Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: Results from two institutions

Purpose To compare pulmonary artery flow using Cartesian and radially sampled four‐dimensional flow‐sensitive (4D flow) MRI at two institutions. Methods Nineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a thre...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 73; no. 5; pp. 1904 - 1913
Main Authors Barker, Alex J., Roldán-Alzate, Alejandro, Entezari, Pegah, Shah, Sanjiv J., Chesler, Naomi C., Wieben, Oliver, Markl, Michael, François, Christopher J.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.05.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To compare pulmonary artery flow using Cartesian and radially sampled four‐dimensional flow‐sensitive (4D flow) MRI at two institutions. Methods Nineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a three‐dimensional radial acquisition (institution 2). The diameter, peak systolic velocity (Vmax), peak flow (Qmax), stroke volume (SV), and wall shear stress (WSS) were computed in two‐dimensional analysis planes at the main, right, and left pulmonary artery. Interobserver variability, interinstitutional differences, flow continuity, and the hemodynamic measurements in healthy and PAH subjects were assessed. Results Vmax, Qmax, SV, and WSS at all locations were significantly lower (P < 0.05) in PAH compared with healthy subjects. The limits of agreement were 0.16 m/s, 2.4 L/min, 10 mL, and 0.31 N/m2 for Vmax, Qmax, SV, and WSS, respectively. Differences between Qmax and SV using Cartesian and radial sequences were not significant. Plane placement and acquisition exhibited isolated, site‐based differences between Vmax and WSS. Conclusions 4D flow MRI was used to detect differences in pulmonary artery hemodynamics for PAH subjects. Flow and WSS in healthy and PAH subject cohorts were similar between Cartesian‐ and radial‐based 4D flow MRI acquisitions with minimal interobserver variability. Magn Reson Med 73:1904–1913, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList Purpose To compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions. Methods Nineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a three-dimensional radial acquisition (institution 2). The diameter, peak systolic velocity (Vmax), peak flow (Qmax), stroke volume (SV), and wall shear stress (WSS) were computed in two-dimensional analysis planes at the main, right, and left pulmonary artery. Interobserver variability, interinstitutional differences, flow continuity, and the hemodynamic measurements in healthy and PAH subjects were assessed. Results Vmax, Qmax, SV, and WSS at all locations were significantly lower (P<0.05) in PAH compared with healthy subjects. The limits of agreement were 0.16 m/s, 2.4 L/min, 10 mL, and 0.31 N/m super(2) for Vmax, Qmax, SV, and WSS, respectively. Differences between Qmax and SV using Cartesian and radial sequences were not significant. Plane placement and acquisition exhibited isolated, site-based differences between Vmax and WSS. Conclusions 4D flow MRI was used to detect differences in pulmonary artery hemodynamics for PAH subjects. Flow and WSS in healthy and PAH subject cohorts were similar between Cartesian- and radial-based 4D flow MRI acquisitions with minimal interobserver variability. Magn Reson Med 73:1904-1913, 2015. copyright 2014 Wiley Periodicals, Inc.
To compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions.PURPOSETo compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions.Nineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a three-dimensional radial acquisition (institution 2). The diameter, peak systolic velocity (Vmax), peak flow (Qmax), stroke volume (SV), and wall shear stress (WSS) were computed in two-dimensional analysis planes at the main, right, and left pulmonary artery. Interobserver variability, interinstitutional differences, flow continuity, and the hemodynamic measurements in healthy and PAH subjects were assessed.METHODSNineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a three-dimensional radial acquisition (institution 2). The diameter, peak systolic velocity (Vmax), peak flow (Qmax), stroke volume (SV), and wall shear stress (WSS) were computed in two-dimensional analysis planes at the main, right, and left pulmonary artery. Interobserver variability, interinstitutional differences, flow continuity, and the hemodynamic measurements in healthy and PAH subjects were assessed.Vmax, Qmax, SV, and WSS at all locations were significantly lower (P < 0.05) in PAH compared with healthy subjects. The limits of agreement were 0.16 m/s, 2.4 L/min, 10 mL, and 0.31 N/m(2) for Vmax, Qmax, SV, and WSS, respectively. Differences between Qmax and SV using Cartesian and radial sequences were not significant. Plane placement and acquisition exhibited isolated, site-based differences between Vmax and WSS.RESULTSVmax, Qmax, SV, and WSS at all locations were significantly lower (P < 0.05) in PAH compared with healthy subjects. The limits of agreement were 0.16 m/s, 2.4 L/min, 10 mL, and 0.31 N/m(2) for Vmax, Qmax, SV, and WSS, respectively. Differences between Qmax and SV using Cartesian and radial sequences were not significant. Plane placement and acquisition exhibited isolated, site-based differences between Vmax and WSS.4D flow MRI was used to detect differences in pulmonary artery hemodynamics for PAH subjects. Flow and WSS in healthy and PAH subject cohorts were similar between Cartesian- and radial-based 4D flow MRI acquisitions with minimal interobserver variability.CONCLUSIONS4D flow MRI was used to detect differences in pulmonary artery hemodynamics for PAH subjects. Flow and WSS in healthy and PAH subject cohorts were similar between Cartesian- and radial-based 4D flow MRI acquisitions with minimal interobserver variability.
Purpose To compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions. Methods Nineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a three-dimensional radial acquisition (institution 2). The diameter, peak systolic velocity (Vmax), peak flow (Qmax), stroke volume (SV), and wall shear stress (WSS) were computed in two-dimensional analysis planes at the main, right, and left pulmonary artery. Interobserver variability, interinstitutional differences, flow continuity, and the hemodynamic measurements in healthy and PAH subjects were assessed. Results Vmax, Qmax, SV, and WSS at all locations were significantly lower (P<0.05) in PAH compared with healthy subjects. The limits of agreement were 0.16 m/s, 2.4 L/min, 10 mL, and 0.31 N/m2 for Vmax, Qmax, SV, and WSS, respectively. Differences between Qmax and SV using Cartesian and radial sequences were not significant. Plane placement and acquisition exhibited isolated, site-based differences between Vmax and WSS. Conclusions 4D flow MRI was used to detect differences in pulmonary artery hemodynamics for PAH subjects. Flow and WSS in healthy and PAH subject cohorts were similar between Cartesian- and radial-based 4D flow MRI acquisitions with minimal interobserver variability. Magn Reson Med 73:1904-1913, 2015. © 2014 Wiley Periodicals, Inc.
To compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions. Nineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a three-dimensional radial acquisition (institution 2). The diameter, peak systolic velocity (Vmax), peak flow (Qmax), stroke volume (SV), and wall shear stress (WSS) were computed in two-dimensional analysis planes at the main, right, and left pulmonary artery. Interobserver variability, interinstitutional differences, flow continuity, and the hemodynamic measurements in healthy and PAH subjects were assessed. Vmax, Qmax, SV, and WSS at all locations were significantly lower (P < 0.05) in PAH compared with healthy subjects. The limits of agreement were 0.16 m/s, 2.4 L/min, 10 mL, and 0.31 N/m(2) for Vmax, Qmax, SV, and WSS, respectively. Differences between Qmax and SV using Cartesian and radial sequences were not significant. Plane placement and acquisition exhibited isolated, site-based differences between Vmax and WSS. 4D flow MRI was used to detect differences in pulmonary artery hemodynamics for PAH subjects. Flow and WSS in healthy and PAH subject cohorts were similar between Cartesian- and radial-based 4D flow MRI acquisitions with minimal interobserver variability.
Purpose To compare pulmonary artery flow using Cartesian and radially sampled four‐dimensional flow‐sensitive (4D flow) MRI at two institutions. Methods Nineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a three‐dimensional radial acquisition (institution 2). The diameter, peak systolic velocity (Vmax), peak flow (Qmax), stroke volume (SV), and wall shear stress (WSS) were computed in two‐dimensional analysis planes at the main, right, and left pulmonary artery. Interobserver variability, interinstitutional differences, flow continuity, and the hemodynamic measurements in healthy and PAH subjects were assessed. Results Vmax, Qmax, SV, and WSS at all locations were significantly lower (P < 0.05) in PAH compared with healthy subjects. The limits of agreement were 0.16 m/s, 2.4 L/min, 10 mL, and 0.31 N/m2 for Vmax, Qmax, SV, and WSS, respectively. Differences between Qmax and SV using Cartesian and radial sequences were not significant. Plane placement and acquisition exhibited isolated, site‐based differences between Vmax and WSS. Conclusions 4D flow MRI was used to detect differences in pulmonary artery hemodynamics for PAH subjects. Flow and WSS in healthy and PAH subject cohorts were similar between Cartesian‐ and radial‐based 4D flow MRI acquisitions with minimal interobserver variability. Magn Reson Med 73:1904–1913, 2015. © 2014 Wiley Periodicals, Inc.
Author Chesler, Naomi C.
François, Christopher J.
Entezari, Pegah
Shah, Sanjiv J.
Markl, Michael
Roldán-Alzate, Alejandro
Wieben, Oliver
Barker, Alex J.
Author_xml – sequence: 1
  givenname: Alex J.
  surname: Barker
  fullname: Barker, Alex J.
  email: alex.barker@northwestern.edu
  organization: Department of Radiology, Northwestern University Feinberg School of Medicine, Illinois, Chicago, USA
– sequence: 2
  givenname: Alejandro
  surname: Roldán-Alzate
  fullname: Roldán-Alzate, Alejandro
  organization: Departments of Radiology & Medical Physics, University of Wisconsin, Wisconsin, Madison, USA
– sequence: 3
  givenname: Pegah
  surname: Entezari
  fullname: Entezari, Pegah
  organization: Department of Radiology, Northwestern University Feinberg School of Medicine, Illinois, Chicago, USA
– sequence: 4
  givenname: Sanjiv J.
  surname: Shah
  fullname: Shah, Sanjiv J.
  organization: Division of Cardiology, Northwestern University Feinberg School of Medicine, Illinois, Chicago, USA
– sequence: 5
  givenname: Naomi C.
  surname: Chesler
  fullname: Chesler, Naomi C.
  organization: Department of Biomedical Engineering, University of Wisconsin, Wisconsin, Madison, USA
– sequence: 6
  givenname: Oliver
  surname: Wieben
  fullname: Wieben, Oliver
  organization: Departments of Radiology & Medical Physics, University of Wisconsin, Wisconsin, Madison, USA
– sequence: 7
  givenname: Michael
  surname: Markl
  fullname: Markl, Michael
  organization: Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
– sequence: 8
  givenname: Christopher J.
  surname: François
  fullname: François, Christopher J.
  organization: Departments of Radiology & Medical Physics, University of Wisconsin, Wisconsin, Madison, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24974951$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9uEzEQxi1URNPCgRdAlrhw2db_d80NVU2L1BQUgThaJmurLt51sL0KeRJelyFbeuiJ04xmft-M9H0n6GhMo0PoNSVnlBB2PuThjEnO1DO0oJKxhkktjtCCtII0nGpxjE5KuSeEaN2KF-iYCaha0gX6vUxTbvowuLGENNqIfUw7bEtxpcCw4uTxdooD7PIe21wdlJkZe7yzMeJy52zGpWaQ4DBi20-xPhUFOH233zroD5_e47UrwBXscxpw3SWQlhrqVGFbXqLn3sbiXj3UU_R1efnl4rq5-XT18eLDTRNEp1TTciLppiOCWS56JlRvO6Wd4pYS7QnxinFqO8mtZMoT7rzqNtp1kkkqhfb8FL2b725z-jm5Us0QysbFaEeXpmKoguNSdJT-BwqeKiI7DejbJ-g92AzuzhS8blkL1JsHavo-uN5scxjAL_MvHQDOZ2AXots_7ikxf2M3ELs5xG5W69WhAUUzK0Kp7tejwuYfRrW8lebb7ZVhbHV7TdZL85n_AXU_sdU
CODEN MRMEEN
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25326
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
Biochemistry Abstracts 1
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1913
ExternalDocumentID 3659069611
24974951
MRM25326
ark_67375_WNG_22MNH0RF_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Heart Association; Scientist Development
  funderid: 13SDG14360004
– fundername: National Center for Advancing Translational Sciences Clinical and Translational Science Award program
  funderid: 9U54TR000021; (previously grant number 1UL1RR025011 through the National Center for Research Resources)
– fundername: The Departments of Radiology and Medical Physics at the University of Wisconsin‐Madison receive support from GE Healthcare
– fundername: National Institutes of Health
  funderid: R01HL072260; R01HL105598; R01HL086939; R01HL115828; UL1RR025741
– fundername: NCRR NIH HHS
  grantid: UL1RR025741
– fundername: NCRR NIH HHS
  grantid: UL1 RR025741
– fundername: NCATS NIH HHS
  grantid: 9U54TR000021
– fundername: NHLBI NIH HHS
  grantid: R01HL115828
– fundername: NCRR NIH HHS
  grantid: 1UL1RR025011
– fundername: NHLBI NIH HHS
  grantid: R01 HL105598
– fundername: NCRR NIH HHS
  grantid: UL1 RR025011
– fundername: NHLBI NIH HHS
  grantid: R01HL072260
– fundername: NHLBI NIH HHS
  grantid: R01 HL086939
– fundername: NHLBI NIH HHS
  grantid: R01 HL115828
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-i4866-73051c8042a34d246da869e63a109f00f6231a853a526f03ef68c9e85251549f3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 12:37:11 EDT 2025
Fri Jul 11 02:04:42 EDT 2025
Fri Jul 25 12:13:41 EDT 2025
Mon Jul 21 05:59:57 EDT 2025
Wed Jan 22 16:58:30 EST 2025
Wed Oct 30 09:45:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 4D flow MRI
pulmonary hypertension
wall shear stress
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4866-73051c8042a34d246da869e63a109f00f6231a853a526f03ef68c9e85251549f3
Notes American Heart Association; Scientist Development - No. 13SDG14360004
National Center for Advancing Translational Sciences Clinical and Translational Science Award program - No. 9U54TR000021; No. (previously grant number 1UL1RR025011 through the National Center for Research Resources)
National Institutes of Health - No. R01HL072260; No. R01HL105598; No. R01HL086939; No. R01HL115828; No. UL1RR025741
The Departments of Radiology and Medical Physics at the University of Wisconsin-Madison receive support from GE Healthcare
istex:A5A3E2A1C61ACA4D7A83D3A6B5A812AAE15C745F
ark:/67375/WNG-22MNH0RF-P
ArticleID:MRM25326
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24974951
PQID 1674154727
PQPubID 1016391
PageCount 10
ParticipantIDs proquest_miscellaneous_1680454811
proquest_miscellaneous_1674960589
proquest_journals_1674154727
pubmed_primary_24974951
wiley_primary_10_1002_mrm_25326_MRM25326
istex_primary_ark_67375_WNG_22MNH0RF_P
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Bieging ET, Frydrychowicz A, Wentland A, Landgraf BR, Johnson KM, Wieben O, Francois CJ. In vivo three-dimensional MR wall shear stress estimation in ascending aortic dilatation. J Magn Reson Imaging 2011;33:589-597.
Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 2005;7:775-782.
Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J 2010;35:1079-1087.
Malek AM, Izumo S, Alper SL. Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells. Neurosurgery 1999;45:334-344; discussion 344-335.
Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, Olschewski H, Rienmueller R. Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 2008;1:23-30.
Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 2005;288:H1209-H1217.
Frydrychowicz A, Berger A, Russe MF, Stalder AF, Harloff A, Dittrich S, Hennig J, Langer M, Markl M. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis. J Thorac Cardiovasc Surg 2008;136:400-407.
Francois CJ, Srinivasan S, Schiebler ML, Reeder SB, Niespodzany E, Landgraf BR, Wieben O, Frydrychowicz A. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot. J Cardiovasc Magn Reson 2012;14:16.
Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 2006;113:2744-2753.
Chien S, Li S, Shyy YJ. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 1998;31:162-169.
Malek AM, Zhang J, Jiang J, Alper SL, Izumo S. Endothelin-1 gene suppression by shear stress: pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels. J Mol Cell Cardiol 1999;31:387-399.
Swift AJ, Rajaram S, Hurdman J, et al. Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the ASPIRE registry. JACC Cardiovasc Imaging 2013;6:1036-1047.
Wang Z, Chesler NC. Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ 2011;1:212-223.
Strecker C, Harloff A, Wallis W, Markl M. Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. J Magn Reson Imaging 2012;36:1097-1103.
Malek AM, Jiang L, Lee I, Sessa WC, Izumo S, Alper SL. Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals and is modulated by PI 3 kinase. Biochem Biophys Res Commun 1999;254:231-242.
Clay S, Alfakih K, Messroghli DR, Jones T, Ridgway JP, Sivananthan MU. The reproducibility of left ventricular volume and mass measurements: a comparison between dual-inversion-recovery black-blood sequence and SSFP. Eur Radiol 2006;16:32-37.
Truong U, Fonseca B, Dunning J, Burgett S, Lanning C, Ivy DD, Shandas R, Hunter K, Barker AJ. Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension. J Cardiovasc Magn Reson 2013;15:81.
Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995;75:519-560.
Ratnayaka K, Faranesh AZ, Hansen MS, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J 2013;34:380-389.
Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035-2042.
Liu J, Wieben O, Jung Y, Samsonov AA, Reeder SB, Block WF. Single breathhold cardiac CINE imaging with multi-echo three-dimensional hybrid radial SSFP acquisition. J Magn Reson Imaging 2010;32:434-440.
Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulm Circ 2012;2:470-476.
Maceira AM, Prasad SK, Khan M, Pennell DJ. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 2006;27:2879-2888.
Markl M, Harloff A, Bley TA, Zaitsev M, Jung B, Weigang E, Langer M, Hennig J, Frydrychowicz A. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 2007;25:824-831.
Hunter KS, Lee PF, Lanning CJ, Ivy DD, Kirby KS, Claussen LR, Chan KC, Shandas R. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am Heart J 2008;155:166-174.
Maceira AM, Prasad SK, Khan M, Pennell DJ. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2006;8:417-426.
Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013;62:D34-D41.
McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009;119:2250-2294.
Wang Z, Lakes RS, Golob M, Eickhoff JC, Chesler NC. Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PloS one 2013;8:e78569.
Krams R, Cheng C, Helderman F, et al. Shear stress is associated with markers of plaque vulnerability and MMP-9 activity. EuroIntervention 2006;2:250-256.
Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, Hennig J, Markl M. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med 2010;63:1529-1536.
Geiger J, Markl M, Jung B, Grohmann J, Stiller B, Langer M, Arnold R. 4D-MR flow analysis in patients after repair for tetralogy of Fallot. Eur Radiol 2011;21:1651-1657.
Ooi CY, Wang Z, Tabima DM, Eickhoff JC, Chesler NC. The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2010;299:H1823-H1831.
Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2011;13:7.
Gatehouse PD, Rolf MP, Graves MJ, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 2010;12:5.
Ley S, Mereles D, Puderbach M, Gruenig E, Schock H, Eichinger M, Ley-Zaporozhan J, Fink C, Kauczor HU. Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension. Eur Radiol 2007;17:1892-1897.
Reiter U, Reiter G, Kovacs G, Stalder AF, Gulsun MA, Greiser A, Olschewski H, Fuchsjager M. Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PloS One 2013;8:e82212.
Lammers SR, Kao PH, Qi HJ, Hunter K, Lanning C, Albietz J, Hofmeister S, Mecham R, Stenmark KR, Shandas R. Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves. Am J Physiol Heart C 2008;295:H1451-H1459.
Shah SJ. Pulmonary hypertension. JAMA 2012;308:1366-1374.
Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 2008;60:1218-1231.
Gu T, Korosec FR, Block WF, Fain SB, Turk Q, Lum D, Zhou Y, Grist TM, Haughton V, Mistretta CA. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. AJNR Am J Neuroradiol 2005;26:743-749.
Schiebler ML, Bhalla S, Runo J, Jarjour N, Roldan A, Chesler N, Francois CJ. Magnetic resonance and computed tomography imaging of the structural and functional changes of pulmonary arterial hypertension. J Thorac Imaging 2013;28:178-193.
Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 2004;147:218-223.
Catalano O, Antonaci S, Opasich C, Moro G, Mussida M, Perotti M, Calsamiglia G, Frascaroli M, Baldi M, Cobelli F. Intra-observer and interobserver reproducibility of right ventricle volumes, function and mass by cardiac magnetic resonance. J Cardiovasc Med (Hagerstown) 2007;8:807-814.
2007; 17
2010; 12
1995; 75
2010; 32
2004; 147
2013; 28
2010; 35
2011; 1
2013; 62
2006; 16
2006; 8
1999; 45
2007
2011; 33
2011; 13
2006; 2
2008; 1
2005; 26
2012; 14
2012; 36
2009; 119
2013; 8
2013; 6
2010; 63
2012; 308
2006; 113
2013; 15
2012; 2
2005; 288
2013; 34
2006; 27
1999; 282
2010; 299
2007; 8
2005; 7
2011; 21
1999; 31
1999; 254
2008; 136
2008; 155
2008; 60
1998; 31
2008; 295
2007; 25
18692649 - J Thorac Cardiovasc Surg. 2008 Aug;136(2):400-7
17885519 - J Cardiovasc Med (Hagerstown). 2007 Oct;8(10):807-14
20677274 - J Magn Reson Imaging. 2010 Aug;32(2):434-40
21235751 - J Cardiovasc Magn Reson. 2011;13:7
16754802 - Circulation. 2006 Jun 13;113(23):2744-53
10093051 - J Mol Cell Cardiol. 1999 Feb;31(2):387-99
7624393 - Physiol Rev. 1995 Jul;75(3):519-60
10591386 - JAMA. 1999 Dec 1;282(21):2035-42
17225131 - Eur Radiol. 2007 Jul;17(7):1892-7
14760316 - Am Heart J. 2004 Feb;147(2):218-23
22034607 - Pulm Circ. 2011 Apr-Jun;1(2):212-23
9920763 - Biochem Biophys Res Commun. 1999 Jan 8;254(1):231-42
16353438 - J Cardiovasc Magn Reson. 2005;7(5):775-82
9453297 - Hypertension. 1998 Jan;31(1 Pt 2):162-9
21563242 - J Magn Reson Imaging. 2011 Mar;33(3):589-97
17345635 - J Magn Reson Imaging. 2007 Apr;25(4):824-31
20032020 - Eur Respir J. 2010 May;35(5):1079-87
23372931 - Pulm Circ. 2012 Oct;2(4):470-6
19755269 - EuroIntervention. 2006 Aug;2(2):250-6
23769494 - JACC Cardiovasc Imaging. 2013 Oct;6(10):1036-47
20512856 - Magn Reson Med. 2010 Jun;63(6):1529-36
22745007 - J Magn Reson Imaging. 2012 Nov;36(5):1097-103
24034144 - J Cardiovasc Magn Reson. 2013;15:81
10449079 - Neurosurgery. 1999 Aug;45(2):334-44; discussion 344-5
24349224 - PLoS One. 2013;8(12):e82212
21720942 - Eur Radiol. 2011 Aug;21(8):1651-7
16132934 - Eur Radiol. 2006 Jan;16(1):32-7
22855740 - Eur Heart J. 2013 Feb;34(5):380-9
19332472 - Circulation. 2009 Apr 28;119(16):2250-94
16755827 - J Cardiovasc Magn Reson. 2006;8(3):417-26
15814915 - AJNR Am J Neuroradiol. 2005 Apr;26(4):743-9
24223157 - PLoS One. 2013;8(11):e78569
18956416 - Magn Reson Med. 2008 Nov;60(5):1218-31
23612440 - J Thorac Imaging. 2013 May;28(3):178-93
18660454 - Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1451-9
20074359 - J Cardiovasc Magn Reson. 2010;12:5
19808511 - Circ Cardiovasc Imaging. 2008 Jul;1(1):23-30
17088316 - Eur Heart J. 2006 Dec;27(23):2879-88
18082509 - Am Heart J. 2008 Jan;155(1):166-74
22313680 - J Cardiovasc Magn Reson. 2012;14:16
24355639 - J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D34-41
20852040 - Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1823-31
15528223 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1209-17
23032553 - JAMA. 2012 Oct 3;308(13):1366-74
References_xml – reference: Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, Hennig J, Markl M. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med 2010;63:1529-1536.
– reference: Maceira AM, Prasad SK, Khan M, Pennell DJ. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2006;8:417-426.
– reference: Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035-2042.
– reference: Malek AM, Jiang L, Lee I, Sessa WC, Izumo S, Alper SL. Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals and is modulated by PI 3 kinase. Biochem Biophys Res Commun 1999;254:231-242.
– reference: Liu J, Wieben O, Jung Y, Samsonov AA, Reeder SB, Block WF. Single breathhold cardiac CINE imaging with multi-echo three-dimensional hybrid radial SSFP acquisition. J Magn Reson Imaging 2010;32:434-440.
– reference: Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, Olschewski H, Rienmueller R. Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 2008;1:23-30.
– reference: Ooi CY, Wang Z, Tabima DM, Eickhoff JC, Chesler NC. The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2010;299:H1823-H1831.
– reference: Wang Z, Lakes RS, Golob M, Eickhoff JC, Chesler NC. Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PloS one 2013;8:e78569.
– reference: Schiebler ML, Bhalla S, Runo J, Jarjour N, Roldan A, Chesler N, Francois CJ. Magnetic resonance and computed tomography imaging of the structural and functional changes of pulmonary arterial hypertension. J Thorac Imaging 2013;28:178-193.
– reference: Malek AM, Izumo S, Alper SL. Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells. Neurosurgery 1999;45:334-344; discussion 344-335.
– reference: Maceira AM, Prasad SK, Khan M, Pennell DJ. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 2006;27:2879-2888.
– reference: Clay S, Alfakih K, Messroghli DR, Jones T, Ridgway JP, Sivananthan MU. The reproducibility of left ventricular volume and mass measurements: a comparison between dual-inversion-recovery black-blood sequence and SSFP. Eur Radiol 2006;16:32-37.
– reference: Markl M, Harloff A, Bley TA, Zaitsev M, Jung B, Weigang E, Langer M, Hennig J, Frydrychowicz A. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 2007;25:824-831.
– reference: Reiter U, Reiter G, Kovacs G, Stalder AF, Gulsun MA, Greiser A, Olschewski H, Fuchsjager M. Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques. PloS One 2013;8:e82212.
– reference: Ratnayaka K, Faranesh AZ, Hansen MS, et al. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J 2013;34:380-389.
– reference: Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J 2010;35:1079-1087.
– reference: Lammers SR, Kao PH, Qi HJ, Hunter K, Lanning C, Albietz J, Hofmeister S, Mecham R, Stenmark KR, Shandas R. Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves. Am J Physiol Heart C 2008;295:H1451-H1459.
– reference: Bieging ET, Frydrychowicz A, Wentland A, Landgraf BR, Johnson KM, Wieben O, Francois CJ. In vivo three-dimensional MR wall shear stress estimation in ascending aortic dilatation. J Magn Reson Imaging 2011;33:589-597.
– reference: Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2011;13:7.
– reference: Frydrychowicz A, Berger A, Russe MF, Stalder AF, Harloff A, Dittrich S, Hennig J, Langer M, Markl M. Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis. J Thorac Cardiovasc Surg 2008;136:400-407.
– reference: Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 2004;147:218-223.
– reference: Swift AJ, Rajaram S, Hurdman J, et al. Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the ASPIRE registry. JACC Cardiovasc Imaging 2013;6:1036-1047.
– reference: Wang Z, Chesler NC. Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ 2011;1:212-223.
– reference: Krams R, Cheng C, Helderman F, et al. Shear stress is associated with markers of plaque vulnerability and MMP-9 activity. EuroIntervention 2006;2:250-256.
– reference: Hunter KS, Lee PF, Lanning CJ, Ivy DD, Kirby KS, Claussen LR, Chan KC, Shandas R. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am Heart J 2008;155:166-174.
– reference: Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 2005;288:H1209-H1217.
– reference: Gu T, Korosec FR, Block WF, Fain SB, Turk Q, Lum D, Zhou Y, Grist TM, Haughton V, Mistretta CA. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. AJNR Am J Neuroradiol 2005;26:743-749.
– reference: Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image-based, computational fluid dynamics study. Pulm Circ 2012;2:470-476.
– reference: Francois CJ, Srinivasan S, Schiebler ML, Reeder SB, Niespodzany E, Landgraf BR, Wieben O, Frydrychowicz A. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot. J Cardiovasc Magn Reson 2012;14:16.
– reference: Geiger J, Markl M, Jung B, Grohmann J, Stiller B, Langer M, Arnold R. 4D-MR flow analysis in patients after repair for tetralogy of Fallot. Eur Radiol 2011;21:1651-1657.
– reference: Catalano O, Antonaci S, Opasich C, Moro G, Mussida M, Perotti M, Calsamiglia G, Frascaroli M, Baldi M, Cobelli F. Intra-observer and interobserver reproducibility of right ventricle volumes, function and mass by cardiac magnetic resonance. J Cardiovasc Med (Hagerstown) 2007;8:807-814.
– reference: Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 2008;60:1218-1231.
– reference: McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009;119:2250-2294.
– reference: Shah SJ. Pulmonary hypertension. JAMA 2012;308:1366-1374.
– reference: Strecker C, Harloff A, Wallis W, Markl M. Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. J Magn Reson Imaging 2012;36:1097-1103.
– reference: Truong U, Fonseca B, Dunning J, Burgett S, Lanning C, Ivy DD, Shandas R, Hunter K, Barker AJ. Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension. J Cardiovasc Magn Reson 2013;15:81.
– reference: Chien S, Li S, Shyy YJ. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 1998;31:162-169.
– reference: Gatehouse PD, Rolf MP, Graves MJ, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 2010;12:5.
– reference: Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 2006;113:2744-2753.
– reference: Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013;62:D34-D41.
– reference: Malek AM, Zhang J, Jiang J, Alper SL, Izumo S. Endothelin-1 gene suppression by shear stress: pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels. J Mol Cell Cardiol 1999;31:387-399.
– reference: Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 2005;7:775-782.
– reference: Ley S, Mereles D, Puderbach M, Gruenig E, Schock H, Eichinger M, Ley-Zaporozhan J, Fink C, Kauczor HU. Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension. Eur Radiol 2007;17:1892-1897.
– reference: Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995;75:519-560.
– volume: 8
  start-page: 417
  year: 2006
  end-page: 426
  article-title: Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– volume: 27
  start-page: 2879
  year: 2006
  end-page: 2888
  article-title: Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady‐state free precession cardiovascular magnetic resonance
  publication-title: Eur Heart J
– volume: 14
  start-page: 16
  year: 2012
  article-title: 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot
  publication-title: J Cardiovasc Magn Reson
– volume: 8
  start-page: 807
  year: 2007
  end-page: 814
  article-title: Intra‐observer and interobserver reproducibility of right ventricle volumes, function and mass by cardiac magnetic resonance
  publication-title: J Cardiovasc Med (Hagerstown)
– volume: 282
  start-page: 2035
  year: 1999
  end-page: 2042
  article-title: Hemodynamic shear stress and its role in atherosclerosis
  publication-title: JAMA
– volume: 21
  start-page: 1651
  year: 2011
  end-page: 1657
  article-title: 4D‐MR flow analysis in patients after repair for tetralogy of Fallot
  publication-title: Eur Radiol
– volume: 1
  start-page: 212
  year: 2011
  end-page: 223
  article-title: Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension
  publication-title: Pulm Circ
– volume: 62
  start-page: D34
  year: 2013
  end-page: D41
  article-title: Updated clinical classification of pulmonary hypertension
  publication-title: J Am Coll Cardiol
– volume: 113
  start-page: 2744
  year: 2006
  end-page: 2753
  article-title: Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress
  publication-title: Circulation
– volume: 15
  start-page: 81
  year: 2013
  article-title: Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension
  publication-title: J Cardiovasc Magn Reson
– volume: 8
  start-page: e78569
  year: 2013
  article-title: Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension
  publication-title: PloS one
– volume: 26
  start-page: 743
  year: 2005
  end-page: 749
  article-title: PC VIPR: a high‐speed 3D phase‐contrast method for flow quantification and high‐resolution angiography
  publication-title: AJNR Am J Neuroradiol
– volume: 17
  start-page: 1892
  year: 2007
  end-page: 1897
  article-title: Value of MR phase‐contrast flow measurements for functional assessment of pulmonary arterial hypertension
  publication-title: Eur Radiol
– volume: 60
  start-page: 1218
  year: 2008
  end-page: 1231
  article-title: Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters
  publication-title: Magn Reson Med
– volume: 45
  start-page: 334
  year: 1999
  end-page: 344; discussion 344–335
  article-title: Modulation by pathophysiological stimuli of the shear stress‐induced up‐regulation of endothelial nitric oxide synthase expression in endothelial cells
  publication-title: Neurosurgery
– volume: 288
  start-page: H1209
  year: 2005
  end-page: H1217
  article-title: Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia‐induced hypertension
  publication-title: Am J Physiol Heart Circ Physiol
– start-page: 3138
  year: 2007
– volume: 12
  start-page: 5
  year: 2010
  article-title: Flow measurement by cardiovascular magnetic resonance: a multi‐centre multi‐vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements
  publication-title: J Cardiovasc Magn Reson
– volume: 16
  start-page: 32
  year: 2006
  end-page: 37
  article-title: The reproducibility of left ventricular volume and mass measurements: a comparison between dual‐inversion‐recovery black‐blood sequence and SSFP
  publication-title: Eur Radiol
– volume: 7
  start-page: 775
  year: 2005
  end-page: 782
  article-title: Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging
  publication-title: J Cardiovasc Magn Reson
– volume: 1
  start-page: 23
  year: 2008
  end-page: 30
  article-title: Magnetic resonance‐derived 3‐dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure
  publication-title: Circ Cardiovasc Imaging
– volume: 75
  start-page: 519
  year: 1995
  end-page: 560
  article-title: Flow‐mediated endothelial mechanotransduction
  publication-title: Physiol Rev
– volume: 6
  start-page: 1036
  year: 2013
  end-page: 1047
  article-title: Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the ASPIRE registry
  publication-title: JACC Cardiovasc Imaging
– volume: 299
  start-page: H1823
  year: 2010
  end-page: H1831
  article-title: The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia‐induced pulmonary hypertension
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 254
  start-page: 231
  year: 1999
  end-page: 242
  article-title: Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G‐protein signals and is modulated by PI 3 kinase
  publication-title: Biochem Biophys Res Commun
– volume: 119
  start-page: 2250
  year: 2009
  end-page: 2294
  article-title: ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association
  publication-title: Circulation
– volume: 155
  start-page: 166
  year: 2008
  end-page: 174
  article-title: Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension
  publication-title: Am Heart J
– volume: 31
  start-page: 162
  year: 1998
  end-page: 169
  article-title: Effects of mechanical forces on signal transduction and gene expression in endothelial cells
  publication-title: Hypertension
– volume: 31
  start-page: 387
  year: 1999
  end-page: 399
  article-title: Endothelin‐1 gene suppression by shear stress: pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels
  publication-title: J Mol Cell Cardiol
– volume: 33
  start-page: 589
  year: 2011
  end-page: 597
  article-title: In vivo three‐dimensional MR wall shear stress estimation in ascending aortic dilatation
  publication-title: J Magn Reson Imaging
– volume: 295
  start-page: H1451
  year: 2008
  end-page: H1459
  article-title: Changes in the structure‐function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves
  publication-title: Am J Physiol Heart C
– volume: 35
  start-page: 1079
  year: 2010
  end-page: 1087
  article-title: Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation
  publication-title: Eur Respir J
– volume: 28
  start-page: 178
  year: 2013
  end-page: 193
  article-title: Magnetic resonance and computed tomography imaging of the structural and functional changes of pulmonary arterial hypertension
  publication-title: J Thorac Imaging
– volume: 8
  start-page: e82212
  year: 2013
  article-title: Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques
  publication-title: PloS One
– volume: 34
  start-page: 380
  year: 2013
  end-page: 389
  article-title: Real‐time MRI‐guided right heart catheterization in adults using passive catheters
  publication-title: Eur Heart J
– volume: 2
  start-page: 250
  year: 2006
  end-page: 256
  article-title: Shear stress is associated with markers of plaque vulnerability and MMP‐9 activity
  publication-title: EuroIntervention
– volume: 36
  start-page: 1097
  year: 2012
  end-page: 1103
  article-title: Flow‐sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T
  publication-title: J Magn Reson Imaging
– volume: 147
  start-page: 218
  year: 2004
  end-page: 223
  article-title: Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance
  publication-title: Am Heart J
– volume: 32
  start-page: 434
  year: 2010
  end-page: 440
  article-title: Single breathhold cardiac CINE imaging with multi‐echo three‐dimensional hybrid radial SSFP acquisition
  publication-title: J Magn Reson Imaging
– volume: 136
  start-page: 400
  year: 2008
  end-page: 407
  article-title: Time‐resolved magnetic resonance angiography and flow‐sensitive 4‐dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis
  publication-title: J Thorac Cardiovasc Surg
– volume: 308
  start-page: 1366
  year: 2012
  end-page: 1374
  article-title: Pulmonary hypertension
  publication-title: JAMA
– volume: 63
  start-page: 1529
  year: 2010
  end-page: 1536
  article-title: In vivo assessment of wall shear stress in the atherosclerotic aorta using flow‐sensitive 4D MRI
  publication-title: Magn Reson Med
– volume: 13
  start-page: 7
  year: 2011
  article-title: Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– volume: 2
  start-page: 470
  year: 2012
  end-page: 476
  article-title: Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: an image‐based, computational fluid dynamics study
  publication-title: Pulm Circ
– volume: 25
  start-page: 824
  year: 2007
  end-page: 831
  article-title: Time‐resolved 3D MR velocity mapping at 3T: improved navigator‐gated assessment of vascular anatomy and blood flow
  publication-title: J Magn Reson Imaging
– reference: 19332472 - Circulation. 2009 Apr 28;119(16):2250-94
– reference: 16353438 - J Cardiovasc Magn Reson. 2005;7(5):775-82
– reference: 10449079 - Neurosurgery. 1999 Aug;45(2):334-44; discussion 344-5
– reference: 7624393 - Physiol Rev. 1995 Jul;75(3):519-60
– reference: 22745007 - J Magn Reson Imaging. 2012 Nov;36(5):1097-103
– reference: 17885519 - J Cardiovasc Med (Hagerstown). 2007 Oct;8(10):807-14
– reference: 24349224 - PLoS One. 2013;8(12):e82212
– reference: 23032553 - JAMA. 2012 Oct 3;308(13):1366-74
– reference: 24223157 - PLoS One. 2013;8(11):e78569
– reference: 22034607 - Pulm Circ. 2011 Apr-Jun;1(2):212-23
– reference: 18660454 - Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1451-9
– reference: 20512856 - Magn Reson Med. 2010 Jun;63(6):1529-36
– reference: 22313680 - J Cardiovasc Magn Reson. 2012;14:16
– reference: 19755269 - EuroIntervention. 2006 Aug;2(2):250-6
– reference: 21235751 - J Cardiovasc Magn Reson. 2011;13:7
– reference: 17225131 - Eur Radiol. 2007 Jul;17(7):1892-7
– reference: 21563242 - J Magn Reson Imaging. 2011 Mar;33(3):589-97
– reference: 10093051 - J Mol Cell Cardiol. 1999 Feb;31(2):387-99
– reference: 22855740 - Eur Heart J. 2013 Feb;34(5):380-9
– reference: 15814915 - AJNR Am J Neuroradiol. 2005 Apr;26(4):743-9
– reference: 16755827 - J Cardiovasc Magn Reson. 2006;8(3):417-26
– reference: 14760316 - Am Heart J. 2004 Feb;147(2):218-23
– reference: 16754802 - Circulation. 2006 Jun 13;113(23):2744-53
– reference: 18956416 - Magn Reson Med. 2008 Nov;60(5):1218-31
– reference: 21720942 - Eur Radiol. 2011 Aug;21(8):1651-7
– reference: 23612440 - J Thorac Imaging. 2013 May;28(3):178-93
– reference: 10591386 - JAMA. 1999 Dec 1;282(21):2035-42
– reference: 23769494 - JACC Cardiovasc Imaging. 2013 Oct;6(10):1036-47
– reference: 24034144 - J Cardiovasc Magn Reson. 2013;15:81
– reference: 23372931 - Pulm Circ. 2012 Oct;2(4):470-6
– reference: 24355639 - J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D34-41
– reference: 15528223 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1209-17
– reference: 17088316 - Eur Heart J. 2006 Dec;27(23):2879-88
– reference: 16132934 - Eur Radiol. 2006 Jan;16(1):32-7
– reference: 9453297 - Hypertension. 1998 Jan;31(1 Pt 2):162-9
– reference: 20032020 - Eur Respir J. 2010 May;35(5):1079-87
– reference: 20074359 - J Cardiovasc Magn Reson. 2010;12:5
– reference: 20677274 - J Magn Reson Imaging. 2010 Aug;32(2):434-40
– reference: 18082509 - Am Heart J. 2008 Jan;155(1):166-74
– reference: 17345635 - J Magn Reson Imaging. 2007 Apr;25(4):824-31
– reference: 18692649 - J Thorac Cardiovasc Surg. 2008 Aug;136(2):400-7
– reference: 20852040 - Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1823-31
– reference: 9920763 - Biochem Biophys Res Commun. 1999 Jan 8;254(1):231-42
– reference: 19808511 - Circ Cardiovasc Imaging. 2008 Jul;1(1):23-30
SSID ssj0009974
Score 2.4924731
Snippet Purpose To compare pulmonary artery flow using Cartesian and radially sampled four‐dimensional flow‐sensitive (4D flow) MRI at two institutions. Methods...
To compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions. Nineteen healthy...
Purpose To compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions. Methods...
To compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions.PURPOSETo compare...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1904
SubjectTerms 4D flow MRI
Adult
Aged
Blood Flow Velocity - physiology
Female
Hemodynamics - physiology
Humans
Hypertension, Pulmonary - physiopathology
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Magnetic Resonance Angiography - methods
Male
Middle Aged
Observer Variation
Pulmonary Artery - physiology
Pulmonary Embolism - physiopathology
pulmonary hypertension
Reference Values
Scleroderma, Systemic - physiopathology
Sensitivity and Specificity
Shear Strength
Stroke Volume - physiology
Systole - physiology
wall shear stress
Title Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: Results from two institutions
URI https://api.istex.fr/ark:/67375/WNG-22MNH0RF-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25326
https://www.ncbi.nlm.nih.gov/pubmed/24974951
https://www.proquest.com/docview/1674154727
https://www.proquest.com/docview/1674960589
https://www.proquest.com/docview/1680454811
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEB-OA8UX_5z_Vk-JIOJL99q0yab6JOK6CF1k8fAehJA2CXfcXntsu6z65Efw1a_nJ3GSdHt4iIhvhUyatJmZ_qaZ_AbgaS5SzTBMjipamSgTcRkpB-SSrLSoUbqqfI2lYs5nh9m7I3a0Ay-3Z2ECP8Tww81ZhvfXzsBV2R5ckIaerc7GlCH6QP_rcrUcIFpcUEfleWBgnmTOz-TZllUopgdDTwSk7l1-_hO6_B2s-q_N9AZ82s4zJJmcjtddOa6-XqJw_M8HuQnXexRKXgW1uQU7pt6Dq0W_z74HV3xiaNXehh9TlP357bt2VQACgwexy2ZD1EDpSRpLztdL1GecA_E5ol96mVqTjVouSevqZpNwLoWc1MSzflzuhJZAjjEsXnVhpBdkYVqUa4k7A0O6TYNdQ2qDs5U7cDh98-H1LOrLOUQnmeA8Ql_Ckkqgl1BppmnGtRI8NzxVSZzbOLaIxBKF8EExym2cGstFlRvBEIJhFGvTu7BbN7W5DwRDX4pfXo1YDgNCMUFMZRH4aI3uiU9KM4JnfmHleaDskGp16jLYJkx-nL-VlBbzWbyYyvcj2N-uvOyNt5XuYAaOiMhuBE-GZjQ7t5eiatOsg0zutpTzv8kIR3AokmQE94JWDRPCqBdvwLDludeNoSHQSFOJWiG9VshiUfiLB_8u-hCuIbBjITFzH3a71do8QvDUlY-9lfwCxvcW0g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIn4u_BQoSwsYCRCXbBPnZ22kHhBl2dJmhVat6M04iaNW3SbVJqulnPoIXHkHXqUvwZMwtrOpqBDi0gO3SJ78Od9MvknG3wA858zPQkyTnZSmygmYmzhSEzkvSHJEVJampsdSPIwGu8GHvXBvAX7M18JYfYj2g5v2DBOvtYPrD9Jr56qhR5OjLg2RfjQllVvqZIYJW7W-uYFP9wWl_Xc7bwdO01PAOQhYFDkI6NBLGUJV-kFGgyiTLOIq8qXn8tx1c6QDnsR3mAxplLu-yiOWcsVC5AGYSuU-HvcKXNUdxLVS_8boXKyKc6v53At0ZOPBXMfIpWvtpSIF1k_vy5_47O_02Lzf-rfhbD4ztqzlsDutk2769YJo5P8ydXfgVkO0yRvrGXdhQRVLcD1uSgmW4JqpfU2re_C9j7Y_T79lutGBFSkh-bicEdmqlpIyJ8fTMbos3jQxZbAnjU2RkZkcj0mlW4MTu_SGHBTECJtc3Amdnexj5j-p7Zlek5Gq0K4iepkPqWcl7mqrN3Q4uA-7lzJFD2CxKAv1EAhm9xTJRYZ0FXNe1kPamCO3yzKMwFEvUR14aZAkjq0qiZCTQ12k1wvFp-F7QWk8HLijvvjYgdU51EQTnyqh157gGZG8duBZO4yRRf8ukoUqp9aG67_m_G82TGs4Ms_rwLKFcXtBmNjjAUIceWXA2A5YpWwqEIXCoFDEo9hsPPp306dwY7ATb4vtzeHWCtxEHhvaOtRVWKwnU_UYuWKdPDEuSuDzZQP7F8OdcEk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIiou_JSfBgosEiAuTu31T7xIHBDBpJREVUTV3pa1d61WTe0odhTKiUfgyjPwKjwFT8LsruOKCiEuPXCztOO_9Tfjb-zZbwCesNiXIabJTkYz5QSxmzpCEzkvSHNElMwy02NpOIoGe8G7g_BgBb4v18JYfYj2g5v2DBOvtYNPZb51Jhp6Mjvp0hDZR1NRuaNOF5ivVS-3-_hwn1KavPnweuA0LQWcoyCOIgfxHHpZjEgVfiBpEEkRR0xFvvBclrtujmzAE_gKEyGNctdXeRRnTMUh0gDMpHIfj3sJLgeRy3SfiP74TKuKMSv53At0YGPBUsbIpVvtpSID1g_v05_o7O_s2LzekuvwYzkxtqrluDuv0272-Zxm5H8yczfgWkOzySvrFzdhRRXrsDZsCgnW4YqpfM2qW_AtQdufX75K3ebASpSQfFIuiGg1S0mZk-l8gg6L90xMEexpY1NIshCTCal0Y3BiF96Qo4IYWZPzO6Grk0PM-2e1PdMLMlYV2lVEL_Ih9aLEXW3thg4Gt2HvQqboDqwWZaE2gGBuT5FaSCSrmPHGPSSNOTI7KTH-Rr1UdeCZARKfWk0SLmbHukSvF_L90VtO6XA0cMcJ3-3A5hJpvIlOFdcrT_CMSF078LgdxriifxaJQpVza8P0P3P2N5tYKzjGnteBuxbF7QVhWo8HCHHkucFiO2B1silHFHKDQj4cD83GvX83fQRru_2Ev98e7dyHq0hiQ1uEugmr9WyuHiBRrNOHxkEJfLxoXP8C5pRu-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four-dimensional+flow+assessment+of+pulmonary+artery+flow+and+wall+shear+stress+in+adult+pulmonary+arterial+hypertension%3A+results+from+two+institutions&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Barker%2C+Alex+J&rft.au=Rold%C3%A1n-Alzate%2C+Alejandro&rft.au=Entezari%2C+Pegah&rft.au=Shah%2C+Sanjiv+J&rft.date=2015-05-01&rft.eissn=1522-2594&rft.volume=73&rft.issue=5&rft.spage=1904&rft_id=info:doi/10.1002%2Fmrm.25326&rft_id=info%3Apmid%2F24974951&rft.externalDocID=24974951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon