An EEG Source Imaging-based Feature Extraction Method for Motor Imagery Classification
This paper presents a new feature extraction method for Electroencephalogram (EEG)-based motor imagery (MI) classification. Current researches mostly classify different MIs by detecting the event-related desynchronization (ERD) phenomenon from the EEG signals. Due to the poor spatial resolution of t...
Saved in:
Published in | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics pp. 1648 - 1652 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2577-1655 |
DOI | 10.1109/SMC53654.2022.9945567 |
Cover
Loading…
Abstract | This paper presents a new feature extraction method for Electroencephalogram (EEG)-based motor imagery (MI) classification. Current researches mostly classify different MIs by detecting the event-related desynchronization (ERD) phenomenon from the EEG signals. Due to the poor spatial resolution of the MI-EEG signals, the cortical area (source) activating the MI cannot be located accurately with the EEG (sensor) signal, which might degrade the classification accuracy. This study adopts the EEG source imaging (ESI) technique to estimate the cortical area where source ERD happens from the EEG signal. An improved ESI method based on the linearly constrained minimum variance (LCMV) algorithm, in which an average LCMV filter and an average baseline covariance are constructed for the ESI, is proposed to locate the activated cortical area from the noisy EEG signals. The source ERD features are then extracted. Analytical results show that, for subjects with obvious average source ERD phenomenon, their activated cortical area in a single-trial MI can be well located. MI classification results also support the feasibility of the proposed method for MI-EEG signal processing. |
---|---|
AbstractList | This paper presents a new feature extraction method for Electroencephalogram (EEG)-based motor imagery (MI) classification. Current researches mostly classify different MIs by detecting the event-related desynchronization (ERD) phenomenon from the EEG signals. Due to the poor spatial resolution of the MI-EEG signals, the cortical area (source) activating the MI cannot be located accurately with the EEG (sensor) signal, which might degrade the classification accuracy. This study adopts the EEG source imaging (ESI) technique to estimate the cortical area where source ERD happens from the EEG signal. An improved ESI method based on the linearly constrained minimum variance (LCMV) algorithm, in which an average LCMV filter and an average baseline covariance are constructed for the ESI, is proposed to locate the activated cortical area from the noisy EEG signals. The source ERD features are then extracted. Analytical results show that, for subjects with obvious average source ERD phenomenon, their activated cortical area in a single-trial MI can be well located. MI classification results also support the feasibility of the proposed method for MI-EEG signal processing. |
Author | Zheng, Nengheng Li, Junhan |
Author_xml | – sequence: 1 givenname: Junhan surname: Li fullname: Li, Junhan organization: Shenzhen University,Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering,Shenzhen,China – sequence: 2 givenname: Nengheng surname: Zheng fullname: Zheng, Nengheng email: nhzheng@szu.edu.cn organization: Shenzhen University,Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering,Shenzhen,China |
BookMark | eNotkM9qwkAYxLelhRrbJyiFfYGku9_-yeYoIVrB0IPSq2yy39otmpRNhPr2VfQyA8Nv5jAJeej6Dgl54yzjnBXv67pUQiuZAQPIikIqpfM7knB9DhUok9-TCag8T7lW6okkw_DDGDDJzYR8zTpaVQu67o-xRbo82F3odmljB3R0jnY8RqTV3xhtO4a-ozWO372jvo-07sezXhoYT7Tc22EIPrT2wj2TR2_3A77cfEo282pTfqSrz8WynK3SII1MHWjZNBa8AalFywVzAo1ynFlEoYzgKLgzHFnjJXjnirZVDkzhIG9k3ogpeb3OBkTc_sZwsPG0vV0g_gHOXlKe |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/SMC53654.2022.9945567 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISBN | 1665452587 9781665452588 |
EISSN | 2577-1655 |
EndPage | 1652 |
ExternalDocumentID | 9945567 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i484-d264bba2f82463c130d3e85d10aee35831e31d81e0bf42fdd9cc5d289d27b47b3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:18:43 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i484-d264bba2f82463c130d3e85d10aee35831e31d81e0bf42fdd9cc5d289d27b47b3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9945567 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-9 |
PublicationDateYYYYMMDD | 2022-10-09 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics |
PublicationTitleAbbrev | SMC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020418 |
Score | 2.1980085 |
Snippet | This paper presents a new feature extraction method for Electroencephalogram (EEG)-based motor imagery (MI) classification. Current researches mostly classify... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1648 |
SubjectTerms | EEG source imaging Electroencephalogram Electroencephalography Event-Related Desynchronization Feature extraction Filtering algorithms Image recognition Imaging Linearly Constrained Minimum Variance Motor Imagery Signal processing Signal processing algorithms |
Title | An EEG Source Imaging-based Feature Extraction Method for Motor Imagery Classification |
URI | https://ieeexplore.ieee.org/document/9945567 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA67e9KL7kN8k4MHBbPbNEmbHmXpugoVYVfZ29I0UxCxK7UF9debpnV94MFbKR0aMoRvvsl8MwidgAkDGFBOqK89wrlgJDYsjKQxBAbgZaKCSjsc3XjTO369EIsWOl9rYQDAFp_BsHq0d_l6lZRVqmwUBFwIz2-jtiFutVZrTa4cTmWj0KFOMJpFY8E8mzVx3WFj-GOCigWQyRaKPn9d1408DstCDZP3X10Z_7u2bTT4kurh2zUIdVELsh7a_NZlsIe6zfl9wadNk-mzPrq_yHAYXuKZTd7jqyc7rYhUoKZxFReWOeDwtchr4QOO7KRpbEJcHK0MT7cWkL9hO1WzqjeyLh6g-SScj6ekmbFAHrjkRJt4SKnYTaXLPZYYQNMMpNDUiQGYkIwCo1pScFTK3VTrIEmENiRNu77ivmI7qJOtMthFWGqtJJivfPB57DixsdMuxClliXAT2EP9ateWz3UXjWWzYft_vz5AG5XnbNlccIg6RV7CkYH_Qh1bv38Aifqv7Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1qPagX7Yf47R48KJiaze4mm6OU1labIrRKbyWbnYCIrdQU1F_vZhvrBx68hZAhYTfhvZnMmwdwgoYGMKTcoYH2Hc4Fc2KThTlpjKEBeJmoMNcOR32_c8evR2JUgvOlFgYRbfMZNvJD-y9fT5N5Xiq7CEMuhB-swKrBfUEXaq1leuVyKguNDnXDi0HUFMy3dRPPaxShPzxULIS0NyH6vPmic-SxMc9UI3n_NZfxv0-3BfUvsR65XcJQBUo4qcLGtzmDVagUX_ALOS3GTJ_V4P5yQlqtKzKw5XvSfbJ-RU4Oa5rkzHA-Q9J6zWYL6QOJrNc0MSSXRFOTqdsInL0R66uZdxzZTa7DsN0aNjtO4bLgPHDJHW0YkVKxl0qP-ywxkKYZSqGpGyMyIRlFRrWk6KqUe6nWYZIIbdI07QWKB4ptQ3kyneAOEKm1kmiuCjDgsevGJk57GKeUJcJLcBdq-aqNnxdzNMbFgu39ffoY1jrDqDfudfs3-7Ce76JtogsPoJzN5nhoyECmjuw78AHlVbM2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Conference+proceedings+-+IEEE+International+Conference+on+Systems%2C+Man%2C+and+Cybernetics&rft.atitle=An+EEG+Source+Imaging-based+Feature+Extraction+Method+for+Motor+Imagery+Classification&rft.au=Li%2C+Junhan&rft.au=Zheng%2C+Nengheng&rft.date=2022-10-09&rft.pub=IEEE&rft.eissn=2577-1655&rft.spage=1648&rft.epage=1652&rft_id=info:doi/10.1109%2FSMC53654.2022.9945567&rft.externalDocID=9945567 |