A 3D Convolutional Neural Network Approach for Diagnosing Alzheimer's Disease using Modified Owl Search Optimization Technique

Understanding the early stages of Alzheimer's disease (AD) is proving critical for treating the disease and preventing future degeneration. Doctors would examine patients more thoroughly if they could visualise the many morphological aspects for better clinical practises. Previous research has...

Full description

Saved in:
Bibliographic Details
Published inTENCON ... IEEE Region Ten Conference pp. 1 - 7
Main Authors Kumari, Rashmi, Goel, Shivani, Das, Subhranil
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2022
Subjects
Online AccessGet full text
ISSN2159-3450
DOI10.1109/TENCON55691.2022.9977604

Cover

Abstract Understanding the early stages of Alzheimer's disease (AD) is proving critical for treating the disease and preventing future degeneration. Doctors would examine patients more thoroughly if they could visualise the many morphological aspects for better clinical practises. Previous research has demonstrated the utility of using deep learning to distinguish AD from Normal Control (NC) and achieve a high level of accuracy using T1 weighted MRI images. In this paper, a novel 3D Convolutional Neural Network (3D-CNN) has been proposed for classify three binary classifications using 3D T1-MRI images. For optimizing the weights of proposed 3D CNN network, A Modified Owl Search Algorithm (MOSA) has been applied for optimizing the weights of the proposed 3D CNN network. The proposed model's viability is tested on 404 ADNI subjects, and it achieves the highest classification accuracy when compared to other methods currently in use. The proposed method could assist doctors in the early detection of Alzheimer's disease.
AbstractList Understanding the early stages of Alzheimer's disease (AD) is proving critical for treating the disease and preventing future degeneration. Doctors would examine patients more thoroughly if they could visualise the many morphological aspects for better clinical practises. Previous research has demonstrated the utility of using deep learning to distinguish AD from Normal Control (NC) and achieve a high level of accuracy using T1 weighted MRI images. In this paper, a novel 3D Convolutional Neural Network (3D-CNN) has been proposed for classify three binary classifications using 3D T1-MRI images. For optimizing the weights of proposed 3D CNN network, A Modified Owl Search Algorithm (MOSA) has been applied for optimizing the weights of the proposed 3D CNN network. The proposed model's viability is tested on 404 ADNI subjects, and it achieves the highest classification accuracy when compared to other methods currently in use. The proposed method could assist doctors in the early detection of Alzheimer's disease.
Author Das, Subhranil
Kumari, Rashmi
Goel, Shivani
Author_xml – sequence: 1
  givenname: Rashmi
  surname: Kumari
  fullname: Kumari, Rashmi
  email: Rashmi.kumari@bennett.edu.in
  organization: School of Computer Science Engineering and Technology, Bennett University,Greater Noida,Uttar Pradesh,201310
– sequence: 2
  givenname: Shivani
  surname: Goel
  fullname: Goel, Shivani
  organization: School of Computer Science Engineering and Technology, Bennett University,Greater Noida,Uttar Pradesh,201310
– sequence: 3
  givenname: Subhranil
  surname: Das
  fullname: Das, Subhranil
  organization: BIT Mesra,Dept. of EEE,Ranchi,Jharkhand,India
BookMark eNotkM1OwzAQhA0Cibb0Cbj4xinBdmInPkZp-ZFKcyD3ymk2rSG1g91Q0QPPTiidy2j20-5KM0ZXxhpACFMSUkrkQzlf5sWScyFpyAhjoZRJIkh8gcZUCB5zIrm8RCNGuQyiId6gqffvZJAgjKTJCP1kOJrh3Jov2_Z7bY1q8RJ6d7L9wboPnHWds2q9xY11eKbVxlivzQZn7XELegfu3g9jD8oD7k_k1da60VDj4tDiN1BuWC66vd7po_r7gUtYb43-7OEWXTeq9TA9-wSVj_Myfw4WxdNLni0CHackYKKWnDEaNySKKsXqWiSR4FWSEiFU1UBM01RVXIJKKU8HUPGKwprzhjPFRDRBd_9nNQCsOqd3yn2vzm1Fvw3-YpE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/TENCON55691.2022.9977604
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665450959
9781665450959
EISSN 2159-3450
EndPage 7
ExternalDocumentID 9977604
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i480-26d952214f033ba2dd67365b78066abfe4188ab59ea81585b7b5b1ec55f52a263
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i480-26d952214f033ba2dd67365b78066abfe4188ab59ea81585b7b5b1ec55f52a263
PageCount 7
ParticipantIDs ieee_primary_9977604
PublicationCentury 2000
PublicationDate 2022-Nov.-1
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-1
  day: 01
PublicationDecade 2020
PublicationTitle TENCON ... IEEE Region Ten Conference
PublicationTitleAbbrev TENCON
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000602087
Score 1.8142091
Snippet Understanding the early stages of Alzheimer's disease (AD) is proving critical for treating the disease and preventing future degeneration. Doctors would...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Alzheimer's disease
Classification algorithms
Convolutional Neural Network
Convolutional neural networks
Deep learning
Magnetic resonance imaging
Medical services
Owl Search Optimization
Three-dimensional displays
Visualization
Title A 3D Convolutional Neural Network Approach for Diagnosing Alzheimer's Disease using Modified Owl Search Optimization Technique
URI https://ieeexplore.ieee.org/document/9977604
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Qkyc1YPxODyZeZGzdWtYjEQgxATzMhBvpZyTyFWSacPBv97UbGI0HT1vabWna1_X32t_7PYRupSKKCwYzzVBwUIxIYc45uTuiUukQt2AuOHkwZP3n5HFMxxV0v4-FMcZ48pkJ3K0_y9dLlbutsiYHsMKc-OcBmFkRq7XfTwmZSzfZ2pF1Qt7MuuAWDyll3PmBhATl6z_yqPhlpHeEBrsGFOyR1yDfyEBtf2kz_reFx6j-HbCHn_ZL0QmqmEUNfbZx3MHwxHtpXmKGnRaHv3jyN26XiuIYoCvuFKw7-ABuz7YvZjo367s3KPZHODj3NYOlnlqArXj0McMFVxmP4LczL-M5cbYTha2jrNfNHvqNMt1CY5qkYYMwzQGMRYkN41gKorWjfFHZSgGVCGlNEqWpkJTDeEbgZMiWpDIyilJLiSAsPkXVxXJhzhA2GoAksQAelEqYTAACWc3jmAlAHJboc1RzXTdZFYIak7LXLv4uvkSHbviKAMArVN2sc3MNSGAjb7wJfAFx07QO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvSkBozf9mDiRcbWrWU7EoGgMvAwE26kX4uEL4NMEw7-7b52A6Px4GlLuzRNP_Z-r_2930PoWkgiI85gp2kKDormIew5I3dHZCgM4ubMBCfHfdZ9Dh6GdFhCt9tYGK21JZ9px7zau3y1kJk5KqtHAFaYEf_cAbsf0Dxaa3ui4jKTcLKxoeu4UT1pg2Pcp5RFxhMkxCka-JFJxRqSzj6KN13I-SMTJ1sJR65_qTP-t48HqPodsoeftsboEJX0vII-m9hvYfjivVhgfIqNGod9WPo3bhaa4hjAK27lvDtoADen6xc9nunlzRsU20scnNmaeKHGKQBXPPiY4pytjAfw45kVEZ042cjCVlHSaSd33VqRcKE2DkK3RpiKAI55Qer6vuBEKUP6oqIRAi7hItWBF4Zc0Ahm1AM3QzQEFZ6WlKaUcML8I1SeL-b6GGGtAEqSFOCDlAETAYCgVEW-zzhgjpSoE1QxQzd6zSU1RsWonf5dfIV2u0ncG_Xu-49naM9MZR4OeI7Kq2WmLwAXrMSlXQ5fC9m3Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=TENCON+...+IEEE+Region+Ten+Conference&rft.atitle=A+3D+Convolutional+Neural+Network+Approach+for+Diagnosing+Alzheimer%27s+Disease+using+Modified+Owl+Search+Optimization+Technique&rft.au=Kumari%2C+Rashmi&rft.au=Goel%2C+Shivani&rft.au=Das%2C+Subhranil&rft.date=2022-11-01&rft.pub=IEEE&rft.eissn=2159-3450&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FTENCON55691.2022.9977604&rft.externalDocID=9977604