Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq
Summary The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next‐generation high‐throughp...
Saved in:
Published in | Molecular microbiology Vol. 86; no. 2; pp. 273 - 283 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.10.2012
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next‐generation high‐throughput sequencing (Tn‐seq) promises to revolutionize systems level analysis of microbial metabolism. Tn‐seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non‐essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn‐seq to assess gene function in the Gram negative γ‐proteobacterium Shewanella oneidensis strain MR‐1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration. |
---|---|
AbstractList | The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next-generation high-throughput sequencing (Tn-seq) promises to revolutionize systems level analysis of microbial metabolism. Tn-seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non-essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn-seq to assess gene function in the Gram negative γ-proteobacterium Shewanella oneidensis strain MR-1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration.The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next-generation high-throughput sequencing (Tn-seq) promises to revolutionize systems level analysis of microbial metabolism. Tn-seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non-essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn-seq to assess gene function in the Gram negative γ-proteobacterium Shewanella oneidensis strain MR-1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration. The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next-generation high-throughput sequencing (Tn-seq) promises to revolutionize systems level analysis of microbial metabolism. Tn-seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non-essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn-seq to assess gene function in the Gram negative γ-proteobacterium Shewanella oneidensis strain MR-1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration. Summary The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next‐generation high‐throughput sequencing (Tn‐seq) promises to revolutionize systems level analysis of microbial metabolism. Tn‐seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non‐essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn‐seq to assess gene function in the Gram negative γ‐proteobacterium Shewanella oneidensis strain MR‐1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration. The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next-generation high-throughput sequencing (Tn-seq) promises to revolutionize systems level analysis of microbial metabolism. Tn-seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non-essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn-seq to assess gene function in the Gram negative γ-proteobacterium Shewanella oneidensis strain MR-1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration. [PUBLICATION ABSTRACT] |
Author | Gralnick, Jeffrey A. Brutinel, Evan D. |
Author_xml | – sequence: 1 givenname: Evan D. surname: Brutinel fullname: Brutinel, Evan D. organization: BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, MN, 55108, St Paul, USA – sequence: 2 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. email: gralnick@umn.edu organization: BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, MN, 55108, St Paul, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26464422$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22925268$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU9v1DAQxS1URLeFr4AsISQuCf6TOM6BQ1XBtlILQhTozZo4Y9VL1mntXbr77euwyyIxF481vzd6mndCjsIYkBDKWclzvV-UXKq6EG2tS8G4KJnmrSo3z8jsMDgiM9bWrJBa3B6Tk5QWjHHJlHxBjoVoRS2UnhFzFsYlDB4THR1d3SGFABjHzlu6it5C7MbNdsg_sL6ndmsHpD7Qb3f4CAGHAWi25nsMySca8TfCgD3ttvQmFAkfXpLnDoaEr_bvKfn-6ePN-UVx9WV-eX52VfiqaVShOauVc7XkoGopddWC6yvXO9s7JzouOuuY6isEXQkB0DSoAZ0CxRtQupan5N1u730cH9aYVmbpk538BRzXyfB8Cy10q9qMvvkPXYzrGLK7iVKt4LypMvV6T627JfbmPvolxK35e7oMvN0DkCwMLkKwPv3jVKWq7DVzH3bcox9we5hzZqYozcJMiZkpMTNFaf5EaTbm-vpy6rK-2Ol9WuHmoIf4y6hGNrX5-XlubpX6oeZfWzOXT07qoio |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd 2015 INIST-CNRS 2012 Blackwell Publishing Ltd. Copyright Blackwell Publishing Ltd. Oct 2012 |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2012 Blackwell Publishing Ltd. – notice: Copyright Blackwell Publishing Ltd. Oct 2012 |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/j.1365-2958.2012.08196.x |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 283 |
ExternalDocumentID | 2786731691 22925268 26464422 MMI8196 ark_67375_WNG_X66V6GQ9_G |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: University of Minnesota |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAMMB AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-i4776-81056ff531a6533849afd4fdfcdff2b12bcf06d4ea8422aa77e8aef6a617a6853 |
IEDL.DBID | DR2 |
ISSN | 0950-382X 1365-2958 |
IngestDate | Fri Jul 11 09:02:22 EDT 2025 Fri Jul 25 11:02:11 EDT 2025 Mon Jul 21 06:04:47 EDT 2025 Mon Jul 21 09:13:38 EDT 2025 Wed Jan 22 16:59:02 EST 2025 Wed Oct 30 09:51:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bacteria Vibrionaceae Shewanella Krebs cycle |
Language | English |
License | CC BY 4.0 2012 Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4776-81056ff531a6533849afd4fdfcdff2b12bcf06d4ea8422aa77e8aef6a617a6853 |
Notes | University of Minnesota istex:38D91626FD4A3750F3C142E97F12575CB02DBF0C ark:/67375/WNG-X66V6GQ9-G ArticleID:MMI8196 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2012.08196.x |
PMID | 22925268 |
PQID | 1096921174 |
PQPubID | 35968 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1095828969 proquest_journals_1096921174 pubmed_primary_22925268 pascalfrancis_primary_26464422 wiley_primary_10_1111_j_1365_2958_2012_08196_x_MMI8196 istex_primary_ark_67375_WNG_X66V6GQ9_G |
PublicationCentury | 2000 |
PublicationDate | October 2012 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: October 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Molecular Microbiology |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Creaghan, I.T., and Guest, J.R. (1978) Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K12. J Gen Microbiol 107: 1-13. Goodman, A.L., McNulty, N.P., Zhao, Y., Leip, D., Mitra, R.D., Lozupone, C.A., et al. (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6: 279-289. Horswill, A.R., Dudding, A.R., and Escalante-Semerena, J.C. (2001) Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 276: 19094-19101. Saffarini, D.A., Schultz, R., and Beliaev, A. (2003) Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis . J Bacteriol 185: 3668-3671. Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., et al. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19: Unit 19.10.11-21. Serres, M.H., and Riley, M. (2006) Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J Bacteriol 188: 4601-4609. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. Bond, D.R., Mester, T., Nesbø, C.L., Izquierdo-Lopez, A.V., Collart, F.L., and Lovley, D.R. (2005) Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae . Appl Environ Microbiol 71: 3858-3865. Herbert, A.A., and Guest, J.R. (1969) Studies with alpha-ketoglutarate dehydrogenase mutants of Escherichia coli . Mol Gen Genet 105: 182-190. Lakshmi, T.M., and Helling, R.B. (1976) Selection for citrate synthase deficiency in icd mutants of Escherichia coli . J Bacteriol 127: 76-83. Hunt, K.A., Flynn, J.M., Naranjo, B., Shikhare, I.D., and Gralnick, J.A. (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192: 3345-3351. Langridge, G.C., Phan, M.D., Turner, D.J., Perkins, T.T., Parts, L., Haase, J., et al. (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19: 2308-2316. Gallagher, L.A., Shendure, J., and Manoil, C. (2011) Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio 2: e00315-e00310. Ferdinand, W. (1964) The isolation and specific activity of rabbit-muscle glyceraldehyde phosphate dehydrogenase. Biochem J 92: 578-585. Charania, M.A., Brockman, K.L., Zhang, Y., Banerjee, A., Pinchuk, G.E., Fredrickson, J.K., et al. (2009) Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 191: 4298-4306. Deutschbauer, A., Price, M.N., Wetmore, K.M., Shao, W., Baumohl, J.K., Xu, Z., et al. (2011) Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 7: e1002385. van Opijnen, T., Bodi, K.L., and Camilli, A. (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6: 767-772. Pinchuk, G.E., Geydebrekht, O.V., Hill, E.A., Reed, J.L., Konopka, A.E., Beliaev, A.S., and Fredrickson, J.K. (2011) Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 77: 8234-8240. Herbert, A.A., and Guest, J.R. (1968) Biochemical and genetic studies with lysine+methionine mutants of Escherichia coli: lipoic acid and alpha-ketoglutarate dehydrogenase-less mutants. J Gen Microbiol 53: 363-381. Myers, C.R., and Myers, J.M. (1997) Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett Appl Microbiol 25: 162-168. Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176. Tang, Y.J., Hwang, J.S., Wemmer, D.E., and Keasling, J.D. (2007a) Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol 73: 718-729. Horswill, A.R., and Escalante-Semerena, J.C. (1999) Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181: 5615-5623. Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., and Bond, D.R. (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105: 3968-3973. Gerike, U., Hough, D.W., Russell, N.J., Dyall-Smith, M.L., and Danson, M.J. (1998) Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology 144: 929-935. Tang, Y.J., Meadows, A.L., and Keasling, J.D. (2007b) A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol Bioeng 96: 125-133. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15: 1451-1455. Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S. (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260-296. Langmead, B. (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11.17. Mat-Jan, F., Williams, C.R., and Clark, D.P. (1989) Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet 215: 276-280. Goecks, J., Nekrutenko, A., Taylor, J., and Team, G. (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11: R86. Warner, J.R., Reeder, P.J., Karimpour-Fard, A., Woodruff, L.B., and Gill, R.T. (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28: 856-862. Hillman, J.D. (1979) Mutant analysis of glyceraldehyde 3-phosphate dehydrogenase in Escherichia coli . Biochem J 179: 99-107. Covington, E.D., Gelbmann, C.B., Kotloski, N.J., and Gralnick, J.A. (2010) An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis . Mol Microbiol 78: 519-532. Flynn, C.M., Hunt, K.A., Gralnick, J.A., and Srienc, F. (2012) Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1. Biosystems 107: 120-128. Scott, J.H., and Nealson, K.H. (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens . J Bacteriol 176: 3408-3411. Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S., et al. (2008) Towards environmental systems biology of Shewanella . Nat Rev Microbiol 6: 592-603. Neidhardt, F.C. (1987) Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. Washington, DC: ASM Press. Bouhenni, R., Gehrke, A., and Saffarini, D. (2005) Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl Environ Microbiol 71: 4935-4937. Tsang, A.W., Horswill, A.R., and Escalante-Semerena, J.C. (1998) Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J Bacteriol 180: 6511-6518. Coursolle, D., Baron, D.B., Bond, D.R., and Gralnick, J.A. (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis . J Bacteriol 192: 467-474. Opijnen, T., and Camilli, A. (2010) Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr Protoc Microbiol Chapter 1: Unit1E.3. Tang, Y.J., Meadows, A.L., Kirby, J., and Keasling, J.D. (2007c) Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling. J Bacteriol 189: 894-901. Beliaev, A.S., Thompson, D.K., Khare, T., Lim, H., Brandt, C.C., Li, G., et al. (2002) Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS 6: 39-60. Pinchuk, G.E., Rodionov, D.A., Yang, C., Li, X., Osterman, A.L., Dervyn, E., et al. (2009) Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci USA 106: 2874-2879. Gawronski, J.D., Wong, S.M., Giannoukos, G., Ward, D.V., and Akerley, B.J. (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA 106: 16422-16427. Hau, H.H., and Gralnick, J.A. (2007) Ecology and biotechnology of the genus Shewanella . Annu Rev Microbiol 61: 237-258. Myers, C.R., and Myers, J.M. (1993) Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 144: 215-222. Gruer, M.J., Bradbury, A.J., and Guest, J.R. (1997) Construction and properties of aconitase mutants of Escherichia coli . Microbiology 143: 1837-1846. Pinchuk, G.E., Hill, E.A., Geydebrekht, O.V., Ingeniis, J.D., Zhang, X., Osterman, A., et al. (2010) Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Comput Biol 6: e1000822. 2010; 78 1998; 180 2010; 11 1994; 176 2007b; 96 1989; 215 2011; 2 2002; 6 1976; 127 1997; 25 2007a; 73 2011; 77 2006; 6 2008; 105 2008; 6 2007c; 189 1969; 105 2010; Chapter 1 2012; 107 2011; 7 1993; 144 2001; 276 1979; 179 2010; Chapter 11 2009; 10 2010; Chapter 19 2009; 191 2010; 28 1997; 143 1999; 181 1987 2009; 6 2007; 61 2005; 71 2010; 192 1995; 166 1998; 144 2005; 15 2009; 19 1979; 43 1978; 107 2010; 6 2006; 188 1964; 92 2009; 106 1968; 53 2003; 185 |
References_xml | – reference: Warner, J.R., Reeder, P.J., Karimpour-Fard, A., Woodruff, L.B., and Gill, R.T. (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28: 856-862. – reference: Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., and Bond, D.R. (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105: 3968-3973. – reference: Pinchuk, G.E., Rodionov, D.A., Yang, C., Li, X., Osterman, A.L., Dervyn, E., et al. (2009) Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci USA 106: 2874-2879. – reference: Bond, D.R., Mester, T., Nesbø, C.L., Izquierdo-Lopez, A.V., Collart, F.L., and Lovley, D.R. (2005) Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae . Appl Environ Microbiol 71: 3858-3865. – reference: Charania, M.A., Brockman, K.L., Zhang, Y., Banerjee, A., Pinchuk, G.E., Fredrickson, J.K., et al. (2009) Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 191: 4298-4306. – reference: Gallagher, L.A., Shendure, J., and Manoil, C. (2011) Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio 2: e00315-e00310. – reference: Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S. (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260-296. – reference: Mat-Jan, F., Williams, C.R., and Clark, D.P. (1989) Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet 215: 276-280. – reference: Tang, Y.J., Meadows, A.L., and Keasling, J.D. (2007b) A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol Bioeng 96: 125-133. – reference: Tang, Y.J., Meadows, A.L., Kirby, J., and Keasling, J.D. (2007c) Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling. J Bacteriol 189: 894-901. – reference: Opijnen, T., and Camilli, A. (2010) Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr Protoc Microbiol Chapter 1: Unit1E.3. – reference: Tsang, A.W., Horswill, A.R., and Escalante-Semerena, J.C. (1998) Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J Bacteriol 180: 6511-6518. – reference: Gruer, M.J., Bradbury, A.J., and Guest, J.R. (1997) Construction and properties of aconitase mutants of Escherichia coli . Microbiology 143: 1837-1846. – reference: Gawronski, J.D., Wong, S.M., Giannoukos, G., Ward, D.V., and Akerley, B.J. (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA 106: 16422-16427. – reference: Bouhenni, R., Gehrke, A., and Saffarini, D. (2005) Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl Environ Microbiol 71: 4935-4937. – reference: Scott, J.H., and Nealson, K.H. (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens . J Bacteriol 176: 3408-3411. – reference: Myers, C.R., and Myers, J.M. (1993) Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 144: 215-222. – reference: Neidhardt, F.C. (1987) Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. Washington, DC: ASM Press. – reference: Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15: 1451-1455. – reference: Creaghan, I.T., and Guest, J.R. (1978) Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K12. J Gen Microbiol 107: 1-13. – reference: Hau, H.H., and Gralnick, J.A. (2007) Ecology and biotechnology of the genus Shewanella . Annu Rev Microbiol 61: 237-258. – reference: Beliaev, A.S., Thompson, D.K., Khare, T., Lim, H., Brandt, C.C., Li, G., et al. (2002) Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS 6: 39-60. – reference: Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176. – reference: Covington, E.D., Gelbmann, C.B., Kotloski, N.J., and Gralnick, J.A. (2010) An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis . Mol Microbiol 78: 519-532. – reference: Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. – reference: Hillman, J.D. (1979) Mutant analysis of glyceraldehyde 3-phosphate dehydrogenase in Escherichia coli . Biochem J 179: 99-107. – reference: Pinchuk, G.E., Geydebrekht, O.V., Hill, E.A., Reed, J.L., Konopka, A.E., Beliaev, A.S., and Fredrickson, J.K. (2011) Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 77: 8234-8240. – reference: Deutschbauer, A., Price, M.N., Wetmore, K.M., Shao, W., Baumohl, J.K., Xu, Z., et al. (2011) Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 7: e1002385. – reference: Langridge, G.C., Phan, M.D., Turner, D.J., Perkins, T.T., Parts, L., Haase, J., et al. (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19: 2308-2316. – reference: Herbert, A.A., and Guest, J.R. (1969) Studies with alpha-ketoglutarate dehydrogenase mutants of Escherichia coli . Mol Gen Genet 105: 182-190. – reference: Serres, M.H., and Riley, M. (2006) Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J Bacteriol 188: 4601-4609. – reference: Ferdinand, W. (1964) The isolation and specific activity of rabbit-muscle glyceraldehyde phosphate dehydrogenase. Biochem J 92: 578-585. – reference: Hunt, K.A., Flynn, J.M., Naranjo, B., Shikhare, I.D., and Gralnick, J.A. (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192: 3345-3351. – reference: van Opijnen, T., Bodi, K.L., and Camilli, A. (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6: 767-772. – reference: Myers, C.R., and Myers, J.M. (1997) Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett Appl Microbiol 25: 162-168. – reference: Coursolle, D., Baron, D.B., Bond, D.R., and Gralnick, J.A. (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis . J Bacteriol 192: 467-474. – reference: Langmead, B. (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11.17. – reference: Tang, Y.J., Hwang, J.S., Wemmer, D.E., and Keasling, J.D. (2007a) Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol 73: 718-729. – reference: Herbert, A.A., and Guest, J.R. (1968) Biochemical and genetic studies with lysine+methionine mutants of Escherichia coli: lipoic acid and alpha-ketoglutarate dehydrogenase-less mutants. J Gen Microbiol 53: 363-381. – reference: Horswill, A.R., and Escalante-Semerena, J.C. (1999) Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181: 5615-5623. – reference: Pinchuk, G.E., Hill, E.A., Geydebrekht, O.V., Ingeniis, J.D., Zhang, X., Osterman, A., et al. (2010) Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Comput Biol 6: e1000822. – reference: Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., et al. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19: Unit 19.10.11-21. – reference: Horswill, A.R., Dudding, A.R., and Escalante-Semerena, J.C. (2001) Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 276: 19094-19101. – reference: Lakshmi, T.M., and Helling, R.B. (1976) Selection for citrate synthase deficiency in icd mutants of Escherichia coli . J Bacteriol 127: 76-83. – reference: Saffarini, D.A., Schultz, R., and Beliaev, A. (2003) Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis . J Bacteriol 185: 3668-3671. – reference: Goecks, J., Nekrutenko, A., Taylor, J., and Team, G. (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11: R86. – reference: Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S., et al. (2008) Towards environmental systems biology of Shewanella . Nat Rev Microbiol 6: 592-603. – reference: Flynn, C.M., Hunt, K.A., Gralnick, J.A., and Srienc, F. (2012) Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1. Biosystems 107: 120-128. – reference: Goodman, A.L., McNulty, N.P., Zhao, Y., Leip, D., Mitra, R.D., Lozupone, C.A., et al. (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6: 279-289. – reference: Gerike, U., Hough, D.W., Russell, N.J., Dyall-Smith, M.L., and Danson, M.J. (1998) Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology 144: 929-935. – volume: 73 start-page: 718 year: 2007a end-page: 729 article-title: MR‐1 fluxome under various oxygen conditions publication-title: Appl Environ Microbiol – volume: 6 start-page: 279 year: 2009 end-page: 289 article-title: Identifying genetic determinants needed to establish a human gut symbiont in its habitat publication-title: Cell Host Microbe – volume: 61 start-page: 237 year: 2007 end-page: 258 article-title: Ecology and biotechnology of the genus publication-title: Annu Rev Microbiol – volume: 11 start-page: R86 year: 2010 article-title: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences publication-title: Genome Biol – volume: 276 start-page: 19094 year: 2001 end-page: 19101 article-title: Studies of propionate toxicity in identify 2‐methylcitrate as a potent inhibitor of cell growth publication-title: J Biol Chem – volume: 106 start-page: 2874 year: 2009 end-page: 2879 article-title: Genomic reconstruction of MR‐1 metabolism reveals a previously uncharacterized machinery for lactate utilization publication-title: Proc Natl Acad Sci USA – volume: Chapter 1 year: 2010 article-title: Genome‐wide fitness and genetic interactions determined by Tn‐seq, a high‐throughput massively parallel sequencing method for microorganisms publication-title: Curr Protoc Microbiol – volume: 53 start-page: 363 year: 1968 end-page: 381 article-title: Biochemical and genetic studies with lysine+methionine mutants of : lipoic acid and alpha‐ketoglutarate dehydrogenase‐less mutants publication-title: J Gen Microbiol – volume: 28 start-page: 856 year: 2010 end-page: 862 article-title: Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides publication-title: Nat Biotechnol – volume: 10 start-page: R25 year: 2009 article-title: Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol – volume: 192 start-page: 467 year: 2010 end-page: 474 article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in publication-title: J Bacteriol – volume: 71 start-page: 4935 year: 2005 end-page: 4937 article-title: Identification of genes involved in cytochrome biogenesis in , using a modified mariner transposon publication-title: Appl Environ Microbiol – volume: 2 start-page: e00315 year: 2011 end-page: e00310 article-title: Genome‐scale identification of resistance functions in using Tn‐seq publication-title: MBio – volume: 105 start-page: 3968 year: 2008 end-page: 3973 article-title: secretes flavins that mediate extracellular electron transfer publication-title: Proc Natl Acad Sci USA – volume: 166 start-page: 175 year: 1995 end-page: 176 article-title: Four new derivatives of the broad‐host‐range cloning vector pBBR1MCS, carrying different antibiotic‐resistance cassettes publication-title: Gene – volume: 43 start-page: 260 year: 1979 end-page: 296 article-title: Methanogens: reevaluation of a unique biological group publication-title: Microbiol Rev – volume: 6 start-page: 767 year: 2009 end-page: 772 article-title: Tn‐seq: high‐throughput parallel sequencing for fitness and genetic interaction studies in microorganisms publication-title: Nat Methods – volume: 78 start-page: 519 year: 2010 end-page: 532 article-title: An essential role for UshA in processing of extracellular flavin electron shuttles by publication-title: Mol Microbiol – volume: 185 start-page: 3668 year: 2003 end-page: 3671 article-title: Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of publication-title: J Bacteriol – volume: 92 start-page: 578 year: 1964 end-page: 585 article-title: The isolation and specific activity of rabbit‐muscle glyceraldehyde phosphate dehydrogenase publication-title: Biochem J – volume: 176 start-page: 3408 year: 1994 end-page: 3411 article-title: A biochemical study of the intermediary carbon metabolism of publication-title: J Bacteriol – volume: 143 start-page: 1837 year: 1997 end-page: 1846 article-title: Construction and properties of aconitase mutants of publication-title: Microbiology – volume: 105 start-page: 182 year: 1969 end-page: 190 article-title: Studies with alpha‐ketoglutarate dehydrogenase mutants of publication-title: Mol Gen Genet – volume: 15 start-page: 1451 year: 2005 end-page: 1455 article-title: Galaxy: a platform for interactive large‐scale genome analysis publication-title: Genome Res – volume: Chapter 11 year: 2010 article-title: Aligning short sequencing reads with Bowtie publication-title: Curr Protoc Bioinformatics – volume: 77 start-page: 8234 year: 2011 end-page: 8240 article-title: Pyruvate and lactate metabolism by MR‐1 under fermentation, oxygen limitation, and fumarate respiration conditions publication-title: Appl Environ Microbiol – volume: 6 start-page: 592 year: 2008 end-page: 603 article-title: Towards environmental systems biology of publication-title: Nat Rev Microbiol – volume: 191 start-page: 4298 year: 2009 end-page: 4306 article-title: Involvement of a membrane‐bound class III adenylate cyclase in regulation of anaerobic respiration in MR‐1 publication-title: J Bacteriol – volume: Chapter 19 year: 2010 article-title: Galaxy: a web‐based genome analysis tool for experimentalists publication-title: Curr Protoc Mol Biol – volume: 106 start-page: 16422 year: 2009 end-page: 16427 article-title: Tracking insertion mutants within libraries by deep sequencing and a genome‐wide screen for genes required in the lung publication-title: Proc Natl Acad Sci USA – volume: 181 start-page: 5615 year: 1999 end-page: 5623 article-title: LT2 catabolizes propionate via the 2‐methylcitric acid cycle publication-title: J Bacteriol – volume: 25 start-page: 162 year: 1997 end-page: 168 article-title: Isolation and characterization of a transposon mutant of MR‐1 deficient in fumarate reductase publication-title: Lett Appl Microbiol – year: 1987 – volume: 7 start-page: e1002385 year: 2011 article-title: Evidence‐based annotation of gene function in MR‐1 using genome‐wide fitness profiling across 121 conditions publication-title: PLoS Genet – volume: 188 start-page: 4601 year: 2006 end-page: 4609 article-title: Genomic analysis of carbon source metabolism of MR‐1: predictions versus experiments publication-title: J Bacteriol – volume: 96 start-page: 125 year: 2007b end-page: 133 article-title: A kinetic model describing MR‐1 growth, substrate consumption, and product secretion publication-title: Biotechnol Bioeng – volume: 6 start-page: 1133 year: 2006 end-page: 1151 – volume: 189 start-page: 894 year: 2007c end-page: 901 article-title: Anaerobic central metabolic pathways in MR‐1 reinterpreted in the light of isotopic metabolite labeling publication-title: J Bacteriol – volume: 192 start-page: 3345 year: 2010 end-page: 3351 article-title: Substrate‐level phosphorylation is the primary source of energy conservation during anaerobic respiration of strain MR‐1 publication-title: J Bacteriol – volume: 107 start-page: 1 year: 1978 end-page: 13 article-title: Succinate dehydrogenase‐dependent nutritional requirement for succinate in mutants of K12 publication-title: J Gen Microbiol – volume: 19 start-page: 2308 year: 2009 end-page: 2316 article-title: Simultaneous assay of every gene using one million transposon mutants publication-title: Genome Res – volume: 144 start-page: 929 year: 1998 end-page: 935 article-title: Citrate synthase and 2‐methylcitrate synthase: structural, functional and evolutionary relationships publication-title: Microbiology – volume: 107 start-page: 120 year: 2012 end-page: 128 article-title: Construction and elementary mode analysis of a metabolic model for MR‐1 publication-title: Biosystems – volume: 6 start-page: e1000822 year: 2010 article-title: Constraint‐based model of MR‐1 metabolism: a tool for data analysis and hypothesis generation publication-title: PLoS Comput Biol – volume: 180 start-page: 6511 year: 1998 end-page: 6518 article-title: Studies of regulation of expression of the propionate ( ) operon provide insights into how LT2 integrates its 1,2‐propanediol and propionate catabolic pathways publication-title: J Bacteriol – volume: 215 start-page: 276 year: 1989 end-page: 280 article-title: Anaerobic growth defects resulting from gene fusions affecting succinyl‐CoA synthetase in K12 publication-title: Mol Gen Genet – volume: 6 start-page: 39 year: 2002 end-page: 60 article-title: Gene and protein expression profiles of during anaerobic growth with different electron acceptors publication-title: OMICS – volume: 71 start-page: 3858 year: 2005 end-page: 3865 article-title: Characterization of citrate synthase from and evidence for a family of citrate synthases similar to those of eukaryotes throughout the publication-title: Appl Environ Microbiol – volume: 179 start-page: 99 year: 1979 end-page: 107 article-title: Mutant analysis of glyceraldehyde 3‐phosphate dehydrogenase in publication-title: Biochem J – volume: 144 start-page: 215 year: 1993 end-page: 222 article-title: Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by MR‐1 publication-title: FEMS Microbiol Lett – volume: 127 start-page: 76 year: 1976 end-page: 83 article-title: Selection for citrate synthase deficiency in mutants of publication-title: J Bacteriol |
SSID | ssj0013063 |
Score | 2.2656221 |
Snippet | Summary
The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial... The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics... |
SourceID | proquest pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 273 |
SubjectTerms | Anaerobic respiration Anaerobiosis Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biological and medical sciences Bioremediation Biotechnology Citric Acid Cycle Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Bacterial Genetics Gram-negative bacteria High-Throughput Nucleotide Sequencing Metabolism Microbiology Miscellaneous Molecular biology Mutagenesis Mutation Proteins Shewanella - genetics Shewanella - metabolism |
Title | Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq |
URI | https://api.istex.fr/ark:/67375/WNG-X66V6GQ9-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2012.08196.x https://www.ncbi.nlm.nih.gov/pubmed/22925268 https://www.proquest.com/docview/1096921174 https://www.proquest.com/docview/1095828969 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dbtMwFMctNAmJGxjf2cZkJMRdqtWzneZyQqzbpE4CNsiddfwlqo6UNa1YueIReEaehHOcrKNoV4ibyo0Tp_HJiX-u_zmHsVda2KCjVHkEK3MJfZsjhSssxT2vCxwS9ukF59GpPjqXJ5WqOv0TvQvTxodY_eFGnpGe1-TgYJt1J08KrVIlhZbo0eCme8STVEF89F7cLCh0SdVKReFkRbUu6rm1IcRV6ukrkktCgz0W21QXt7HoOtqmsenwAZtcX1UrSZn0FnPbc9__Cvj4fy57k93vEJYftPfcQ3Yn1I_Y3Tap5fIxg4N6-gXpPjR8GjnyJYcaAoV7cpzSAcDM4s-8wG_gxp67JTbCxzX_8Dl8AxLdAJ_WFH2rbsYNpwhTOIZ5bpf8rP7142cTLp-w88O3Z2-O8i6RQz6WRaHzAUKcjhHdHTTi5UCWEL2MPjofo7B9YV3c014GGEghAIoiDCBEDYhXoBEonrKNGk_9nPGwH71whVJgnbTIp6A0lKUE5yVNzzL2OhnNfG2DdRiYTUi7Vijz6XRoKq0_6uG70gwztrtm1dUBSIjIiEJkbOfazKbz64bW63WJc-ZCZuzlqho9kpZZsI-mi7QPrUXijhl71t4eN42LUlCAnYzpZORVxR9zMTSvIfMaMq9J5jVXZjQ6ptLWvx64ze7R5laHuMM25rNFeIE8Nbe7yVPwc1j1fwP96hSm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hIgQX3o-FUoyEuG3UurY3e6yAJoUmEpBCbtbYa4uoZQPZRDSc-An8Rn4JM7vblKCeEDev_Ni1x7P-7Bl_A_DMSBdMVDqN6FSqcMelhMI1peJ2YTJaEnb5gvNgaPpH6vVYj9twQHwXpuGHWB24sWbU_2tWcD6QXtfy2kUr17WLluzw6mY6BCgvc4BvJtJ_-U6emxTasGq5ZkJZOV5367mwJQKsPNan7DCJFY1ZbIJdXIRG18FtvTrt34CTs341TinHncXcdfz3vygf_1PHb8L1FsWKvWba3YJLobwNV5q4lss7gHvl9DMB_FCJaRQEMQWWGJjxyQuOCIAzR995Qk_oJ4XwS2pETErx_lP4hux3g2JaMgFXWU0qwSRTtIwVwi3FqPz142cVvt6Fo_1Xoxf9tI3lkE5Ulpm0SzjOxEgaj4YQZlflGAsVi-iLGKXbkc7HbVOogF0lJWKWhS6GaJAQFhrCFPdgo6RXPwARdmMhfaY1Oq8cQVTUBvNcoS8U79ASeF5LzX5p-Doszo7ZfS3T9uOwZ8fGfDC9t7ntJbC1JtZVBQKJBBOlTGDzTM62Ve2KTfYmp21zphJ4usompWRLC43RdFGXYXMkFUzgfjM_zhuXuWSOnQRMLeVVxh_bMRKvZfFaFq-txWtP7WBwwKmH_1rxCVztjwaH9vBg-OYRXOMijVviJmzMZ4vwmODV3G3VavMbwRMX0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hIhAXyrO4LWWREDdH6Xa9jo9VS9ICiXi0kNtq1rsrooBT4kQ0nPgJ_EZ-CTO2mxLUE-Jmax_27ux4vvV8OwPwTEvrdVBJHNCqWOGujQmFJ3QV2k6nZBL2-IBzf6CPTtXLYTJs-E98FqaOD7H84caaUX2vWcHPXFhV8oqhlSUVQ0u22LjpFuHJ60q3M07jcPhOXnoUmqxqWcLxZOVwldVzZU-EV3mqz5kviSVNWahzXVwFRlexbWWcuuswvhhWzUkZt-Yz28q__xXx8f-M-w7cbjCs2K8X3V245ot7cKPOarm4D7hfTL4QvPelmARBAFNggZ7jPeWC8wHg1NJrfqY7zEdO5AvqRIwK8f6T_4bMukExKTj8VlGOSsEhpsiIOWEX4qT49eNn6b8-gNPui5ODo7jJ5BCPVJrquEMoTodA-o6a8GVHZRicCi7kLgRpd6XNQ1s75bGjpERMU99BHzQSvkJNiOIhrBX06Ecg_F5wMk-TBG2uLAFUTDRmmcLcKd6fRfC8Epo5q6N1GJyOmbyWJubjoGeGWn_QvbeZ6UWwsyLVZQOCiAQSpYxg-0LMplHskh32OqNNc6oieLosJpVkPwvN0WRe1WFnJFWMYKNeHpedy0xyhJ0IdCXkZcEfmzESr2HxGhavqcRrzk2_f8xXm__a8AncfHPYNa-PB6-24BbXqDmJ27A2m879Y8JWM7tTKc1vXq0WgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalies+of+the+anaerobic+tricarboxylic+acid+cycle+in+Shewanella+oneidensis+revealed+by+Tn-seq&rft.jtitle=Molecular+microbiology&rft.au=Brutinel%2C+Evan+D&rft.au=Gralnick%2C+Jeffrey+A&rft.date=2012-10-01&rft.eissn=1365-2958&rft.volume=86&rft.issue=2&rft.spage=273&rft_id=info:doi/10.1111%2Fj.1365-2958.2012.08196.x&rft_id=info%3Apmid%2F22925268&rft.externalDocID=22925268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |