg J (2006) FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled-coil region. J Biol Chem 281: 9869-9881 Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of atg proteins in autophagosome formation. Ann Rev Cell Dev Biol 27: 107-132 Chan EY, Longatti A, McKnight NC, Tooze SA (2009) Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domain using an Atg13-independent mechanism. Mol Cell Biol 29: 157-171 Webber JL, Tooze SA (2010b) New insights into the function of Atg9. FEBS Lett 584: 1319-1326 Chan EYW, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multi-domain modulator of autophagy. J Biol Chem 282: 25464-25474 Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466: 68-76 Xu GM, Arnaout MA (2002) WAC, a novel WW domain-containing adapter with a coiled-coil region, is colocalized with splicing factor SC35. Genomics 79: 87-94 Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24: 167-175 Kaltenbach, Romero, Becklin, Chettier, Bell, Phansalkar, Strand, Torcassi, Savage, Hurlburt, Cha, Ukani, Chepanoske, Zhen, Sahasrabudhe, Olson, Kurschner, Ellerby, Peltier, Botas (CR13) 2007; 3 Chan, Longatti, McKnight, Tooze (CR4) 2009; 29 Filimonenko, Isakson, Finley, Anderson, Jeong, Melia, Bartlett, Myers, Birkeland, Lamark, Krainc, Brech, Stenmark, Simonsen, Yamamoto (CR7) 2010; 38 Ponnambalam, Girotti, Yaspo, Owen, Perry, Suganuma, Nilsson, Fried, Banting, Warren (CR29) 1996; 109 Lim, Hao, Shaw, Patel, Szabo, Rual, Fisk, Li, Smolyar, Hill, Barabasi, Vidal, Zoghbi (CR19) 2006; 125 Zhong, Wang, Li, Yan, Backer, Chait, Heintz, Yue (CR50) 2009; 11 Chan, Kir, Tooze (CR5) 2007; 282 Xu, Arnaout (CR45) 2002; 79 Li, Su, Kurata, Jin, Lau (CR17) 2008; 283 Van Valkenburgh, Shern, Sharer, Zhu, Kahn (CR42) 2001; 276 Rubinsztein, Cuervo, Ravikumar, Sarkar, Korolchuk, Kaushik, Klionsky (CR31) 2009; 5 Jung, Ro, Cao, Otto, Kim (CR12) 2010; 584 Trincheri, Follo, Nicotra, Peracchio, Castino, Isidoro (CR41) 2008; 29 Behrends, Sowa, Gygi, Harper (CR2) 2010; 466 Webber, Tooze (CR44) 2010; 584 Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Overvatn, Bjorkoy, Johansen (CR28) 2007; 282 Totsukawa, Kaneko, Uchiyama, Toh, Tamura, Kondo (CR40) 2011; 30 Rothenberg, Srinivasan, Mah, Kaushik, Peterhoff, Ugolino, Fang, Cuervo, Nixon, Monteiro (CR30) 2010; 19 Hodges, Strand, Aragaki, Kuhn, Sengstag, Hughes, Elliston, Hartog, Goldstein, Thu, Hollingsworth, Collin, Synek, Holmans, Young, Wexler, Delorenzi, Kooperberg, Augood, Faull (CR9) 2006; 15 Itoh, Kanno, Uemura, Waguri, Fukuda (CR11) 2011; 192 Kuma, Mizushima (CR16) 2010; 21 Yamamoto, Cremona, Rothman (CR46) 2006; 172 Chan, Tooze (CR6) 2009; 5 Itakura, Kishi, Inoue, Mizushima (CR10) 2008; 19 Webber, Tooze (CR43) 2010; 29 N'Diaye, Kajihara, Hsieh, Morisaki, Debnath, Brown (CR26) 2009; 10 Scarlatti, Maffei, Beau, Codogno, Ghidoni (CR34) 2008; 15 Sarkar, Floto, Berger, Imarisio, Cordenier, Pasco, Cook, Rubinsztein (CR33) 2005; 170 Mizushima, Levine, Cuervo, Klionsky (CR24) 2008; 451 Korolchuk, Mansilla, Menzies, Rubinsztein (CR14) 2009; 33 Yang, Klionsky (CR47) 2010; 12 Matsunaga, Saitoh, Tabata, Omori, Satoh, Kurotori, Maejima, Shirahama‐Noda, Ichimura, Isobe, Akira, Noda, Yoshimori (CR22) 2009; 11 Assmann, Alborghetti, Camargo, Kobarg (CR1) 2006; 281 Borovecki, Lovrecic, Zhou, Jeong, Then, Rosas, Hersch, Hogarth, Bouzou, Jensen, Krainc (CR3) 2005; 102 Mizushima, Yoshimori, Ohsumi (CR25) 2011; 27 Liang, Feng, Ku, Dotan, Canaani, Oh, Jung (CR18) 2006; 8 Zhang, Yu (CR49) 2011; 41 Su, Tharin, Jin, Wightman, Spector, Meili, Tsung, Rhiner, Bourikas, Stoeckli, Garriga, Horvitz, Hengartner (CR36) 2006; 5 Young, Chan, Hu, Kochl, Crawshaw, High, Hailey, Lippincott‐Schwartz, Tooze (CR48) 2006; 119 Takahashi, Meyerkord, Hori, Runkle, Fox, Kester, Loughran, Wang (CR37) 2011; 7 Malo, Hanley, Cerquozzi, Pelletier, Nadon (CR21) 2006; 24 Fimia, Stoykova, Romagnoli, Giunta, Di Bartolomeo, Nardacci, Corazzari, Fuoco, Ucar, Schwartz, Gruss, Piacentini, Chowdhury, Cecconi (CR8) 2007; 447 Lipinski, Hoffman, Ng, Zhou, Py, Hsu, Liu, Eisenberg, Liu, Blenis, Xavier, Yuan (CR20) 2010; 18 Panic, Whyte, Munro (CR27) 2003; 13 Simonsen, Tooze (CR35) 2009; 186 Kuma, Hatano, Matsui, Yamamoto, Nakaya, Yoshimori, Ohsumi, Tokuhisa, Mizushima (CR15) 2004; 432 Thoreen, Kang, Chang, Liu, Zhang, Gao, Reichling, Sim, Sabatini, Gray (CR38) 2009; 284 Toda, Mochizuki, Flores, Josowitz, Krasieva, Lamorte, Suzuki, Gindhart, Furukubo‐Tokunaga, Tomoda (CR39) 2008; 22 Sancak, Bar‐Peled, Zoncu, Markhard, Nada, Sabatini (CR32) 2010; 141 Menéndez‐Benito, Verhoef, Masucci, Dantuma (CR23) 2005; 14 2010; 12 2005; 170 1996; 109 2010; 38 2006; 119 2007; 447 2007; 282 2010; 19 2010; 18 2010; 466 2008; 19 2002; 79 2006; 15 2003; 13 2010; 584 2006; 8 2008; 15 2011; 30 2010; 141 2006; 5 2011; 192 2006; 172 2008; 283 2011; 7 2009; 29 2001; 276 2009; 33 2009; 11 2010; 21 2009; 10 2004; 432 2006; 24 2005; 102 2008; 29 2011; 41 2010a; 29 2008; 22 2009; 5 2009; 284 2006; 281 2007; 3 2009; 186 2011; 27 2008; 451 2010b; 584 2006; 125 2005; 14 |
References_xml | – reference: Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33: 517-527 – reference: Chan EY, Longatti A, McKnight NC, Tooze SA (2009) Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domain using an Atg13-independent mechanism. Mol Cell Biol 29: 157-171 – reference: Chan EYW, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multi-domain modulator of autophagy. J Biol Chem 282: 25464-25474 – reference: Lipinski MM, Hoffman G, Ng A, Zhou W, Py BF, Hsu E, Liu X, Eisenberg J, Liu J, Blenis J, Xavier RJ, Yuan J (2010) A genome-wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions. Devl Cell 18: 1041-1052 – reference: Kuma A, Mizushima N (2010) Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Sem Cell Dev Bio 21: 683-690 – reference: Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24: 167-175 – reference: N'Diaye E-N, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ (2009) PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 10: 173-179 – reference: Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, Hollingsworth ZR, Collin F, Synek B, Holmans PA, Young AB, Wexler NS, Delorenzi M, Kooperberg C, Augood SJ, Faull RL et al (2006) Regional and cellular gene expression changes in human Huntington's disease brain. Hum Mol Genet 15: 965-977 – reference: Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170: 1101-1111 – reference: Xu GM, Arnaout MA (2002) WAC, a novel WW domain-containing adapter with a coiled-coil region, is colocalized with splicing factor SC35. Genomics 79: 87-94 – reference: Panic B, Whyte JR, Munro S (2003) The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol 13: 405-410 – reference: Assmann EM, Alborghetti MR, Camargo ME, Kobarg J (2006) FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled-coil region. J Biol Chem 281: 9869-9881 – reference: Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, Cha GH, Ukani L, Chepanoske CL, Zhen Y, Sahasrabudhe S, Olson J, Kurschner C, Ellerby LM, Peltier JM, Botas J et al (2007) Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3: e82 – reference: Su CW, Tharin S, Jin Y, Wightman B, Spector M, Meili D, Tsung N, Rhiner C, Bourikas D, Stoeckli E, Garriga G, Horvitz HR, Hengartner MO (2006) The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans. J Biol 5: 9 – reference: Totsukawa G, Kaneko Y, Uchiyama K, Toh H, Tamura K, Kondo H (2011) VCIP135 deubiquitinase and its binding protein, WAC, in p97ATPase-mediated membrane fusion. EMBO J 30: 3581-3593 – reference: Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432: 1032-1036 – reference: Jung C, Ro S-H, Cao J, Otto N, Kim D-H (2010) mTOR regulation of autophagy. FEBS Lett 584: 1287-1295 – reference: Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15: 1318-1329 – reference: Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh B-H, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8: 688-698 – reference: Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11: 468-476 – reference: Menéndez-Benito V, Verhoef LGGC, Masucci MG, Dantuma NP (2005) Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum Mol Genet 14: 2787-2799 – reference: Webber JL, Tooze SA (2010a) Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J 29: 27-40 – reference: Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C (2008) Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 29: 381-389 – reference: Simonsen A, Tooze SA (2009) Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 186: 773-782 – reference: Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19: 5360-5372 – reference: Yamamoto A, Cremona ML, Rothman JE (2006) Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol 172: 719-731 – reference: Chan EYW, Tooze SA (2009) Evolution and expansion of Atg1 function. Autophagy 5: 758-765 – reference: Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075 – reference: Toda H, Mochizuki H, Flores III R, Josowitz R, Krasieva TB, Lamorte VJ, Suzuki E, Gindhart JG, Furukubo-Tokunaga K, Tomoda T (2008) UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev 22: 3292-3307 – reference: Webber JL, Tooze SA (2010b) New insights into the function of Atg9. FEBS Lett 584: 1319-1326 – reference: Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabasi AL, Vidal M, Zoghbi HY (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125: 801-814 – reference: Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M (2011) OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 192: 839-853 – reference: Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447: 1121-1125 – reference: Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk VI, Kaushik S, Klionsky DJ (2009) In search of an 'autophagometer'. Autophagy 5: 585-589 – reference: Rothenberg C, Srinivasan D, Mah L, Kaushik S, Peterhoff CM, Ugolino J, Fang S, Cuervo AM, Nixon RA, Monteiro MJ (2010) Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum Mol Genet 19: 3219-3232 – reference: Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, Krainc D (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proc Natl Acad Sci USA 102: 11023-11028 – reference: Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stenmark H, Simonsen A, Yamamoto A (2010) The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 38: 265-279 – reference: Ponnambalam S, Girotti M, Yaspo ML, Owen CE, Perry AC, Suganuma T, Nilsson T, Fried M, Banting G, Warren G (1996) Primate homologues of rat TGN38: primary structure, expression and functional implications. J Cell Sci 109 (Part 3): 675-685 – reference: Zhang F, Yu X (2011) WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 41: 384-397 – reference: Young ARJ, Chan EYW, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119: 3888-3900 – reference: Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of atg proteins in autophagosome formation. Ann Rev Cell Dev Biol 27: 107-132 – reference: Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131-24145 – reference: Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290-303 – reference: Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12: 814-822 – reference: Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466: 68-76 – reference: Li X, Su V, Kurata WE, Jin C, Lau AF (2008) A novel connexin43-interacting protein, CIP75, which belongs to the UbL-UBA protein family, regulates the turnover of connexin43. J Biol Chem 283: 5748-5759 – reference: Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284: 8023-8032 – reference: Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11: 385-396 – reference: Van Valkenburgh H, Shern JF, Sharer JD, Zhu X, Kahn RA (2001) ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J Biol Chem 276: 22826-22837 – reference: Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, Wang H-G (2011) Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy 7: 61-73 – volume: 14 start-page: 2787 year: 2005 end-page: 2799 ident: CR23 article-title: Endoplasmic reticulum stress compromises the ubiquitin‐proteasome system publication-title: Hum Mol Genet – volume: 283 start-page: 5748 year: 2008 end-page: 5759 ident: CR17 article-title: A novel connexin43‐interacting protein, CIP75, which belongs to the UbL‐UBA protein family, regulates the turnover of connexin43 publication-title: J Biol Chem – volume: 5 start-page: 9 year: 2006 ident: CR36 article-title: The short coiled‐coil domain‐containing protein UNC‐69 cooperates with UNC‐76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans publication-title: J Biol – volume: 284 start-page: 8023 year: 2009 end-page: 8032 ident: CR38 article-title: An ATP‐competitive mammalian target of rapamycin inhibitor reveals rapamycin‐resistant functions of mTORC1 publication-title: J Biol Chem – volume: 276 start-page: 22826 year: 2001 end-page: 22837 ident: CR42 article-title: ADP‐ribosylation factors (ARFs) and ARF‐like 1 (ARL1) have both specific and shared effectors: characterizing ARL1‐binding proteins publication-title: J Biol Chem – volume: 102 start-page: 11023 year: 2005 end-page: 11028 ident: CR3 article-title: Genome‐wide expression profiling of human blood reveals biomarkers for Huntington's disease publication-title: Proc Natl Acad Sci USA – volume: 170 start-page: 1101 year: 2005 end-page: 1111 ident: CR33 article-title: Lithium induces autophagy by inhibiting inositol monophosphatase publication-title: J Cell Biol – volume: 15 start-page: 1318 year: 2008 end-page: 1329 ident: CR34 article-title: Role of non‐canonical Beclin 1‐independent autophagy in cell death induced by resveratrol in human breast cancer cells publication-title: Cell Death Differ – volume: 29 start-page: 27 year: 2010 end-page: 40 ident: CR43 article-title: Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP publication-title: EMBO J – volume: 447 start-page: 1121 year: 2007 end-page: 1125 ident: CR8 article-title: Ambra1 regulates autophagy and development of the nervous system publication-title: Nature – volume: 27 start-page: 107 year: 2011 end-page: 132 ident: CR25 article-title: The role of atg proteins in autophagosome formation publication-title: Ann Rev Cell Dev Biol – volume: 5 start-page: 758 year: 2009 end-page: 765 ident: CR6 article-title: Evolution and expansion of Atg1 function publication-title: Autophagy – volume: 15 start-page: 965 year: 2006 end-page: 977 ident: CR9 article-title: Regional and cellular gene expression changes in human Huntington's disease brain publication-title: Hum Mol Genet – volume: 33 start-page: 517 year: 2009 end-page: 527 ident: CR14 article-title: Autophagy inhibition compromises degradation of ubiquitin‐proteasome pathway substrates publication-title: Mol Cell – volume: 38 start-page: 265 year: 2010 end-page: 279 ident: CR7 article-title: The selective macroautophagic degradation of aggregated proteins requires the PI3P‐binding protein Alfy publication-title: Mol Cell – volume: 11 start-page: 468 year: 2009 end-page: 476 ident: CR50 article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1‐phosphatidylinositol‐3‐kinase complex publication-title: Nat Cell Biol – volume: 41 start-page: 384 year: 2011 end-page: 397 ident: CR49 article-title: WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription publication-title: Mol Cell – volume: 281 start-page: 9869 year: 2006 end-page: 9881 ident: CR1 article-title: FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled‐coil region publication-title: J Biol Chem – volume: 172 start-page: 719 year: 2006 end-page: 731 ident: CR46 article-title: Autophagy‐mediated clearance of huntingtin aggregates triggered by the insulin‐signaling pathway publication-title: J Cell Biol – volume: 119 start-page: 3888 year: 2006 end-page: 3900 ident: CR48 article-title: Starvation and ULK1‐dependent cycling of mammalian Atg9 between the TGN and endosomes publication-title: J Cell Sci – volume: 24 start-page: 167 year: 2006 end-page: 175 ident: CR21 article-title: Statistical practice in high‐throughput screening data analysis publication-title: Nat Biotechnol – volume: 10 start-page: 173 year: 2009 end-page: 179 ident: CR26 article-title: PLIC proteins or ubiquilins regulate autophagy‐dependent cell survival during nutrient starvation publication-title: EMBO Rep – volume: 125 start-page: 801 year: 2006 end-page: 814 ident: CR19 article-title: A protein‐protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration publication-title: Cell – volume: 22 start-page: 3292 year: 2008 end-page: 3307 ident: CR39 article-title: UNC‐51/ATG1 kinase regulates axonal transport by mediating motor‐cargo assembly publication-title: Genes Dev – volume: 3 start-page: e82 year: 2007 ident: CR13 article-title: Huntingtin interacting proteins are genetic modifiers of neurodegeneration publication-title: PLoS Genet – volume: 466 start-page: 68 year: 2010 end-page: 76 ident: CR2 article-title: Network organization of the human autophagy system publication-title: Nature – volume: 29 start-page: 381 year: 2008 end-page: 389 ident: CR41 article-title: Resveratrol‐induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes publication-title: Carcinogenesis – volume: 282 start-page: 25464 year: 2007 end-page: 25474 ident: CR5 article-title: siRNA screening of the kinome identifies ULK1 as a multi‐domain modulator of autophagy publication-title: J Biol Chem – volume: 19 start-page: 5360 year: 2008 end-page: 5372 ident: CR10 article-title: Beclin 1 forms two distinct phosphatidylinositol 3‐kinase complexes with mammalian Atg14 and UVRAG publication-title: Mol Biol Cell – volume: 29 start-page: 157 year: 2009 end-page: 171 ident: CR4 article-title: Kinase‐inactivated ULK proteins inhibit autophagy via their conserved C‐terminal domain using an Atg13‐independent mechanism publication-title: Mol Cell Biol – volume: 7 start-page: 61 year: 2011 end-page: 73 ident: CR37 article-title: Bif‐1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy publication-title: Autophagy – volume: 19 start-page: 3219 year: 2010 end-page: 3232 ident: CR30 article-title: Ubiquilin functions in autophagy and is degraded by chaperone‐mediated autophagy publication-title: Hum Mol Genet – volume: 30 start-page: 3581 year: 2011 end-page: 3593 ident: CR40 article-title: VCIP135 deubiquitinase and its binding protein, WAC, in p97ATPase‐mediated membrane fusion publication-title: EMBO J – volume: 8 start-page: 688 year: 2006 end-page: 698 ident: CR18 article-title: Autophagic and tumour suppressor activity of a novel Beclin1‐binding protein UVRAG publication-title: Nat Cell Biol – volume: 13 start-page: 405 year: 2003 end-page: 410 ident: CR27 article-title: The ARF‐like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle‐tethering factors at the Golgi apparatus publication-title: Curr Biol – volume: 5 start-page: 585 year: 2009 end-page: 589 ident: CR31 article-title: In search of an ‘autophagometer publication-title: Autophagy – volume: 282 start-page: 24131 year: 2007 end-page: 24145 ident: CR28 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J Biol Chem – volume: 192 start-page: 839 year: 2011 end-page: 853 ident: CR11 article-title: OATL1, a novel autophagosome‐resident Rab33B‐GAP, regulates autophagosomal maturation publication-title: J Cell Biol – volume: 18 start-page: 1041 year: 2010 end-page: 1052 ident: CR20 article-title: A genome‐wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions publication-title: Devl Cell – volume: 11 start-page: 385 year: 2009 end-page: 396 ident: CR22 article-title: Two Beclin 1‐binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages publication-title: Nat Cell Biol – volume: 432 start-page: 1032 year: 2004 end-page: 1036 ident: CR15 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: CR24 article-title: Autophagy fights disease through cellular self‐digestion publication-title: Nature – volume: 21 start-page: 683 year: 2010 end-page: 690 ident: CR16 article-title: Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism publication-title: Sem Cell Dev Bio – volume: 79 start-page: 87 year: 2002 end-page: 94 ident: CR45 article-title: WAC, a novel WW domain‐containing adapter with a coiled‐coil region, is colocalized with splicing factor SC35 publication-title: Genomics – volume: 584 start-page: 1319 year: 2010 end-page: 1326 ident: CR44 article-title: New insights into the function of Atg9 publication-title: FEBS Lett – volume: 109 start-page: 675 year: 1996 end-page: 685 ident: CR29 article-title: Primate homologues of rat TGN38: primary structure, expression and functional implications publication-title: J Cell Sci – volume: 584 start-page: 1287 year: 2010 end-page: 1295 ident: CR12 article-title: mTOR regulation of autophagy publication-title: FEBS Lett – volume: 186 start-page: 773 year: 2009 end-page: 782 ident: CR35 article-title: Coordination of membrane events during autophagy by multiple class III PI3‐kinase complexes publication-title: J Cell Biol – volume: 141 start-page: 290 year: 2010 end-page: 303 ident: CR32 article-title: Ragulator‐Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids publication-title: Cell – volume: 12 start-page: 814 year: 2010 end-page: 822 ident: CR47 article-title: Eaten alive: a history of macroautophagy publication-title: Nat Cell Biol – volume: 8 start-page: 688 year: 2006 end-page: 698 article-title: Autophagic and tumour suppressor activity of a novel Beclin1‐binding protein UVRAG publication-title: Nat Cell Biol – volume: 141 start-page: 290 year: 2010 end-page: 303 article-title: Ragulator‐Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids publication-title: Cell – volume: 12 start-page: 814 year: 2010 end-page: 822 article-title: Eaten alive: a history of macroautophagy publication-title: Nat Cell Biol – volume: 5 start-page: 9 year: 2006 article-title: The short coiled‐coil domain‐containing protein UNC‐69 cooperates with UNC‐76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans publication-title: J Biol – volume: 447 start-page: 1121 year: 2007 end-page: 1125 article-title: Ambra1 regulates autophagy and development of the nervous system publication-title: Nature – volume: 170 start-page: 1101 year: 2005 end-page: 1111 article-title: Lithium induces autophagy by inhibiting inositol monophosphatase publication-title: J Cell Biol – volume: 7 start-page: 61 year: 2011 end-page: 73 article-title: Bif‐1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy publication-title: Autophagy – volume: 102 start-page: 11023 year: 2005 end-page: 11028 article-title: Genome‐wide expression profiling of human blood reveals biomarkers for Huntington's disease publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 2787 year: 2005 end-page: 2799 article-title: Endoplasmic reticulum stress compromises the ubiquitin‐proteasome system publication-title: Hum Mol Genet – volume: 29 start-page: 381 year: 2008 end-page: 389 article-title: Resveratrol‐induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes publication-title: Carcinogenesis – volume: 284 start-page: 8023 year: 2009 end-page: 8032 article-title: An ATP‐competitive mammalian target of rapamycin inhibitor reveals rapamycin‐resistant functions of mTORC1 publication-title: J Biol Chem – volume: 432 start-page: 1032 year: 2004 end-page: 1036 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature – volume: 19 start-page: 3219 year: 2010 end-page: 3232 article-title: Ubiquilin functions in autophagy and is degraded by chaperone‐mediated autophagy publication-title: Hum Mol Genet – volume: 15 start-page: 965 year: 2006 end-page: 977 article-title: Regional and cellular gene expression changes in human Huntington's disease brain publication-title: Hum Mol Genet – volume: 13 start-page: 405 year: 2003 end-page: 410 article-title: The ARF‐like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle‐tethering factors at the Golgi apparatus publication-title: Curr Biol – volume: 33 start-page: 517 year: 2009 end-page: 527 article-title: Autophagy inhibition compromises degradation of ubiquitin‐proteasome pathway substrates publication-title: Mol Cell – volume: 109 start-page: 675 year: 1996 end-page: 685 article-title: Primate homologues of rat TGN38: primary structure, expression and functional implications publication-title: J Cell Sci – volume: 584 start-page: 1287 year: 2010 end-page: 1295 article-title: mTOR regulation of autophagy publication-title: FEBS Lett – volume: 30 start-page: 3581 year: 2011 end-page: 3593 article-title: VCIP135 deubiquitinase and its binding protein, WAC, in p97ATPase‐mediated membrane fusion publication-title: EMBO J – volume: 38 start-page: 265 year: 2010 end-page: 279 article-title: The selective macroautophagic degradation of aggregated proteins requires the PI3P‐binding protein Alfy publication-title: Mol Cell – volume: 41 start-page: 384 year: 2011 end-page: 397 article-title: WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription publication-title: Mol Cell – volume: 5 start-page: 758 year: 2009 end-page: 765 article-title: Evolution and expansion of Atg1 function publication-title: Autophagy – volume: 27 start-page: 107 year: 2011 end-page: 132 article-title: The role of atg proteins in autophagosome formation publication-title: Ann Rev Cell Dev Biol – volume: 282 start-page: 24131 year: 2007 end-page: 24145 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J Biol Chem – volume: 24 start-page: 167 year: 2006 end-page: 175 article-title: Statistical practice in high‐throughput screening data analysis publication-title: Nat Biotechnol – volume: 5 start-page: 585 year: 2009 end-page: 589 article-title: In search of an ‘autophagometer publication-title: Autophagy – volume: 584 start-page: 1319 year: 2010b end-page: 1326 article-title: New insights into the function of Atg9 publication-title: FEBS Lett – volume: 283 start-page: 5748 year: 2008 end-page: 5759 article-title: A novel connexin43‐interacting protein, CIP75, which belongs to the UbL‐UBA protein family, regulates the turnover of connexin43 publication-title: J Biol Chem – volume: 11 start-page: 385 year: 2009 end-page: 396 article-title: Two Beclin 1‐binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages publication-title: Nat Cell Biol – volume: 21 start-page: 683 year: 2010 end-page: 690 article-title: Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism publication-title: Sem Cell Dev Bio – volume: 466 start-page: 68 year: 2010 end-page: 76 article-title: Network organization of the human autophagy system publication-title: Nature – volume: 282 start-page: 25464 year: 2007 end-page: 25474 article-title: siRNA screening of the kinome identifies ULK1 as a multi‐domain modulator of autophagy publication-title: J Biol Chem – volume: 10 start-page: 173 year: 2009 end-page: 179 article-title: PLIC proteins or ubiquilins regulate autophagy‐dependent cell survival during nutrient starvation publication-title: EMBO Rep – volume: 186 start-page: 773 year: 2009 end-page: 782 article-title: Coordination of membrane events during autophagy by multiple class III PI3‐kinase complexes publication-title: J Cell Biol – volume: 79 start-page: 87 year: 2002 end-page: 94 article-title: WAC, a novel WW domain‐containing adapter with a coiled‐coil region, is colocalized with splicing factor SC35 publication-title: Genomics – volume: 29 start-page: 27 year: 2010a end-page: 40 article-title: Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP publication-title: EMBO J – volume: 19 start-page: 5360 year: 2008 end-page: 5372 article-title: Beclin 1 forms two distinct phosphatidylinositol 3‐kinase complexes with mammalian Atg14 and UVRAG publication-title: Mol Biol Cell – volume: 281 start-page: 9869 year: 2006 end-page: 9881 article-title: FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled‐coil region publication-title: J Biol Chem – volume: 172 start-page: 719 year: 2006 end-page: 731 article-title: Autophagy‐mediated clearance of huntingtin aggregates triggered by the insulin‐signaling pathway publication-title: J Cell Biol – volume: 18 start-page: 1041 year: 2010 end-page: 1052 article-title: A genome‐wide siRNA screen reveals multiple mTORC1 independent signaling pathways regulating autophagy under normal nutritional conditions publication-title: Devl Cell – volume: 29 start-page: 157 year: 2009 end-page: 171 article-title: Kinase‐inactivated ULK proteins inhibit autophagy via their conserved C‐terminal domain using an Atg13‐independent mechanism publication-title: Mol Cell Biol – volume: 15 start-page: 1318 year: 2008 end-page: 1329 article-title: Role of non‐canonical Beclin 1‐independent autophagy in cell death induced by resveratrol in human breast cancer cells publication-title: Cell Death Differ – volume: 192 start-page: 839 year: 2011 end-page: 853 article-title: OATL1, a novel autophagosome‐resident Rab33B‐GAP, regulates autophagosomal maturation publication-title: J Cell Biol – volume: 276 start-page: 22826 year: 2001 end-page: 22837 article-title: ADP‐ribosylation factors (ARFs) and ARF‐like 1 (ARL1) have both specific and shared effectors: characterizing ARL1‐binding proteins publication-title: J Biol Chem – volume: 451 start-page: 1069 year: 2008 end-page: 1075 article-title: Autophagy fights disease through cellular self‐digestion publication-title: Nature – volume: 11 start-page: 468 year: 2009 end-page: 476 article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1‐phosphatidylinositol‐3‐kinase complex publication-title: Nat Cell Biol – volume: 119 start-page: 3888 year: 2006 end-page: 3900 article-title: Starvation and ULK1‐dependent cycling of mammalian Atg9 between the TGN and endosomes publication-title: J Cell Sci – volume: 3 start-page: e82 year: 2007 article-title: Huntingtin interacting proteins are genetic modifiers of neurodegeneration publication-title: PLoS Genet – volume: 125 start-page: 801 year: 2006 end-page: 814 article-title: A protein‐protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration publication-title: Cell – volume: 22 start-page: 3292 year: 2008 end-page: 3307 article-title: UNC‐51/ATG1 kinase regulates axonal transport by mediating motor‐cargo assembly publication-title: Genes Dev |
SSID | ssj0005871 |
Score | 2.3824875 |
Snippet | Autophagy is a catabolic process by which cytoplasmic components are sequestered and transported by autophagosomes to lysosomes for degradation, enabling... A genome-wide siRNA screen identifies autophagy regulators. The Golgi protein SCOC regulates the interaction between ULK1 kinase and the Beclin 1 complexes in... |
SourceID | pubmedcentral proquest pubmed wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1931 |
SubjectTerms | Amino acids Amino Acids - metabolism Autophagy Carrier Proteins - antagonists & inhibitors Carrier Proteins - metabolism Cell Line Deregulation EMBO07 EMBO20 FEZ1 Gene expression Gene Silencing Genes, Reporter Genomics Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humans Membrane Proteins - antagonists & inhibitors Membrane Proteins - metabolism Molecular biology Nuclear Proteins - antagonists & inhibitors Nuclear Proteins - metabolism Phagosomes - metabolism Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Ribonucleic acid RNA RNA, Small Interfering - metabolism RNA-Binding Proteins SCOC siGenome screen Staining and Labeling Ultraviolet radiation UVRAG WAC |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLWgCMEGQXk0UJCREKxSEjsPZzmN2qkqTZCA0tlZdmxDqCZBnY6gOz6Bb-RLuNfJBEZUiF0kP-RcX9vn2NfHhLyANbeGqTEONeMqTACzhjpnOmQayIpLYxPVeHd4VmVHJ8nxPJ0Pl9WXQ1hlL2npp-l1dNhru9DdZ4zEYns8u05uoGo7OnSZlb8jOoTnV35LJYlFMUhqRlxsFgcciib8dhWo_Ds2cjwg3YSvfv05vEvuDMCRTvqm3iPXbLtNbvZPSV5uk1vl-uW2-0RPbdst7M_vP742xtJl87aaUJgegLJSVGwCj6Nq0bQdVXVjKODDYWMWSgBFh842VK1QcUB9vIQSGCxsl_Rd-aakqjX0dFI-ICeHB-_Lo3B4SyFsElFkIcA2oME61_jWdMq1QaDoeBoxnddRbIwrahjuuXOAEYyILdcZkCllUyEcoDr-kGy1XWt3CBVpVAvm_C3dJLFKuMgBSytULgoFdCogL7155ZdeL0Oq8zMMH8tTeVpNZTWrPkzZdF_OA7K7tr8cRs4SQ85EBiQng3qej8lgQDzIUK3tVpgHyHQBPxL9K0_BE2S7LCCP-i4dGwSQCH8pD0i-0dljBtTc3kxpm09ee5tzFHyDkq_WbvFn0yU6m_TOJtHZJM8Csue9Zqz7ylzyYLZ_zLye3uP_rvoJuY1feLYVi12ydXG-sk8BIl3oZ35g_ALdVA11 priority: 102 providerName: Springer Nature |
Title | Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC |
URI | https://api.istex.fr/ark:/67375/WNG-NMNVG2GB-X/fulltext.pdf https://link.springer.com/article/10.1038/emboj.2012.36 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2012.36 https://www.ncbi.nlm.nih.gov/pubmed/22354037 https://www.proquest.com/docview/1018697465 https://www.proquest.com/docview/1002794950 https://www.proquest.com/docview/1093461442 https://pubmed.ncbi.nlm.nih.gov/PMC3343327 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgFWIvCMavwJiMhOApWxInsfOE0qjrVKkBbYz1CctOHMhQk7Gugv333LlpRsW0l0ZqrlVyd3a-z758R8g7eOYWMDX6rg6YckPArK7mgXYDDWSlivzSK_Dd4WkeH52Gk1k06xbcFl1Z5XpOtBN12Ra4Rn6AylIxgN84-njxy8WuUbi72rXQuE8GKF2GJV18xm9KPIQlXHaNJfRF0mlsekwcmLluz7GyK9hHdeYB-vTPbSjz_2LJfsd0E8_aB9LhY_KoQ5I0XYX-Cblnmh3yYNVb8nqHPMzWrdyekm9j07Rz4_6uS0MX9XGeUpgtgMFSFHCCBKRqXjctVUVdUoCL3TqtC3wdIl9StUT5AfX9Guyxctgs6En2KaOqKelZmj0jp4ejL9mR2zVWcOtQJLELGA44seYaG09HTJeIGisWeYHmheeXZZUUMPZ5VQFgKIVvmI6BWSkTCVEBxGPPyVbTNuYloSLyChFU9pXdMDRKVF4FlC1RXCQKuJVD3lvXyouVeIZUlz-xloxH8iwfy3yafx0H46GcOWR37XvZDaOFvAm6Q972p8F5uKuhGtMu0QaYdQI34t1lk7AQqW_gkBercPYXBPgIb4k7hG8EujdAAe7NM039wwpxM4bqb_DLD-uU-PfSJSaatIkmMdEkix2ybzOm_-9breRoOpwEVlzv1d1eeU220Q53t3yxS7auLpfmDYCkK71nRwJ8iszfI4M0nZxM4Dgc5Z-P4dsszv4CHqYRpQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwEN4pyTDlwkB5GQqIGR4nt35bPjBMEtL0FcOUluaEkC0ZDBO7NM2U_Cl-I7uOnZKh01vPXmvs1Sfp-6TVLsBLXHNTnBptM3FcaXrIWc0kdBLTSVCsZL6trJTuDg_jYPvI2x35oxX409yFobDKZk6sJmpVprRHvkmZpQIkv4H_7uSXSVWj6HS1KaExh8Wenp2jZJu83XmP_fvKcbb6h71ts64qYOYejwITCQwKwiRMqOqy7yaKKFPm-paThKllK5VFKQI_zDJcLRW3tZsEKCuk9jnPkN-42O4NaHsuSpkWtLv9-OPBRVAJryRetavj2Tyqs3paLt_U46T8QbFkzgblg25TL_6-jNf-H565OKNdZtDVErh1B27X3JV15mC7Cyu6WIOb82qWszVY7TXF4-7Bl4EuyrE2z3Ol2SQ_iDsM5yfUzIxSRiHkmRznRclkmiuGBLXeGTbzQiHWFJNTSnggv83QnmKV9YR96n3oMVkodtzp3Yeja3H6A2gVZaEfAeO-lXInqy4Je56WPLMyFImRDHkkUc0Z8LpyrTiZp-sQ8vQnRa-FvjiOByIexp8HzqArRgasN74X9cCdiAuYGfBi8RidR-costDllGxQy0f4I9ZVNpHrkdh2DHg4787FByEjo18KDQiXOnphQCm_l58U-fcq9bfrUr45fPNNA4l_P10Q0EQFNEFAE25gwEaFmEXbl1qJ_rC761Tp_B5f7ZXnsLp9ONwX-zvx3hO4Re_Q2ZrN16F1djrVT5GinSXP6nHB4Ot1D8W_yPhIrA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVKEY8NgvIKFDASglWGJM7DWU5DZ0phAgLazs6yYxsCmqTqdATd8Ql8I1_CvZ5MYESF2MYPOdfX9jn29TEhT2DNrWBqDH0VMenHgFl9lUXKjxSQFZuEOqjw7vCkTPcO4v1pMt0g4eoujAvad5KWbppeRYc9NzPVfsZIrGjA0sGxthfIRYDaAfKtIi1-R3Vwx7Hctkoc8ryT1QwYX68CsCia8dt5wPLv-Mj-kHQdwro1aHSdXOvAIx0um3uDbJhmi1xaPid5tkWuFKvX224SNTZNOzM_v__4WmtD5_W7ckhhigDaSlG1CbyOylndtFRWtaaAEbvNWSgBNB06XFO5QNUB-fEMSmDAsJnT98WbgspG06NhcYscjHY_FHt-956CX8c8T32AbkCFVabwvemEKY1g0bIkiFRWBaHWNq9gyGfWAk7QPDRMpUCopEk4t4Ds2G2y2bSNuUsoT4KKR9bd1I1jI7kNLDC1XGY8l0CpPPLUmVccLzUzhDz5giFkWSKOyrEoJ-XhOBrviKlHtlf2F93omWPYGU-B6KRQz-M-GQyIhxmyMe0C8wChzuFHgn_lyVmMjDfyyJ1ll_YNAliEv5R5JFvr7D4D6m6vpzT1J6e_zRiKvkHJZyu3-LPpAp1NOGcT6GyCpR4ZOK_p6z43l9id7OxHTlPv3n9X_YhcfvtiJF6_LF_dJ1fxIx51hXybbJ6eLMwDQEyn6qEbI78Ag2oRbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+siRNA+screen+reveals+amino+acid+starvation-induced+autophagy+requires+SCOC+and+WAC&rft.jtitle=The+EMBO+journal&rft.au=McKnight%2C+Nicole+C&rft.au=Jefferies%2C+Harold+B+J&rft.au=Alemu%2C+Endalkachew+A&rft.au=Saunders%2C+Rebecca+E&rft.date=2012-04-18&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=31&rft.issue=8&rft.spage=1931&rft.epage=1946&rft_id=info:doi/10.1038%2Femboj.2012.36&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NMNVG2GB_X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |