Software Failure Prediction based on Thermal Images

Software failure prediction is one of the most critical issues in software reliability research. And there are several crucial challenges for software failure prediction, which includes complex data, intrusive monitoring that brings potential risk to the system and monitoring costs. We proposed the...

Full description

Saved in:
Bibliographic Details
Published in2022 9th International Conference on Dependable Systems and Their Applications (DSA) pp. 302 - 309
Main Authors Gong, Yiang, Lu, Minyan, Kong, Shiyi, Yan, Liang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Software failure prediction is one of the most critical issues in software reliability research. And there are several crucial challenges for software failure prediction, which includes complex data, intrusive monitoring that brings potential risk to the system and monitoring costs. We proposed the FPbTI approach to predict software failure by using thermal images taken from outside of the hardware. In this approach, a data processing method is proposed and a convolutional neural network model is constructed. Additionally, corresponding experimental system was designed to verify the effectiveness of the approach. We experimentally demonstrate that our proposed approach achieves the goal of software failure prediction and shows remarkable performance.
AbstractList Software failure prediction is one of the most critical issues in software reliability research. And there are several crucial challenges for software failure prediction, which includes complex data, intrusive monitoring that brings potential risk to the system and monitoring costs. We proposed the FPbTI approach to predict software failure by using thermal images taken from outside of the hardware. In this approach, a data processing method is proposed and a convolutional neural network model is constructed. Additionally, corresponding experimental system was designed to verify the effectiveness of the approach. We experimentally demonstrate that our proposed approach achieves the goal of software failure prediction and shows remarkable performance.
Author Lu, Minyan
Kong, Shiyi
Yan, Liang
Gong, Yiang
Author_xml – sequence: 1
  givenname: Yiang
  surname: Gong
  fullname: Gong, Yiang
  email: YiangGong@buaa.edu.cn
  organization: The Key Laboratory on Reliability and Environment Engineering Technology
– sequence: 2
  givenname: Minyan
  surname: Lu
  fullname: Lu, Minyan
  organization: The Key Laboratory on Reliability and Environment Engineering Technology
– sequence: 3
  givenname: Shiyi
  surname: Kong
  fullname: Kong, Shiyi
  organization: The Key Laboratory on Reliability and Environment Engineering Technology
– sequence: 4
  givenname: Liang
  surname: Yan
  fullname: Yan, Liang
  email: ylbright@sina.com
  organization: Beijing High Quality of Systems Technology Co.,Beijing,China
BookMark eNotjs1Kw0AURkepYG3zBN3kBRLv_N2ZWZZqtVBQaPblJrnRkfxIUhHf3oCuzrc4fJw7seiHnoXYSMilhHD_cNpaNGhzBUrlAGD8lUiC8xLRGu-d89diqRy6DNGbW5FM08esaQU6OFwKfRqayzeNnO4ptl8zX0euY3WJQ5-WNHGdzqN457GjNj109MbTWtw01E6c_HMliv1jsXvOji9Ph932mEXjZVZXBIxsSXKNrmLdILGttNXaE2uqAO2cB4o5eEkNlkxcAivPrpFe65XY_N1GZj5_jrGj8eccgjQGQf8CKa1Hug
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DSA56465.2022.00048
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665488778
1665488778
EISSN 2767-6684
EndPage 309
ExternalDocumentID 9914460
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i481-dca0e6e5a1ed67ce3f6ae5c35338ae3ac06577802ee981af6beaeb0e28e7f1833
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:54 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i481-dca0e6e5a1ed67ce3f6ae5c35338ae3ac06577802ee981af6beaeb0e28e7f1833
PageCount 8
ParticipantIDs ieee_primary_9914460
PublicationCentury 2000
PublicationDate 2022-Aug.
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-Aug.
PublicationDecade 2020
PublicationTitle 2022 9th International Conference on Dependable Systems and Their Applications (DSA)
PublicationTitleAbbrev DSA
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203976
Score 1.8502411
Snippet Software failure prediction is one of the most critical issues in software reliability research. And there are several crucial challenges for software failure...
SourceID ieee
SourceType Publisher
StartPage 302
SubjectTerms Costs
Data models
Data processing
Delay effects
Hardware
Software
software failure prediction
Software reliability
thermal images
Title Software Failure Prediction based on Thermal Images
URI https://ieeexplore.ieee.org/document/9914460
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfhmDx5Nm2w2r6OopQqK0Aq9lTxmoait9IHgr3eyWyuKB28hLGyys5lvJvnmCyHnOnDGgJU0yVPRwnKgNmpJSy-9jZFxV7N8H1T_qbgbyVGDXGxqYQCgIp9BJzWrs_w4C6u0VdbFWAazF0zQt7S1da3WZj9F5CxB61pYiDPbvR5cSlUoiUlgXqtymh9XqFQI0tsh91_vrokjz53V0nfCxy9Zxv8Obpe0v2v1sscNCu2RBkxbRAzQu767OWQ9N0nEc3wkncgkK2QJuGKGDfxF0C2_ZLev6FQWbTLs3Qyv-nR9PQKdFIbTGBwDBdJxiEoHEKVyIIPA-M04EC5gcKG1YTmANdyVyoMDzyA3oEtcyGKfNKezKRyQzObOR5OEcnwocNFb70thimgFSIk2PiStNN_xWy2AMV5P9ejv7mOynb54zZI7Ic3lfAWniNxLf1aZ7BMViZjA
link.rule.ids 310,311,783,787,792,793,799,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG0IHvSkBozf7sGjC-12222PRiWgQEzAhBvpx2xCFDAIMfHXO91FjMaDt6bZZNud7byZ9s0rIZeZY5QCzeMgTxWnmkGsfSbi3AqrvafMlCzfvmw_pfcjMaqQq00tDAAU5DNohGZxlu_nbhW2ypoYy2D2ggn6FsbVKiurtTY7KjyhAVzX0kKM6ubt4FrIVApMA5NSl1P9uESlwJDWLul9vb2kjjw3VkvbcB-_hBn_O7w9Uv-u1oseNzi0TyowqxE-QP_6bhYQtcwkUM_xkXAmE-wQBejyETbwJ0HH_BJ1puhW3upk2Lob3rTj9QUJ8SRVLPbOUJAgDAMvMwc8lwaE4xjBKQPcOAwvskzRBEArZnJpwYClkCjIclzK_IBUZ_MZHJJIJ8Z6FaRyrEtx2Wtrc65SrzkIgVY-IrUw3_FrKYExXk_1-O_uC7LdHva6426n_3BCdsLXLzlzp6S6XKzgDHF8ac8L830CRpGcDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+9th+International+Conference+on+Dependable+Systems+and+Their+Applications+%28DSA%29&rft.atitle=Software+Failure+Prediction+based+on+Thermal+Images&rft.au=Gong%2C+Yiang&rft.au=Lu%2C+Minyan&rft.au=Kong%2C+Shiyi&rft.au=Yan%2C+Liang&rft.date=2022-08-01&rft.pub=IEEE&rft.eissn=2767-6684&rft.spage=302&rft.epage=309&rft_id=info:doi/10.1109%2FDSA56465.2022.00048&rft.externalDocID=9914460