Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq

Summary The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next‐generation high‐throughp...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 86; no. 2; pp. 273 - 283
Main Authors Brutinel, Evan D., Gralnick, Jeffrey A.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.10.2012
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next‐generation high‐throughput sequencing (Tn‐seq) promises to revolutionize systems level analysis of microbial metabolism. Tn‐seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non‐essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn‐seq to assess gene function in the Gram negative γ‐proteobacterium Shewanella oneidensis strain MR‐1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration.
AbstractList The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next-generation high-throughput sequencing (Tn-seq) promises to revolutionize systems level analysis of microbial metabolism. Tn-seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non-essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn-seq to assess gene function in the Gram negative γ-proteobacterium Shewanella oneidensis strain MR-1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration.The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next-generation high-throughput sequencing (Tn-seq) promises to revolutionize systems level analysis of microbial metabolism. Tn-seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non-essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn-seq to assess gene function in the Gram negative γ-proteobacterium Shewanella oneidensis strain MR-1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration.
The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next-generation high-throughput sequencing (Tn-seq) promises to revolutionize systems level analysis of microbial metabolism. Tn-seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non-essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn-seq to assess gene function in the Gram negative γ-proteobacterium Shewanella oneidensis strain MR-1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration.
Summary The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next‐generation high‐throughput sequencing (Tn‐seq) promises to revolutionize systems level analysis of microbial metabolism. Tn‐seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non‐essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn‐seq to assess gene function in the Gram negative γ‐proteobacterium Shewanella oneidensis strain MR‐1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration.
The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics into the 21st century. Whole genome genetic fitness analysis using transposon mutagenesis combined with next-generation high-throughput sequencing (Tn-seq) promises to revolutionize systems level analysis of microbial metabolism. Tn-seq measures the frequency of actual members of a heterogeneous mutant pool undergoing purifying selection to determine the contribution of every non-essential gene in the genome to the fitness of an organism under a given condition. Here we use Tn-seq to assess gene function in the Gram negative γ-proteobacterium Shewanella oneidensis strain MR-1. In addition to being a model environmental organism, there is considerable interest in using S. oneidensis as a platform organism for bioremediation and biotechnology, necessitating a complete understanding of the metabolic pathways that may be utilized. Our analysis reveals unique aspects of S. oneidensis metabolism overlooked by over 30 years of classical genetic and systems level analysis. We report the utilization of an alternative citrate synthase and describe a dynamic branching of the S. oneidensis anaerobic tricarboxylic acid cycle, unreported in any other organism, which may be a widespread strategy for microbes adept at dissipating reducing equivalents via anaerobic respiration. [PUBLICATION ABSTRACT]
Author Gralnick, Jeffrey A.
Brutinel, Evan D.
Author_xml – sequence: 1
  givenname: Evan D.
  surname: Brutinel
  fullname: Brutinel, Evan D.
  organization: BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, MN, 55108, St Paul, USA
– sequence: 2
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
  email: gralnick@umn.edu
  organization: BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, MN, 55108, St Paul, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26464422$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22925268$$D View this record in MEDLINE/PubMed
BookMark eNpdkU9v1DAQxS1URLeFr4AsISQuCf6TOM6BQ1XBtlILQhTozZo4Y9VL1mntXbr77euwyyIxF481vzd6mndCjsIYkBDKWclzvV-UXKq6EG2tS8G4KJnmrSo3z8jsMDgiM9bWrJBa3B6Tk5QWjHHJlHxBjoVoRS2UnhFzFsYlDB4THR1d3SGFABjHzlu6it5C7MbNdsg_sL6ndmsHpD7Qb3f4CAGHAWi25nsMySca8TfCgD3ttvQmFAkfXpLnDoaEr_bvKfn-6ePN-UVx9WV-eX52VfiqaVShOauVc7XkoGopddWC6yvXO9s7JzouOuuY6isEXQkB0DSoAZ0CxRtQupan5N1u730cH9aYVmbpk538BRzXyfB8Cy10q9qMvvkPXYzrGLK7iVKt4LypMvV6T627JfbmPvolxK35e7oMvN0DkCwMLkKwPv3jVKWq7DVzH3bcox9we5hzZqYozcJMiZkpMTNFaf5EaTbm-vpy6rK-2Ol9WuHmoIf4y6hGNrX5-XlubpX6oeZfWzOXT07qoio
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd
2015 INIST-CNRS
2012 Blackwell Publishing Ltd.
Copyright Blackwell Publishing Ltd. Oct 2012
Copyright_xml – notice: 2012 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2012 Blackwell Publishing Ltd.
– notice: Copyright Blackwell Publishing Ltd. Oct 2012
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1111/j.1365-2958.2012.08196.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 283
ExternalDocumentID 2786731691
22925268
26464422
MMI8196
ark_67375_WNG_X66V6GQ9_G
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: University of Minnesota
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-i4776-81056ff531a6533849afd4fdfcdff2b12bcf06d4ea8422aa77e8aef6a617a6853
IEDL.DBID DR2
ISSN 0950-382X
1365-2958
IngestDate Fri Jul 11 09:02:22 EDT 2025
Fri Jul 25 11:02:11 EDT 2025
Mon Jul 21 06:04:47 EDT 2025
Mon Jul 21 09:13:38 EDT 2025
Wed Jan 22 16:59:02 EST 2025
Wed Oct 30 09:51:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bacteria
Vibrionaceae
Shewanella
Krebs cycle
Language English
License CC BY 4.0
2012 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4776-81056ff531a6533849afd4fdfcdff2b12bcf06d4ea8422aa77e8aef6a617a6853
Notes University of Minnesota
istex:38D91626FD4A3750F3C142E97F12575CB02DBF0C

ark:/67375/WNG-X66V6GQ9-G
ArticleID:MMI8196
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2012.08196.x
PMID 22925268
PQID 1096921174
PQPubID 35968
PageCount 11
ParticipantIDs proquest_miscellaneous_1095828969
proquest_journals_1096921174
pubmed_primary_22925268
pascalfrancis_primary_26464422
wiley_primary_10_1111_j_1365_2958_2012_08196_x_MMI8196
istex_primary_ark_67375_WNG_X66V6GQ9_G
PublicationCentury 2000
PublicationDate October 2012
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: October 2012
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Molecular Microbiology
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Creaghan, I.T., and Guest, J.R. (1978) Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K12. J Gen Microbiol 107: 1-13.
Goodman, A.L., McNulty, N.P., Zhao, Y., Leip, D., Mitra, R.D., Lozupone, C.A., et al. (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6: 279-289.
Horswill, A.R., Dudding, A.R., and Escalante-Semerena, J.C. (2001) Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 276: 19094-19101.
Saffarini, D.A., Schultz, R., and Beliaev, A. (2003) Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis . J Bacteriol 185: 3668-3671.
Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., et al. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19: Unit 19.10.11-21.
Serres, M.H., and Riley, M. (2006) Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J Bacteriol 188: 4601-4609.
Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
Bond, D.R., Mester, T., Nesbø, C.L., Izquierdo-Lopez, A.V., Collart, F.L., and Lovley, D.R. (2005) Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae . Appl Environ Microbiol 71: 3858-3865.
Herbert, A.A., and Guest, J.R. (1969) Studies with alpha-ketoglutarate dehydrogenase mutants of Escherichia coli . Mol Gen Genet 105: 182-190.
Lakshmi, T.M., and Helling, R.B. (1976) Selection for citrate synthase deficiency in icd mutants of Escherichia coli . J Bacteriol 127: 76-83.
Hunt, K.A., Flynn, J.M., Naranjo, B., Shikhare, I.D., and Gralnick, J.A. (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192: 3345-3351.
Langridge, G.C., Phan, M.D., Turner, D.J., Perkins, T.T., Parts, L., Haase, J., et al. (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19: 2308-2316.
Gallagher, L.A., Shendure, J., and Manoil, C. (2011) Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio 2: e00315-e00310.
Ferdinand, W. (1964) The isolation and specific activity of rabbit-muscle glyceraldehyde phosphate dehydrogenase. Biochem J 92: 578-585.
Charania, M.A., Brockman, K.L., Zhang, Y., Banerjee, A., Pinchuk, G.E., Fredrickson, J.K., et al. (2009) Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 191: 4298-4306.
Deutschbauer, A., Price, M.N., Wetmore, K.M., Shao, W., Baumohl, J.K., Xu, Z., et al. (2011) Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 7: e1002385.
van Opijnen, T., Bodi, K.L., and Camilli, A. (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6: 767-772.
Pinchuk, G.E., Geydebrekht, O.V., Hill, E.A., Reed, J.L., Konopka, A.E., Beliaev, A.S., and Fredrickson, J.K. (2011) Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 77: 8234-8240.
Herbert, A.A., and Guest, J.R. (1968) Biochemical and genetic studies with lysine+methionine mutants of Escherichia coli: lipoic acid and alpha-ketoglutarate dehydrogenase-less mutants. J Gen Microbiol 53: 363-381.
Myers, C.R., and Myers, J.M. (1997) Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett Appl Microbiol 25: 162-168.
Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176.
Tang, Y.J., Hwang, J.S., Wemmer, D.E., and Keasling, J.D. (2007a) Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol 73: 718-729.
Horswill, A.R., and Escalante-Semerena, J.C. (1999) Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181: 5615-5623.
Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., and Bond, D.R. (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105: 3968-3973.
Gerike, U., Hough, D.W., Russell, N.J., Dyall-Smith, M.L., and Danson, M.J. (1998) Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology 144: 929-935.
Tang, Y.J., Meadows, A.L., and Keasling, J.D. (2007b) A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol Bioeng 96: 125-133.
Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15: 1451-1455.
Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S. (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260-296.
Langmead, B. (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11.17.
Mat-Jan, F., Williams, C.R., and Clark, D.P. (1989) Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet 215: 276-280.
Goecks, J., Nekrutenko, A., Taylor, J., and Team, G. (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11: R86.
Warner, J.R., Reeder, P.J., Karimpour-Fard, A., Woodruff, L.B., and Gill, R.T. (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28: 856-862.
Hillman, J.D. (1979) Mutant analysis of glyceraldehyde 3-phosphate dehydrogenase in Escherichia coli . Biochem J 179: 99-107.
Covington, E.D., Gelbmann, C.B., Kotloski, N.J., and Gralnick, J.A. (2010) An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis . Mol Microbiol 78: 519-532.
Flynn, C.M., Hunt, K.A., Gralnick, J.A., and Srienc, F. (2012) Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1. Biosystems 107: 120-128.
Scott, J.H., and Nealson, K.H. (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens . J Bacteriol 176: 3408-3411.
Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S., et al. (2008) Towards environmental systems biology of Shewanella . Nat Rev Microbiol 6: 592-603.
Neidhardt, F.C. (1987) Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. Washington, DC: ASM Press.
Bouhenni, R., Gehrke, A., and Saffarini, D. (2005) Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl Environ Microbiol 71: 4935-4937.
Tsang, A.W., Horswill, A.R., and Escalante-Semerena, J.C. (1998) Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J Bacteriol 180: 6511-6518.
Coursolle, D., Baron, D.B., Bond, D.R., and Gralnick, J.A. (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis . J Bacteriol 192: 467-474.
Opijnen, T., and Camilli, A. (2010) Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr Protoc Microbiol Chapter 1: Unit1E.3.
Tang, Y.J., Meadows, A.L., Kirby, J., and Keasling, J.D. (2007c) Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling. J Bacteriol 189: 894-901.
Beliaev, A.S., Thompson, D.K., Khare, T., Lim, H., Brandt, C.C., Li, G., et al. (2002) Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS 6: 39-60.
Pinchuk, G.E., Rodionov, D.A., Yang, C., Li, X., Osterman, A.L., Dervyn, E., et al. (2009) Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci USA 106: 2874-2879.
Gawronski, J.D., Wong, S.M., Giannoukos, G., Ward, D.V., and Akerley, B.J. (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA 106: 16422-16427.
Hau, H.H., and Gralnick, J.A. (2007) Ecology and biotechnology of the genus Shewanella . Annu Rev Microbiol 61: 237-258.
Myers, C.R., and Myers, J.M. (1993) Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 144: 215-222.
Gruer, M.J., Bradbury, A.J., and Guest, J.R. (1997) Construction and properties of aconitase mutants of Escherichia coli . Microbiology 143: 1837-1846.
Pinchuk, G.E., Hill, E.A., Geydebrekht, O.V., Ingeniis, J.D., Zhang, X., Osterman, A., et al. (2010) Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Comput Biol 6: e1000822.
2010; 78
1998; 180
2010; 11
1994; 176
2007b; 96
1989; 215
2011; 2
2002; 6
1976; 127
1997; 25
2007a; 73
2011; 77
2006; 6
2008; 105
2008; 6
2007c; 189
1969; 105
2010; Chapter 1
2012; 107
2011; 7
1993; 144
2001; 276
1979; 179
2010; Chapter 11
2009; 10
2010; Chapter 19
2009; 191
2010; 28
1997; 143
1999; 181
1987
2009; 6
2007; 61
2005; 71
2010; 192
1995; 166
1998; 144
2005; 15
2009; 19
1979; 43
1978; 107
2010; 6
2006; 188
1964; 92
2009; 106
1968; 53
2003; 185
References_xml – reference: Warner, J.R., Reeder, P.J., Karimpour-Fard, A., Woodruff, L.B., and Gill, R.T. (2010) Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol 28: 856-862.
– reference: Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., and Bond, D.R. (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105: 3968-3973.
– reference: Pinchuk, G.E., Rodionov, D.A., Yang, C., Li, X., Osterman, A.L., Dervyn, E., et al. (2009) Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci USA 106: 2874-2879.
– reference: Bond, D.R., Mester, T., Nesbø, C.L., Izquierdo-Lopez, A.V., Collart, F.L., and Lovley, D.R. (2005) Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae . Appl Environ Microbiol 71: 3858-3865.
– reference: Charania, M.A., Brockman, K.L., Zhang, Y., Banerjee, A., Pinchuk, G.E., Fredrickson, J.K., et al. (2009) Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 191: 4298-4306.
– reference: Gallagher, L.A., Shendure, J., and Manoil, C. (2011) Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio 2: e00315-e00310.
– reference: Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R., and Wolfe, R.S. (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260-296.
– reference: Mat-Jan, F., Williams, C.R., and Clark, D.P. (1989) Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet 215: 276-280.
– reference: Tang, Y.J., Meadows, A.L., and Keasling, J.D. (2007b) A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol Bioeng 96: 125-133.
– reference: Tang, Y.J., Meadows, A.L., Kirby, J., and Keasling, J.D. (2007c) Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling. J Bacteriol 189: 894-901.
– reference: Opijnen, T., and Camilli, A. (2010) Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr Protoc Microbiol Chapter 1: Unit1E.3.
– reference: Tsang, A.W., Horswill, A.R., and Escalante-Semerena, J.C. (1998) Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J Bacteriol 180: 6511-6518.
– reference: Gruer, M.J., Bradbury, A.J., and Guest, J.R. (1997) Construction and properties of aconitase mutants of Escherichia coli . Microbiology 143: 1837-1846.
– reference: Gawronski, J.D., Wong, S.M., Giannoukos, G., Ward, D.V., and Akerley, B.J. (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA 106: 16422-16427.
– reference: Bouhenni, R., Gehrke, A., and Saffarini, D. (2005) Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl Environ Microbiol 71: 4935-4937.
– reference: Scott, J.H., and Nealson, K.H. (1994) A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens . J Bacteriol 176: 3408-3411.
– reference: Myers, C.R., and Myers, J.M. (1993) Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by Shewanella putrefaciens MR-1. FEMS Microbiol Lett 144: 215-222.
– reference: Neidhardt, F.C. (1987) Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. Washington, DC: ASM Press.
– reference: Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnitski, L., Shah, P., et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15: 1451-1455.
– reference: Creaghan, I.T., and Guest, J.R. (1978) Succinate dehydrogenase-dependent nutritional requirement for succinate in mutants of Escherichia coli K12. J Gen Microbiol 107: 1-13.
– reference: Hau, H.H., and Gralnick, J.A. (2007) Ecology and biotechnology of the genus Shewanella . Annu Rev Microbiol 61: 237-258.
– reference: Beliaev, A.S., Thompson, D.K., Khare, T., Lim, H., Brandt, C.C., Li, G., et al. (2002) Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS 6: 39-60.
– reference: Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176.
– reference: Covington, E.D., Gelbmann, C.B., Kotloski, N.J., and Gralnick, J.A. (2010) An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis . Mol Microbiol 78: 519-532.
– reference: Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
– reference: Hillman, J.D. (1979) Mutant analysis of glyceraldehyde 3-phosphate dehydrogenase in Escherichia coli . Biochem J 179: 99-107.
– reference: Pinchuk, G.E., Geydebrekht, O.V., Hill, E.A., Reed, J.L., Konopka, A.E., Beliaev, A.S., and Fredrickson, J.K. (2011) Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 77: 8234-8240.
– reference: Deutschbauer, A., Price, M.N., Wetmore, K.M., Shao, W., Baumohl, J.K., Xu, Z., et al. (2011) Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 7: e1002385.
– reference: Langridge, G.C., Phan, M.D., Turner, D.J., Perkins, T.T., Parts, L., Haase, J., et al. (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19: 2308-2316.
– reference: Herbert, A.A., and Guest, J.R. (1969) Studies with alpha-ketoglutarate dehydrogenase mutants of Escherichia coli . Mol Gen Genet 105: 182-190.
– reference: Serres, M.H., and Riley, M. (2006) Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J Bacteriol 188: 4601-4609.
– reference: Ferdinand, W. (1964) The isolation and specific activity of rabbit-muscle glyceraldehyde phosphate dehydrogenase. Biochem J 92: 578-585.
– reference: Hunt, K.A., Flynn, J.M., Naranjo, B., Shikhare, I.D., and Gralnick, J.A. (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192: 3345-3351.
– reference: van Opijnen, T., Bodi, K.L., and Camilli, A. (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6: 767-772.
– reference: Myers, C.R., and Myers, J.M. (1997) Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett Appl Microbiol 25: 162-168.
– reference: Coursolle, D., Baron, D.B., Bond, D.R., and Gralnick, J.A. (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis . J Bacteriol 192: 467-474.
– reference: Langmead, B. (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11.17.
– reference: Tang, Y.J., Hwang, J.S., Wemmer, D.E., and Keasling, J.D. (2007a) Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol 73: 718-729.
– reference: Herbert, A.A., and Guest, J.R. (1968) Biochemical and genetic studies with lysine+methionine mutants of Escherichia coli: lipoic acid and alpha-ketoglutarate dehydrogenase-less mutants. J Gen Microbiol 53: 363-381.
– reference: Horswill, A.R., and Escalante-Semerena, J.C. (1999) Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181: 5615-5623.
– reference: Pinchuk, G.E., Hill, E.A., Geydebrekht, O.V., Ingeniis, J.D., Zhang, X., Osterman, A., et al. (2010) Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation. PLoS Comput Biol 6: e1000822.
– reference: Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., et al. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19: Unit 19.10.11-21.
– reference: Horswill, A.R., Dudding, A.R., and Escalante-Semerena, J.C. (2001) Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 276: 19094-19101.
– reference: Lakshmi, T.M., and Helling, R.B. (1976) Selection for citrate synthase deficiency in icd mutants of Escherichia coli . J Bacteriol 127: 76-83.
– reference: Saffarini, D.A., Schultz, R., and Beliaev, A. (2003) Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis . J Bacteriol 185: 3668-3671.
– reference: Goecks, J., Nekrutenko, A., Taylor, J., and Team, G. (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11: R86.
– reference: Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S., et al. (2008) Towards environmental systems biology of Shewanella . Nat Rev Microbiol 6: 592-603.
– reference: Flynn, C.M., Hunt, K.A., Gralnick, J.A., and Srienc, F. (2012) Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1. Biosystems 107: 120-128.
– reference: Goodman, A.L., McNulty, N.P., Zhao, Y., Leip, D., Mitra, R.D., Lozupone, C.A., et al. (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6: 279-289.
– reference: Gerike, U., Hough, D.W., Russell, N.J., Dyall-Smith, M.L., and Danson, M.J. (1998) Citrate synthase and 2-methylcitrate synthase: structural, functional and evolutionary relationships. Microbiology 144: 929-935.
– volume: 73
  start-page: 718
  year: 2007a
  end-page: 729
  article-title: MR‐1 fluxome under various oxygen conditions
  publication-title: Appl Environ Microbiol
– volume: 6
  start-page: 279
  year: 2009
  end-page: 289
  article-title: Identifying genetic determinants needed to establish a human gut symbiont in its habitat
  publication-title: Cell Host Microbe
– volume: 61
  start-page: 237
  year: 2007
  end-page: 258
  article-title: Ecology and biotechnology of the genus
  publication-title: Annu Rev Microbiol
– volume: 11
  start-page: R86
  year: 2010
  article-title: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences
  publication-title: Genome Biol
– volume: 276
  start-page: 19094
  year: 2001
  end-page: 19101
  article-title: Studies of propionate toxicity in identify 2‐methylcitrate as a potent inhibitor of cell growth
  publication-title: J Biol Chem
– volume: 106
  start-page: 2874
  year: 2009
  end-page: 2879
  article-title: Genomic reconstruction of MR‐1 metabolism reveals a previously uncharacterized machinery for lactate utilization
  publication-title: Proc Natl Acad Sci USA
– volume: Chapter 1
  year: 2010
  article-title: Genome‐wide fitness and genetic interactions determined by Tn‐seq, a high‐throughput massively parallel sequencing method for microorganisms
  publication-title: Curr Protoc Microbiol
– volume: 53
  start-page: 363
  year: 1968
  end-page: 381
  article-title: Biochemical and genetic studies with lysine+methionine mutants of : lipoic acid and alpha‐ketoglutarate dehydrogenase‐less mutants
  publication-title: J Gen Microbiol
– volume: 28
  start-page: 856
  year: 2010
  end-page: 862
  article-title: Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides
  publication-title: Nat Biotechnol
– volume: 10
  start-page: R25
  year: 2009
  article-title: Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol
– volume: 192
  start-page: 467
  year: 2010
  end-page: 474
  article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in
  publication-title: J Bacteriol
– volume: 71
  start-page: 4935
  year: 2005
  end-page: 4937
  article-title: Identification of genes involved in cytochrome biogenesis in , using a modified mariner transposon
  publication-title: Appl Environ Microbiol
– volume: 2
  start-page: e00315
  year: 2011
  end-page: e00310
  article-title: Genome‐scale identification of resistance functions in using Tn‐seq
  publication-title: MBio
– volume: 105
  start-page: 3968
  year: 2008
  end-page: 3973
  article-title: secretes flavins that mediate extracellular electron transfer
  publication-title: Proc Natl Acad Sci USA
– volume: 166
  start-page: 175
  year: 1995
  end-page: 176
  article-title: Four new derivatives of the broad‐host‐range cloning vector pBBR1MCS, carrying different antibiotic‐resistance cassettes
  publication-title: Gene
– volume: 43
  start-page: 260
  year: 1979
  end-page: 296
  article-title: Methanogens: reevaluation of a unique biological group
  publication-title: Microbiol Rev
– volume: 6
  start-page: 767
  year: 2009
  end-page: 772
  article-title: Tn‐seq: high‐throughput parallel sequencing for fitness and genetic interaction studies in microorganisms
  publication-title: Nat Methods
– volume: 78
  start-page: 519
  year: 2010
  end-page: 532
  article-title: An essential role for UshA in processing of extracellular flavin electron shuttles by
  publication-title: Mol Microbiol
– volume: 185
  start-page: 3668
  year: 2003
  end-page: 3671
  article-title: Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of
  publication-title: J Bacteriol
– volume: 92
  start-page: 578
  year: 1964
  end-page: 585
  article-title: The isolation and specific activity of rabbit‐muscle glyceraldehyde phosphate dehydrogenase
  publication-title: Biochem J
– volume: 176
  start-page: 3408
  year: 1994
  end-page: 3411
  article-title: A biochemical study of the intermediary carbon metabolism of
  publication-title: J Bacteriol
– volume: 143
  start-page: 1837
  year: 1997
  end-page: 1846
  article-title: Construction and properties of aconitase mutants of
  publication-title: Microbiology
– volume: 105
  start-page: 182
  year: 1969
  end-page: 190
  article-title: Studies with alpha‐ketoglutarate dehydrogenase mutants of
  publication-title: Mol Gen Genet
– volume: 15
  start-page: 1451
  year: 2005
  end-page: 1455
  article-title: Galaxy: a platform for interactive large‐scale genome analysis
  publication-title: Genome Res
– volume: Chapter 11
  year: 2010
  article-title: Aligning short sequencing reads with Bowtie
  publication-title: Curr Protoc Bioinformatics
– volume: 77
  start-page: 8234
  year: 2011
  end-page: 8240
  article-title: Pyruvate and lactate metabolism by MR‐1 under fermentation, oxygen limitation, and fumarate respiration conditions
  publication-title: Appl Environ Microbiol
– volume: 6
  start-page: 592
  year: 2008
  end-page: 603
  article-title: Towards environmental systems biology of
  publication-title: Nat Rev Microbiol
– volume: 191
  start-page: 4298
  year: 2009
  end-page: 4306
  article-title: Involvement of a membrane‐bound class III adenylate cyclase in regulation of anaerobic respiration in MR‐1
  publication-title: J Bacteriol
– volume: Chapter 19
  year: 2010
  article-title: Galaxy: a web‐based genome analysis tool for experimentalists
  publication-title: Curr Protoc Mol Biol
– volume: 106
  start-page: 16422
  year: 2009
  end-page: 16427
  article-title: Tracking insertion mutants within libraries by deep sequencing and a genome‐wide screen for genes required in the lung
  publication-title: Proc Natl Acad Sci USA
– volume: 181
  start-page: 5615
  year: 1999
  end-page: 5623
  article-title: LT2 catabolizes propionate via the 2‐methylcitric acid cycle
  publication-title: J Bacteriol
– volume: 25
  start-page: 162
  year: 1997
  end-page: 168
  article-title: Isolation and characterization of a transposon mutant of MR‐1 deficient in fumarate reductase
  publication-title: Lett Appl Microbiol
– year: 1987
– volume: 7
  start-page: e1002385
  year: 2011
  article-title: Evidence‐based annotation of gene function in MR‐1 using genome‐wide fitness profiling across 121 conditions
  publication-title: PLoS Genet
– volume: 188
  start-page: 4601
  year: 2006
  end-page: 4609
  article-title: Genomic analysis of carbon source metabolism of MR‐1: predictions versus experiments
  publication-title: J Bacteriol
– volume: 96
  start-page: 125
  year: 2007b
  end-page: 133
  article-title: A kinetic model describing MR‐1 growth, substrate consumption, and product secretion
  publication-title: Biotechnol Bioeng
– volume: 6
  start-page: 1133
  year: 2006
  end-page: 1151
– volume: 189
  start-page: 894
  year: 2007c
  end-page: 901
  article-title: Anaerobic central metabolic pathways in MR‐1 reinterpreted in the light of isotopic metabolite labeling
  publication-title: J Bacteriol
– volume: 192
  start-page: 3345
  year: 2010
  end-page: 3351
  article-title: Substrate‐level phosphorylation is the primary source of energy conservation during anaerobic respiration of strain MR‐1
  publication-title: J Bacteriol
– volume: 107
  start-page: 1
  year: 1978
  end-page: 13
  article-title: Succinate dehydrogenase‐dependent nutritional requirement for succinate in mutants of K12
  publication-title: J Gen Microbiol
– volume: 19
  start-page: 2308
  year: 2009
  end-page: 2316
  article-title: Simultaneous assay of every gene using one million transposon mutants
  publication-title: Genome Res
– volume: 144
  start-page: 929
  year: 1998
  end-page: 935
  article-title: Citrate synthase and 2‐methylcitrate synthase: structural, functional and evolutionary relationships
  publication-title: Microbiology
– volume: 107
  start-page: 120
  year: 2012
  end-page: 128
  article-title: Construction and elementary mode analysis of a metabolic model for MR‐1
  publication-title: Biosystems
– volume: 6
  start-page: e1000822
  year: 2010
  article-title: Constraint‐based model of MR‐1 metabolism: a tool for data analysis and hypothesis generation
  publication-title: PLoS Comput Biol
– volume: 180
  start-page: 6511
  year: 1998
  end-page: 6518
  article-title: Studies of regulation of expression of the propionate ( ) operon provide insights into how LT2 integrates its 1,2‐propanediol and propionate catabolic pathways
  publication-title: J Bacteriol
– volume: 215
  start-page: 276
  year: 1989
  end-page: 280
  article-title: Anaerobic growth defects resulting from gene fusions affecting succinyl‐CoA synthetase in K12
  publication-title: Mol Gen Genet
– volume: 6
  start-page: 39
  year: 2002
  end-page: 60
  article-title: Gene and protein expression profiles of during anaerobic growth with different electron acceptors
  publication-title: OMICS
– volume: 71
  start-page: 3858
  year: 2005
  end-page: 3865
  article-title: Characterization of citrate synthase from and evidence for a family of citrate synthases similar to those of eukaryotes throughout the
  publication-title: Appl Environ Microbiol
– volume: 179
  start-page: 99
  year: 1979
  end-page: 107
  article-title: Mutant analysis of glyceraldehyde 3‐phosphate dehydrogenase in
  publication-title: Biochem J
– volume: 144
  start-page: 215
  year: 1993
  end-page: 222
  article-title: Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese(IV) by MR‐1
  publication-title: FEMS Microbiol Lett
– volume: 127
  start-page: 76
  year: 1976
  end-page: 83
  article-title: Selection for citrate synthase deficiency in mutants of
  publication-title: J Bacteriol
SSID ssj0013063
Score 2.2656221
Snippet Summary The availability of increasingly inexpensive sequencing combined with an ever‐expanding molecular biology toolbox has transported classical bacterial...
The availability of increasingly inexpensive sequencing combined with an ever-expanding molecular biology toolbox has transported classical bacterial genetics...
SourceID proquest
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 273
SubjectTerms Anaerobic respiration
Anaerobiosis
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biological and medical sciences
Bioremediation
Biotechnology
Citric Acid Cycle
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Bacterial
Genetics
Gram-negative bacteria
High-Throughput Nucleotide Sequencing
Metabolism
Microbiology
Miscellaneous
Molecular biology
Mutagenesis
Mutation
Proteins
Shewanella - genetics
Shewanella - metabolism
Title Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq
URI https://api.istex.fr/ark:/67375/WNG-X66V6GQ9-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2012.08196.x
https://www.ncbi.nlm.nih.gov/pubmed/22925268
https://www.proquest.com/docview/1096921174
https://www.proquest.com/docview/1095828969
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3dbtMwFMctNAmJGxjf2cZkJMRdqtWzneZyQqzbpE4CNsiddfwlqo6UNa1YueIReEaehHOcrKNoV4ibyo0Tp_HJiX-u_zmHsVda2KCjVHkEK3MJfZsjhSssxT2vCxwS9ukF59GpPjqXJ5WqOv0TvQvTxodY_eFGnpGe1-TgYJt1J08KrVIlhZbo0eCme8STVEF89F7cLCh0SdVKReFkRbUu6rm1IcRV6ukrkktCgz0W21QXt7HoOtqmsenwAZtcX1UrSZn0FnPbc9__Cvj4fy57k93vEJYftPfcQ3Yn1I_Y3Tap5fIxg4N6-gXpPjR8GjnyJYcaAoV7cpzSAcDM4s-8wG_gxp67JTbCxzX_8Dl8AxLdAJ_WFH2rbsYNpwhTOIZ5bpf8rP7142cTLp-w88O3Z2-O8i6RQz6WRaHzAUKcjhHdHTTi5UCWEL2MPjofo7B9YV3c014GGEghAIoiDCBEDYhXoBEonrKNGk_9nPGwH71whVJgnbTIp6A0lKUE5yVNzzL2OhnNfG2DdRiYTUi7Vijz6XRoKq0_6uG70gwztrtm1dUBSIjIiEJkbOfazKbz64bW63WJc-ZCZuzlqho9kpZZsI-mi7QPrUXijhl71t4eN42LUlCAnYzpZORVxR9zMTSvIfMaMq9J5jVXZjQ6ptLWvx64ze7R5laHuMM25rNFeIE8Nbe7yVPwc1j1fwP96hSm
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hIgQX3o-FUoyEuG3UurY3e6yAJoUmEpBCbtbYa4uoZQPZRDSc-An8Rn4JM7vblKCeEDev_Ni1x7P-7Bl_A_DMSBdMVDqN6FSqcMelhMI1peJ2YTJaEnb5gvNgaPpH6vVYj9twQHwXpuGHWB24sWbU_2tWcD6QXtfy2kUr17WLluzw6mY6BCgvc4BvJtJ_-U6emxTasGq5ZkJZOV5367mwJQKsPNan7DCJFY1ZbIJdXIRG18FtvTrt34CTs341TinHncXcdfz3vygf_1PHb8L1FsWKvWba3YJLobwNV5q4lss7gHvl9DMB_FCJaRQEMQWWGJjxyQuOCIAzR995Qk_oJ4XwS2pETErx_lP4hux3g2JaMgFXWU0qwSRTtIwVwi3FqPz142cVvt6Fo_1Xoxf9tI3lkE5Ulpm0SzjOxEgaj4YQZlflGAsVi-iLGKXbkc7HbVOogF0lJWKWhS6GaJAQFhrCFPdgo6RXPwARdmMhfaY1Oq8cQVTUBvNcoS8U79ASeF5LzX5p-Doszo7ZfS3T9uOwZ8fGfDC9t7ntJbC1JtZVBQKJBBOlTGDzTM62Ve2KTfYmp21zphJ4usompWRLC43RdFGXYXMkFUzgfjM_zhuXuWSOnQRMLeVVxh_bMRKvZfFaFq-txWtP7WBwwKmH_1rxCVztjwaH9vBg-OYRXOMijVviJmzMZ4vwmODV3G3VavMbwRMX0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hIhAXyrO4LWWREDdH6Xa9jo9VS9ICiXi0kNtq1rsrooBT4kQ0nPgJ_EZ-CTO2mxLUE-Jmax_27ux4vvV8OwPwTEvrdVBJHNCqWOGujQmFJ3QV2k6nZBL2-IBzf6CPTtXLYTJs-E98FqaOD7H84caaUX2vWcHPXFhV8oqhlSUVQ0u22LjpFuHJ60q3M07jcPhOXnoUmqxqWcLxZOVwldVzZU-EV3mqz5kviSVNWahzXVwFRlexbWWcuuswvhhWzUkZt-Yz28q__xXx8f-M-w7cbjCs2K8X3V245ot7cKPOarm4D7hfTL4QvPelmARBAFNggZ7jPeWC8wHg1NJrfqY7zEdO5AvqRIwK8f6T_4bMukExKTj8VlGOSsEhpsiIOWEX4qT49eNn6b8-gNPui5ODo7jJ5BCPVJrquEMoTodA-o6a8GVHZRicCi7kLgRpd6XNQ1s75bGjpERMU99BHzQSvkJNiOIhrBX06Ecg_F5wMk-TBG2uLAFUTDRmmcLcKd6fRfC8Epo5q6N1GJyOmbyWJubjoGeGWn_QvbeZ6UWwsyLVZQOCiAQSpYxg-0LMplHskh32OqNNc6oieLosJpVkPwvN0WRe1WFnJFWMYKNeHpedy0xyhJ0IdCXkZcEfmzESr2HxGhavqcRrzk2_f8xXm__a8AncfHPYNa-PB6-24BbXqDmJ27A2m879Y8JWM7tTKc1vXq0WgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalies+of+the+anaerobic+tricarboxylic+acid+cycle+in+Shewanella+oneidensis+revealed+by+Tn-seq&rft.jtitle=Molecular+microbiology&rft.au=Brutinel%2C+Evan+D&rft.au=Gralnick%2C+Jeffrey+A&rft.date=2012-10-01&rft.eissn=1365-2958&rft.volume=86&rft.issue=2&rft.spage=273&rft_id=info:doi/10.1111%2Fj.1365-2958.2012.08196.x&rft_id=info%3Apmid%2F22925268&rft.externalDocID=22925268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon