A 3D Convolutional Neural Network Approach for Diagnosing Alzheimer's Disease using Modified Owl Search Optimization Technique
Understanding the early stages of Alzheimer's disease (AD) is proving critical for treating the disease and preventing future degeneration. Doctors would examine patients more thoroughly if they could visualise the many morphological aspects for better clinical practises. Previous research has...
Saved in:
Published in | TENCON ... IEEE Region Ten Conference pp. 1 - 7 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2159-3450 |
DOI | 10.1109/TENCON55691.2022.9977604 |
Cover
Abstract | Understanding the early stages of Alzheimer's disease (AD) is proving critical for treating the disease and preventing future degeneration. Doctors would examine patients more thoroughly if they could visualise the many morphological aspects for better clinical practises. Previous research has demonstrated the utility of using deep learning to distinguish AD from Normal Control (NC) and achieve a high level of accuracy using T1 weighted MRI images. In this paper, a novel 3D Convolutional Neural Network (3D-CNN) has been proposed for classify three binary classifications using 3D T1-MRI images. For optimizing the weights of proposed 3D CNN network, A Modified Owl Search Algorithm (MOSA) has been applied for optimizing the weights of the proposed 3D CNN network. The proposed model's viability is tested on 404 ADNI subjects, and it achieves the highest classification accuracy when compared to other methods currently in use. The proposed method could assist doctors in the early detection of Alzheimer's disease. |
---|---|
AbstractList | Understanding the early stages of Alzheimer's disease (AD) is proving critical for treating the disease and preventing future degeneration. Doctors would examine patients more thoroughly if they could visualise the many morphological aspects for better clinical practises. Previous research has demonstrated the utility of using deep learning to distinguish AD from Normal Control (NC) and achieve a high level of accuracy using T1 weighted MRI images. In this paper, a novel 3D Convolutional Neural Network (3D-CNN) has been proposed for classify three binary classifications using 3D T1-MRI images. For optimizing the weights of proposed 3D CNN network, A Modified Owl Search Algorithm (MOSA) has been applied for optimizing the weights of the proposed 3D CNN network. The proposed model's viability is tested on 404 ADNI subjects, and it achieves the highest classification accuracy when compared to other methods currently in use. The proposed method could assist doctors in the early detection of Alzheimer's disease. |
Author | Das, Subhranil Kumari, Rashmi Goel, Shivani |
Author_xml | – sequence: 1 givenname: Rashmi surname: Kumari fullname: Kumari, Rashmi email: Rashmi.kumari@bennett.edu.in organization: School of Computer Science Engineering and Technology, Bennett University,Greater Noida,Uttar Pradesh,201310 – sequence: 2 givenname: Shivani surname: Goel fullname: Goel, Shivani organization: School of Computer Science Engineering and Technology, Bennett University,Greater Noida,Uttar Pradesh,201310 – sequence: 3 givenname: Subhranil surname: Das fullname: Das, Subhranil organization: BIT Mesra,Dept. of EEE,Ranchi,Jharkhand,India |
BookMark | eNotkM1OwzAQhA0Cibb0Cbj4xinBdmInPkZp-ZFKcyD3ymk2rSG1g91Q0QPPTiidy2j20-5KM0ZXxhpACFMSUkrkQzlf5sWScyFpyAhjoZRJIkh8gcZUCB5zIrm8RCNGuQyiId6gqffvZJAgjKTJCP1kOJrh3Jov2_Z7bY1q8RJ6d7L9wboPnHWds2q9xY11eKbVxlivzQZn7XELegfu3g9jD8oD7k_k1da60VDj4tDiN1BuWC66vd7po_r7gUtYb43-7OEWXTeq9TA9-wSVj_Myfw4WxdNLni0CHackYKKWnDEaNySKKsXqWiSR4FWSEiFU1UBM01RVXIJKKU8HUPGKwprzhjPFRDRBd_9nNQCsOqd3yn2vzm1Fvw3-YpE |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/TENCON55691.2022.9977604 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665450959 9781665450959 |
EISSN | 2159-3450 |
EndPage | 7 |
ExternalDocumentID | 9977604 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i480-26d952214f033ba2dd67365b78066abfe4188ab59ea81585b7b5b1ec55f52a263 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:14:57 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i480-26d952214f033ba2dd67365b78066abfe4188ab59ea81585b7b5b1ec55f52a263 |
PageCount | 7 |
ParticipantIDs | ieee_primary_9977604 |
PublicationCentury | 2000 |
PublicationDate | 2022-Nov.-1 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-1 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | TENCON ... IEEE Region Ten Conference |
PublicationTitleAbbrev | TENCON |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000602087 |
Score | 1.8142091 |
Snippet | Understanding the early stages of Alzheimer's disease (AD) is proving critical for treating the disease and preventing future degeneration. Doctors would... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Alzheimer's disease Classification algorithms Convolutional Neural Network Convolutional neural networks Deep learning Magnetic resonance imaging Medical services Owl Search Optimization Three-dimensional displays Visualization |
Title | A 3D Convolutional Neural Network Approach for Diagnosing Alzheimer's Disease using Modified Owl Search Optimization Technique |
URI | https://ieeexplore.ieee.org/document/9977604 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Qkyc1YPxODyZeZGzdWtYjEQgxATzMhBvpZyTyFWSacPBv97UbGI0HT1vabWna1_X32t_7PYRupSKKCwYzzVBwUIxIYc45uTuiUukQt2AuOHkwZP3n5HFMxxV0v4-FMcZ48pkJ3K0_y9dLlbutsiYHsMKc-OcBmFkRq7XfTwmZSzfZ2pF1Qt7MuuAWDyll3PmBhATl6z_yqPhlpHeEBrsGFOyR1yDfyEBtf2kz_reFx6j-HbCHn_ZL0QmqmEUNfbZx3MHwxHtpXmKGnRaHv3jyN26XiuIYoCvuFKw7-ABuz7YvZjo367s3KPZHODj3NYOlnlqArXj0McMFVxmP4LczL-M5cbYTha2jrNfNHvqNMt1CY5qkYYMwzQGMRYkN41gKorWjfFHZSgGVCGlNEqWpkJTDeEbgZMiWpDIyilJLiSAsPkXVxXJhzhA2GoAksQAelEqYTAACWc3jmAlAHJboc1RzXTdZFYIak7LXLv4uvkSHbviKAMArVN2sc3MNSGAjb7wJfAFx07QO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvSkBozf9mDiRcbWrWU7EoGgMvAwE26kX4uEL4NMEw7-7b52A6Px4GlLuzRNP_Z-r_2930PoWkgiI85gp2kKDormIew5I3dHZCgM4ubMBCfHfdZ9Dh6GdFhCt9tYGK21JZ9px7zau3y1kJk5KqtHAFaYEf_cAbsf0Dxaa3ui4jKTcLKxoeu4UT1pg2Pcp5RFxhMkxCka-JFJxRqSzj6KN13I-SMTJ1sJR65_qTP-t48HqPodsoeftsboEJX0vII-m9hvYfjivVhgfIqNGod9WPo3bhaa4hjAK27lvDtoADen6xc9nunlzRsU20scnNmaeKHGKQBXPPiY4pytjAfw45kVEZ042cjCVlHSaSd33VqRcKE2DkK3RpiKAI55Qer6vuBEKUP6oqIRAi7hItWBF4Zc0Ahm1AM3QzQEFZ6WlKaUcML8I1SeL-b6GGGtAEqSFOCDlAETAYCgVEW-zzhgjpSoE1QxQzd6zSU1RsWonf5dfIV2u0ncG_Xu-49naM9MZR4OeI7Kq2WmLwAXrMSlXQ5fC9m3Ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=TENCON+...+IEEE+Region+Ten+Conference&rft.atitle=A+3D+Convolutional+Neural+Network+Approach+for+Diagnosing+Alzheimer%27s+Disease+using+Modified+Owl+Search+Optimization+Technique&rft.au=Kumari%2C+Rashmi&rft.au=Goel%2C+Shivani&rft.au=Das%2C+Subhranil&rft.date=2022-11-01&rft.pub=IEEE&rft.eissn=2159-3450&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FTENCON55691.2022.9977604&rft.externalDocID=9977604 |