An EEG Source Imaging-based Feature Extraction Method for Motor Imagery Classification

This paper presents a new feature extraction method for Electroencephalogram (EEG)-based motor imagery (MI) classification. Current researches mostly classify different MIs by detecting the event-related desynchronization (ERD) phenomenon from the EEG signals. Due to the poor spatial resolution of t...

Full description

Saved in:
Bibliographic Details
Published inConference proceedings - IEEE International Conference on Systems, Man, and Cybernetics pp. 1648 - 1652
Main Authors Li, Junhan, Zheng, Nengheng
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.10.2022
Subjects
Online AccessGet full text
ISSN2577-1655
DOI10.1109/SMC53654.2022.9945567

Cover

Loading…
Abstract This paper presents a new feature extraction method for Electroencephalogram (EEG)-based motor imagery (MI) classification. Current researches mostly classify different MIs by detecting the event-related desynchronization (ERD) phenomenon from the EEG signals. Due to the poor spatial resolution of the MI-EEG signals, the cortical area (source) activating the MI cannot be located accurately with the EEG (sensor) signal, which might degrade the classification accuracy. This study adopts the EEG source imaging (ESI) technique to estimate the cortical area where source ERD happens from the EEG signal. An improved ESI method based on the linearly constrained minimum variance (LCMV) algorithm, in which an average LCMV filter and an average baseline covariance are constructed for the ESI, is proposed to locate the activated cortical area from the noisy EEG signals. The source ERD features are then extracted. Analytical results show that, for subjects with obvious average source ERD phenomenon, their activated cortical area in a single-trial MI can be well located. MI classification results also support the feasibility of the proposed method for MI-EEG signal processing.
AbstractList This paper presents a new feature extraction method for Electroencephalogram (EEG)-based motor imagery (MI) classification. Current researches mostly classify different MIs by detecting the event-related desynchronization (ERD) phenomenon from the EEG signals. Due to the poor spatial resolution of the MI-EEG signals, the cortical area (source) activating the MI cannot be located accurately with the EEG (sensor) signal, which might degrade the classification accuracy. This study adopts the EEG source imaging (ESI) technique to estimate the cortical area where source ERD happens from the EEG signal. An improved ESI method based on the linearly constrained minimum variance (LCMV) algorithm, in which an average LCMV filter and an average baseline covariance are constructed for the ESI, is proposed to locate the activated cortical area from the noisy EEG signals. The source ERD features are then extracted. Analytical results show that, for subjects with obvious average source ERD phenomenon, their activated cortical area in a single-trial MI can be well located. MI classification results also support the feasibility of the proposed method for MI-EEG signal processing.
Author Zheng, Nengheng
Li, Junhan
Author_xml – sequence: 1
  givenname: Junhan
  surname: Li
  fullname: Li, Junhan
  organization: Shenzhen University,Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering,Shenzhen,China
– sequence: 2
  givenname: Nengheng
  surname: Zheng
  fullname: Zheng, Nengheng
  email: nhzheng@szu.edu.cn
  organization: Shenzhen University,Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering,Shenzhen,China
BookMark eNotkM9qwkAYxLelhRrbJyiFfYGku9_-yeYoIVrB0IPSq2yy39otmpRNhPr2VfQyA8Nv5jAJeej6Dgl54yzjnBXv67pUQiuZAQPIikIqpfM7knB9DhUok9-TCag8T7lW6okkw_DDGDDJzYR8zTpaVQu67o-xRbo82F3odmljB3R0jnY8RqTV3xhtO4a-ozWO372jvo-07sezXhoYT7Tc22EIPrT2wj2TR2_3A77cfEo282pTfqSrz8WynK3SII1MHWjZNBa8AalFywVzAo1ynFlEoYzgKLgzHFnjJXjnirZVDkzhIG9k3ogpeb3OBkTc_sZwsPG0vV0g_gHOXlKe
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SMC53654.2022.9945567
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISBN 1665452587
9781665452588
EISSN 2577-1655
EndPage 1652
ExternalDocumentID 9945567
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i484-d264bba2f82463c130d3e85d10aee35831e31d81e0bf42fdd9cc5d289d27b47b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:18:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i484-d264bba2f82463c130d3e85d10aee35831e31d81e0bf42fdd9cc5d289d27b47b3
PageCount 5
ParticipantIDs ieee_primary_9945567
PublicationCentury 2000
PublicationDate 2022-Oct.-9
PublicationDateYYYYMMDD 2022-10-09
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-9
  day: 09
PublicationDecade 2020
PublicationTitle Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics
PublicationTitleAbbrev SMC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020418
Score 2.1980085
Snippet This paper presents a new feature extraction method for Electroencephalogram (EEG)-based motor imagery (MI) classification. Current researches mostly classify...
SourceID ieee
SourceType Publisher
StartPage 1648
SubjectTerms EEG source imaging
Electroencephalogram
Electroencephalography
Event-Related Desynchronization
Feature extraction
Filtering algorithms
Image recognition
Imaging
Linearly Constrained Minimum Variance
Motor Imagery
Signal processing
Signal processing algorithms
Title An EEG Source Imaging-based Feature Extraction Method for Motor Imagery Classification
URI https://ieeexplore.ieee.org/document/9945567
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA67e9KL7kN8k4MHBbPbNEmbHmXpugoVYVfZ29I0UxCxK7UF9debpnV94MFbKR0aMoRvvsl8MwidgAkDGFBOqK89wrlgJDYsjKQxBAbgZaKCSjsc3XjTO369EIsWOl9rYQDAFp_BsHq0d_l6lZRVqmwUBFwIz2-jtiFutVZrTa4cTmWj0KFOMJpFY8E8mzVx3WFj-GOCigWQyRaKPn9d1408DstCDZP3X10Z_7u2bTT4kurh2zUIdVELsh7a_NZlsIe6zfl9wadNk-mzPrq_yHAYXuKZTd7jqyc7rYhUoKZxFReWOeDwtchr4QOO7KRpbEJcHK0MT7cWkL9hO1WzqjeyLh6g-SScj6ekmbFAHrjkRJt4SKnYTaXLPZYYQNMMpNDUiQGYkIwCo1pScFTK3VTrIEmENiRNu77ivmI7qJOtMthFWGqtJJivfPB57DixsdMuxClliXAT2EP9ateWz3UXjWWzYft_vz5AG5XnbNlccIg6RV7CkYH_Qh1bv38Aifqv7Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1qPagX7Yf47R48KJiaze4mm6OU1labIrRKbyWbnYCIrdQU1F_vZhvrBx68hZAhYTfhvZnMmwdwgoYGMKTcoYH2Hc4Fc2KThTlpjKEBeJmoMNcOR32_c8evR2JUgvOlFgYRbfMZNvJD-y9fT5N5Xiq7CEMuhB-swKrBfUEXaq1leuVyKguNDnXDi0HUFMy3dRPPaxShPzxULIS0NyH6vPmic-SxMc9UI3n_NZfxv0-3BfUvsR65XcJQBUo4qcLGtzmDVagUX_ALOS3GTJ_V4P5yQlqtKzKw5XvSfbJ-RU4Oa5rkzHA-Q9J6zWYL6QOJrNc0MSSXRFOTqdsInL0R66uZdxzZTa7DsN0aNjtO4bLgPHDJHW0YkVKxl0qP-ywxkKYZSqGpGyMyIRlFRrWk6KqUe6nWYZIIbdI07QWKB4ptQ3kyneAOEKm1kmiuCjDgsevGJk57GKeUJcJLcBdq-aqNnxdzNMbFgu39ffoY1jrDqDfudfs3-7Ce76JtogsPoJzN5nhoyECmjuw78AHlVbM2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=An+EEG+Source+Imaging-based+Feature+Extraction+Method+for+Motor+Imagery+Classification&rft.au=Li%2C+Junhan&rft.au=Zheng%2C+Nengheng&rft.date=2022-10-09&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=1648&rft.epage=1652&rft_id=info:doi/10.1109%2FSMC53654.2022.9945567&rft.externalDocID=9945567