Estimating the number of signals with unknown parameters under Gaussian noises

Model order selection is an important stage in many technical areas. Estimating the number of signals with unknown parameters is a special case of the model order selection problem. We describe a class of signal parameters for which we show that the widely used maximum likelihood method is useless f...

Full description

Saved in:
Bibliographic Details
Published in2022 International Telecommunications Conference (ITC-Egypt) pp. 1 - 5
Main Authors Kharin, Aleksandr, Pergamenchtchikov, Serguei
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model order selection is an important stage in many technical areas. Estimating the number of signals with unknown parameters is a special case of the model order selection problem. We describe a class of signal parameters for which we show that the widely used maximum likelihood method is useless for estimating the number of signals. It is established, that the amplitude parameters belong to this class. Therefore, we study the estimation problem for the number of signals with unknown amplitudes in discrete time. Five algorithms for estimating the number of signals are described, including the new one. Finally, we provide a performance analysis of these algorithms, comparing them using both analytical and numerical approaches.
AbstractList Model order selection is an important stage in many technical areas. Estimating the number of signals with unknown parameters is a special case of the model order selection problem. We describe a class of signal parameters for which we show that the widely used maximum likelihood method is useless for estimating the number of signals. It is established, that the amplitude parameters belong to this class. Therefore, we study the estimation problem for the number of signals with unknown amplitudes in discrete time. Five algorithms for estimating the number of signals are described, including the new one. Finally, we provide a performance analysis of these algorithms, comparing them using both analytical and numerical approaches.
Author Kharin, Aleksandr
Pergamenchtchikov, Serguei
Author_xml – sequence: 1
  givenname: Aleksandr
  surname: Kharin
  fullname: Kharin, Aleksandr
  organization: Laboratoire de Mathématiques Raphaël Salem Université de Rouen-Normandie,Rouen,France
– sequence: 2
  givenname: Serguei
  surname: Pergamenchtchikov
  fullname: Pergamenchtchikov, Serguei
  email: serge.pergamenchtchikov@univ-rouen.fr
  organization: Laboratoire de Mathématiques Raphaël Salem Université de Rouen-Normandie,Rouen,France
BookMark eNotjz1rwzAYhFVohzbNL-gi6GxXH9aHxxLcNBDaxXuQ5NeOaC0bSybk31fQLHdw3B08T-g-TAEQeqWkpJTUb4d2VzTDdU5CCEZKRhgray2E1OIObWulqZSi0ppo9oi-mpj8aJIPA05nwGEdLSx46nH0QzC_EV98OuM1_ITpEvBsFjNCgiXmqMvFvVlj9CbgMPkI8Rk99HkE25tvUPvRtLvP4vi9P-zej4WvNCuc7RTjrGNOKCEZ76zqlAZhgfaMOJJF9paAtk7VRDnglbWScOoyjCGab9DL_60HgNO8ZILlerpB8j_taU8p
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITC-Egypt55520.2022.9855685
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665488082
1665488085
EndPage 5
ExternalDocumentID 9855685
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i482-cbd7232d2c575623db7d78e5be1f20c0f206fb0e8bc7907ce34bb6031c202a083
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:14 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i482-cbd7232d2c575623db7d78e5be1f20c0f206fb0e8bc7907ce34bb6031c202a083
PageCount 5
ParticipantIDs ieee_primary_9855685
PublicationCentury 2000
PublicationDate 2022-July-26
PublicationDateYYYYMMDD 2022-07-26
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-26
  day: 26
PublicationDecade 2020
PublicationTitle 2022 International Telecommunications Conference (ITC-Egypt)
PublicationTitleAbbrev ITC-Egypt
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8488698
Snippet Model order selection is an important stage in many technical areas. Estimating the number of signals with unknown parameters is a special case of the model...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms abridged error probability
Analytical models
Error probability
estimation problem for the number of signals
Gaussian noise
Maximum likelihood estimation
maximum likelihood method
model order selection
Numerical models
penalty terms
Performance analysis
signals in noise
Telecommunications
Title Estimating the number of signals with unknown parameters under Gaussian noises
URI https://ieeexplore.ieee.org/document/9855685
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3aHsSTSit-s6BHk2632XycS2sVLB4q9Fayk1kpYipNc_HXu5PEiuLBS1gCYcPshnk7efMewI0lba1mTpXSQy9QA_RMrAMvtcZiJpNMYqX2OQunz8HDQi9acLvrhSGiinxGPg-rf_nZGksulfWTmPWydBvaUZLUvVp7cN3IZvbv5yNvzN5dWmsl3dFPKb954od1SpU5Jgfw-DVnTRh59cut8fHjlxzjf1_qEHrfPXriaZd9jqBFeRdmY_fFMgbNX4RDdqL2-xBrK5in4Xaa4LqrKHMupeWCdb_fmA9TCO4l24i7tCy4q1Lk61VBRQ_mk_F8NPUaxwRvFTikjCaLHELKFDoQ5nBNZqIsikkbGlglUbpLaI2k2GDkDsVIw8AYtplGF6zUgbFj6OTrnE5AyDREClKKcJiyG0ficBRGsUbCUOFAnkKXQ7F8rzUxlk0Uzv6-fQ77vBxcE1XhBXS2m5IuXTLfmqtqFT8BiLSiqQ
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1qBfWk0orfLujRpNttNknP0tpqWzxE6K1kJ7tSxESa5uKvdyeJFcWDl7AEwobZDfN28uY9gBujpTGSOFVC9hxPdNFRofSc2CiDCe8nHEu1z5k_evYe5nLegNtNL4zWuiSfaZeG5b_8JMOCSmWdfkh6WXILtiXhiqpbaweua-HMzji6cwbk3iWlFNwe_oRw62d-mKeUuWO4D9OvWSvKyKtbrJWLH78EGf_7WgfQ_u7SY0-b_HMIDZ22YDaw3yyh0PSFWWzHKscPlhlGTA271xhVXlmRUjEtZaT8_UaMmJxRN9mK3cdFTn2VLM2Wuc7bEA0H0d3IqT0TnKVnsTKqJLAYKRFoYZhFNokKkiDUUumuERy5vfhGcR0qDOyxGHXPU4qMptEGK7Zw7AiaaZbqY2A89lF7sQ6wF5MfR98iKQxCiRp9gV1-Ai0KxeK9UsVY1FE4_fv2FeyOoulkMRnPHs9gj5aGKqTCP4fmelXoC5va1-qyXNFPOtql9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Telecommunications+Conference+%28ITC-Egypt%29&rft.atitle=Estimating+the+number+of+signals+with+unknown+parameters+under+Gaussian+noises&rft.au=Kharin%2C+Aleksandr&rft.au=Pergamenchtchikov%2C+Serguei&rft.date=2022-07-26&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FITC-Egypt55520.2022.9855685&rft.externalDocID=9855685