The RtcB RNA ligase is an essential component of the metazoan unfolded protein response

RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 15; no. 12; pp. 1278 - 1285
Main Authors Kosmaczewski, Sara Guckian, Edwards, Tyson James, Han, Sung Min, Eckwahl, Matthew J, Meyer, Benjamin Isaiah, Peach, Sally, Hesselberth, Jay R, Wolin, Sandra L, Hammarlund, Marc
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.12.2014
Nature Publishing Group UK
Springer Nature B.V
BlackWell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments , defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo . Synopsis Work in C. elegans shows that RtcB is the RNA ligase for xbp‐1 splicing in the IRE‐1 branch of the UPR. RtcB also ligates endogenous tRNA substrates and promotes lifespan and development. RtcB ligates endogenous intron‐containing tRNAs in vivo . RtcB is the sole ligase for xbp‐1 splicing in the UPR. The tRNA and xbp‐1 functions of RtcB can be separated using animals engineered to express intron‐free tRNAs. Graphical Abstract Work in C. elegans shows that RtcB is the RNA ligase for xbp‐1 splicing in the IRE‐1 branch of the UPR. RtcB also ligates endogenous tRNA substrates and promotes lifespan and development.
AbstractList RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp-1 mRNA during the IRE-1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp-1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre-tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre-spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp-1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp-1mRNA during the IRE-1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp-1mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre-tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre-spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp-1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo. Synopsis Work in C. elegans shows that RtcB is the RNA ligase for xbp-1 splicing in the IRE-1 branch of the UPR. RtcB also ligates endogenous tRNA substrates and promotes lifespan and development. RtcB ligates endogenous intron-containing tRNAs in vivo. RtcB is the sole ligase for xbp-1 splicing in the UPR. The tRNA and xbp-1 functions of RtcB can be separated using animals engineered to express intron-free tRNAs.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp-1 mRNA during the IRE-1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp-1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre-tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre-spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp-1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp-1 mRNA during the IRE-1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp-1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre-tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre-spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp-1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo. Synopsis Work in C. elegans shows that RtcB is the RNA ligase for xbp‐1 splicing in the IRE‐1 branch of the UPR. RtcB also ligates endogenous tRNA substrates and promotes lifespan and development. RtcB ligates endogenous intron‐containing tRNAs in vivo. RtcB is the sole ligase for xbp‐1 splicing in the UPR. The tRNA and xbp‐1 functions of RtcB can be separated using animals engineered to express intron‐free tRNAs. Work in C. elegans shows that RtcB is the RNA ligase for xbp‐1 splicing in the IRE‐1 branch of the UPR. RtcB also ligates endogenous tRNA substrates and promotes lifespan and development.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp-1 mRNA during the IRE-1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp-1 mRNA fragments , defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre-tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre-spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp-1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo . Subject Categories Protein Biosynthesis & Quality Control; RNA Biology
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments , defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo . Synopsis Work in C. elegans shows that RtcB is the RNA ligase for xbp‐1 splicing in the IRE‐1 branch of the UPR. RtcB also ligates endogenous tRNA substrates and promotes lifespan and development. RtcB ligates endogenous intron‐containing tRNAs in vivo . RtcB is the sole ligase for xbp‐1 splicing in the UPR. The tRNA and xbp‐1 functions of RtcB can be separated using animals engineered to express intron‐free tRNAs. Graphical Abstract Work in C. elegans shows that RtcB is the RNA ligase for xbp‐1 splicing in the IRE‐1 branch of the UPR. RtcB also ligates endogenous tRNA substrates and promotes lifespan and development.
Author Han, Sung Min
Eckwahl, Matthew J
Meyer, Benjamin Isaiah
Hesselberth, Jay R
Wolin, Sandra L
Peach, Sally
Kosmaczewski, Sara Guckian
Hammarlund, Marc
Edwards, Tyson James
Author_xml – sequence: 1
  givenname: Sara Guckian
  surname: Kosmaczewski
  fullname: Kosmaczewski, Sara Guckian
  organization: Department of Genetics and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, CT, New Haven, USA
– sequence: 2
  givenname: Tyson James
  surname: Edwards
  fullname: Edwards, Tyson James
  organization: Department of Genetics and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, CT, New Haven, USA
– sequence: 3
  givenname: Sung Min
  surname: Han
  fullname: Han, Sung Min
  organization: Department of Genetics and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, CT, New Haven, USA
– sequence: 4
  givenname: Matthew J
  surname: Eckwahl
  fullname: Eckwahl, Matthew J
  organization: Department of Cell Biology, Yale University School of Medicine, CT, New Haven, USA
– sequence: 5
  givenname: Benjamin Isaiah
  surname: Meyer
  fullname: Meyer, Benjamin Isaiah
  organization: Department of Genetics and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, CT, New Haven, USA
– sequence: 6
  givenname: Sally
  surname: Peach
  fullname: Peach, Sally
  organization: Biochemistry & Molecular Genetics Department, University of Colorado School of Medicine, CO, Aurora, USA
– sequence: 7
  givenname: Jay R
  surname: Hesselberth
  fullname: Hesselberth, Jay R
  organization: Biochemistry & Molecular Genetics Department, University of Colorado School of Medicine, CO, Aurora, USA
– sequence: 8
  givenname: Sandra L
  surname: Wolin
  fullname: Wolin, Sandra L
  organization: Department of Cell Biology, Yale University School of Medicine, CT, New Haven, USA
– sequence: 9
  givenname: Marc
  surname: Hammarlund
  fullname: Hammarlund, Marc
  email: marc.hammarlund@yale.edu
  organization: Department of Genetics and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, CT, New Haven, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25366321$$D View this record in MEDLINE/PubMed
BookMark eNptkc1v1DAQxS1URD_gzA1Z4tJLir-TcEDqlraASpFWhXKz7GSydUnsxU6A8tfjZZdVQZw81vzem2fPPtrxwQNCTyk5opJJ9gIGG48YoYLXktMHaI8KVRecltXOpmaMft5F-yndEkJkXVaP0C6TXCnO6B66vroBPB-bGZ5fHuPeLUwC7BI2HkNK4EdnetyEYZnn-hGHDo9ZMMBofobMTL4LfQstXsYwgvM4QspogsfoYWf6BE825wH6eHZ6dfKmuPhw_vbk-KJwQklaAONtZa2lFIQRXIDppLCEdVCVti6VLKUpm8o2rOJdLrpaKgKEWCmY7UzLD9Crte9ysgO0TQ4ZTa-X0Q0m3ulgnP67492NXoRvWjAlak6yweHGIIavE6RRDy410PfGQ5iSporVtVJ1yTL6_B_0NkzR5-etqKoSglcr6tn9RNsof_48Ay_XwHfXw922T4n-vVK9WqnerlSfvp_Nt7csJmtxyjq_gHgvw_8NsqRYS1wa4cd2nolftCp5KfX15bmm7-blazk705_4L_xEtkk
CODEN ERMEAX
ContentType Journal Article
Copyright The Authors 2014
2014 The Authors
2014 The Authors.
2014 EMBO
2014 The Authors 2014
Copyright_xml – notice: The Authors 2014
– notice: 2014 The Authors
– notice: 2014 The Authors.
– notice: 2014 EMBO
– notice: 2014 The Authors 2014
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.201439531
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 1285
ExternalDocumentID PMC4264930
3511680091
25366321
EMBR201439531
10_15252_embr_201439531
ark_67375_WNG_1JR7D5BF_V
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Damon Runyon‐Rachleff Innovation award
– fundername: American Cancer Society
  grantid: RSG‐13‐216‐01‐DMC
– fundername: NIH
  grantid: P40OD010440; T32GM007223; T32GM008730; R01GM073863; R01GM048410; R01NS066082; R56NS081217
– fundername: American Cancer Society
  funderid: RSG‐13‐216‐01‐DMC
– fundername: NIH
  funderid: P40OD010440; T32GM007223; T32GM008730; R01GM073863; R01GM048410; R01NS066082; R56NS081217
– fundername: NIGMS NIH HHS
  grantid: T32GM008730
– fundername: NIGMS NIH HHS
  grantid: R01 GM073863
– fundername: NIGMS NIH HHS
  grantid: R01GM048410
– fundername: NINDS NIH HHS
  grantid: R56 NS081217
– fundername: NIGMS NIH HHS
  grantid: T32 GM008730
– fundername: NIGMS NIH HHS
  grantid: R01GM073863
– fundername: NIGMS NIH HHS
  grantid: T32 GM007223
– fundername: NINDS NIH HHS
  grantid: R01 NS066082
– fundername: NIH HHS
  grantid: P40OD010440
– fundername: NINDS NIH HHS
  grantid: R56NS081217
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
24P
29G
2WC
33P
36B
39C
3O-
3V.
53G
5GY
5VS
70F
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0L
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
PQQKQ
PROAC
PSQYO
Q2X
R.K
RHF
RHI
RIG
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
WYJ
X7M
ZGI
ZZTAW
AAJSJ
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AEUYN
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
AAMMB
AASML
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
NAO
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-i4651-e23d8bbb11e4a434eaf54b02fe87b976575a7c8bc283f7c8f9560e00b542bfad3
IEDL.DBID C6C
ISSN 1469-221X
1469-3178
IngestDate Thu Aug 21 18:12:31 EDT 2025
Fri Jul 11 10:53:27 EDT 2025
Fri Jul 25 10:53:20 EDT 2025
Wed Feb 19 01:52:35 EST 2025
Wed Jan 22 16:47:50 EST 2025
Fri Feb 21 02:37:40 EST 2025
Wed Oct 30 09:50:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords HSPC117
tRNA
RtcB
Caenorhabditis elegans
xbp‐1
Language English
License 2014 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4651-e23d8bbb11e4a434eaf54b02fe87b976575a7c8bc283f7c8f9560e00b542bfad3
Notes istex:81642DC1EC0B53D8C17BE46B7C1EA5A0776D06C8
American Cancer Society - No. RSG-13-216-01-DMC
Damon Runyon-Rachleff Innovation award
ArticleID:EMBR201439531
Supplementary Figure S1Supplementary Figure S2Supplementary Figure S3Supplementary Figure S4Supplementary Figure S5Supplementary Figure S6Supplementary Table S1Supplementary Table S2Supplementary Table S3Supplementary LegendsReview Process File
NIH - No. P40OD010440; No. T32GM007223; No. T32GM008730; No. R01GM073863; No. R01GM048410; No. R01NS066082; No. R56NS081217
ark:/67375/WNG-1JR7D5BF-V
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embr.201439531
PMID 25366321
PQID 1628844382
PQPubID 26169
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4264930
proquest_miscellaneous_1629966972
proquest_journals_1628844382
pubmed_primary_25366321
wiley_primary_10_15252_embr_201439531_EMBR201439531
springer_journals_10_15252_embr_201439531
istex_primary_ark_67375_WNG_1JR7D5BF_V
PublicationCentury 2000
PublicationDate December 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Oxford, UK
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO rep
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: BlackWell Publishing Ltd
References Yoshida H (2007) Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid Redox Signal 9: 2323-2334
Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B, Mechtler K, Trowitzsch S, Will CL, Lührmann R, Söll D et al (2011) HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331: 760-764
Tanaka N, Meineke B, Shuman S (2011) RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 286: 30253-30257
Hanada T, Weitzer S, Mair B, Bernreuther C, Wainger BJ, Ichida J, Hanada R, Orthofer M, Cronin SJ, Komnenovic V et al (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495: 474-480
Lu Y, Liang F-X, Wang X (2014) A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol Cell 55: 758-770
Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43: 513-525
Frøkjær-Jensen C, Davis MW, Ailion M, Jorgensen Jorgensen (2012) Improved Mos1-mediated transgenesis in C. elegans. Nat Methods 9: 117-118
Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153: 153-1447
Filipowicz W, Shatkin AJ (1983) Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell 32: 547-557
Qabazard B, Ahmed S, Li L, Arlt VM, Moore PK, Stürzenbaum SR (2013) Caenorhabditis elegans aging is modulated by hydrogen sulfide and the sulfhydrylase/cysteine synthase cysl-2. PLoS ONE 8: e80135
Englert M, Sheppard K, Aslanian A, Yates JR III, Söll D (2011) Archaeal 3′-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. Proc Natl Acad Sci USA 108: 1290-1295
Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6: 111-119
Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87: 391-404
Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K et al (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107: 893-903
Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci USA 105: 728-733
Greer CL, Peebles CL, Gegenheimer P, Abelson J (1983) Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32: 537-546
Knapp G, Beckmann JS, Johnson PF, Fuhrman SA, Abelson J (1978) Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14: 221-236
Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucl Acids Res 37: D93-D97
Kaine BP, Gupta R, Woese CR (1983) Putative introns in tRNA genes of prokaryotes. Proc Natl Acad Sci USA 80: 3309-3312
Popow J, Schleiffer A, Martinez J (2012) Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 69: 2657-2670
Frøkjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen Jorgensen, (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40: 1375-1383
Filipowicz W, Konarska M, Gross HJ, Shatkin AJ (1983) RNA 3′-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract. Nucleic Acids Res 11: 1405-1418
Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92-96
Saikia M, Krokowski D, Guan B-J, Ivanov P, Parisien M, Hu G, Anderson P, Pan T, Hatzoglou M (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287: 42708-42725
Nwagwu M, Nana M (1980) Ribonucleic acid synthesis in embryonic chick muscle, rates of synthesis and half-lives of transfer and ribosomal RNA species. J Embryol Exp Morphol 56: 253-267
Gonzalez TN, Sidrauski C, Dörfler S, Walter P (1999) Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J 18: 3119-3132
Tarn WY, Yario TA, Steitz JA (1995) U12 snRNA in vertebrates: evolutionary conservation of 5′ sequences implicated in splicing of pre-mRNAs containing a minor class of introns. RNA 1: 644-656
Englert M, Beier H (2005) Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins. Nucleic Acids Res 33: 388-399
Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR (2004) Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117: 311-321
Laski FA, Fire AZ, RajBhandary UL, Sharp PA (1983) Characterization of tRNA precursor splicing in mammalian extracts. J Biol Chem 258: 11974-11980
Silber R, Malathi VG, Hurwitz J (1972) Purification and properties of bacteriophage T4-induced RNA ligase. Proc Natl Acad Sci USA 69: 3009-3013
Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu G-F, Anderson P (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285: 10959-10968
Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43: 613-623
Ivanov, Emara, Villen, Gygi, Anderson (CR17) 2011; 43
Tarn, Yario, Steitz (CR32) 1995; 1
Filipowicz, Konarska, Gross, Shatkin (CR1) 1983; 11
Kaine, Gupta, Woese (CR13) 1983; 80
Kanai, Dohmae, Hirokawa (CR29) 2004; 43
Yoshida (CR21) 2007; 9
Calfon, Zeng, Urano, Till, Hubbard, Harding, Clark, Ron (CR6) 2002; 415
Gonzalez, Sidrauski, Dörfler, Walter (CR28) 1999; 18
Shen, Ellis, Lee, Liu, Yang, Solomon, Yoshida, Morimoto, Kurnit, Mori (CR5) 2001; 107
Knapp, Beckmann, Johnson, Fuhrman, Abelson (CR12) 1978; 14
Laski, Fire, RajBhandary, Sharp (CR3) 1983; 258
Hamamichi, Rivas, Knight, Cao, Caldwell, Caldwell (CR27) 2008; 105
Frøkjær‐Jensen, Davis, Ailion, Jorgensen (CR31) 2012; 9
Hanada, Weitzer, Mair, Bernreuther, Wainger, Ichida, Hanada, Orthofer, Cronin, Komnenovic (CR26) 2013; 495
Silber, Malathi, Hurwitz (CR7) 1972; 69
Cox, Walter (CR19) 1996; 87
Taylor, Dillin (CR33) 2013; 153
Lu, Liang, Wang (CR24) 2014; 55
Greer, Peebles, Gegenheimer, Abelson (CR9) 1983; 32
Englert, Sheppard, Aslanian, Yates, Söll (CR15) 2011; 108
Chan, Lowe (CR14) 2009; 37
Emara, Ivanov, Hickman, Dawra, Tisdale, Kedersha, Hu, Anderson (CR16) 2010; 285
Popow, Englert, Weitzer, Schleiffer, Mierzwa, Mechtler, Trowitzsch, Will, Lührmann, Söll (CR10) 2011; 331
Tanaka, Meineke, Shuman (CR20) 2011; 286
Qabazard, Ahmed, Li, Arlt, Moore, Stürzenbaum (CR22) 2013; 8
Frøkjaer‐Jensen, Davis, Hopkins, Newman, Thummel, Olesen, Grunnet, Jorgensen (CR30) 2008; 40
Englert, Beier (CR8) 2005; 33
Saikia, Krokowski, Guan, Ivanov, Parisien, Hu, Anderson, Pan, Hatzoglou (CR25) 2012; 287
Popow, Schleiffer, Martinez (CR11) 2012; 69
Paushkin, Patel, Furia, Peltz, Trotta (CR4) 2004; 117
Pan, Palter, Rogers, Olsen, Chen, Lithgow, Kapahi (CR23) 2007; 6
Filipowicz, Shatkin (CR2) 1983; 32
Nwagwu, Nana (CR18) 1980; 56
2004; 43
1983; 258
2012; 287
1983; 32
2002; 415
2010; 285
2008; 105
1978; 14
1972; 69
2001; 107
2013; 8
1995; 1
2011; 331
1983; 11
2011; 108
1999; 18
1980; 56
2007; 9
2007; 6
2011; 43
1983; 80
2013; 495
2013; 153
2012; 69
2008; 40
2004; 117
2005; 33
1996; 87
2009; 37
2014; 55
2011; 286
2012; 9
18984615 - Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7
21855800 - Mol Cell. 2011 Aug 19;43(4):613-23
23474986 - Nature. 2013 Mar 28;495(7442):474-80
352537 - Cell. 1978 Jun;14(2):221-36
8898193 - Cell. 1996 Nov 1;87(3):391-404
23791175 - Cell. 2013 Jun 20;153(7):1435-47
6413507 - J Biol Chem. 1983 Oct 10;258(19):11974-80
15312650 - Neuron. 2004 Aug 19;43(4):513-25
17266680 - Aging Cell. 2007 Feb;6(1):111-9
23086926 - J Biol Chem. 2012 Dec 14;287(51):42708-25
7400745 - J Embryol Exp Morphol. 1980 Apr;56:253-67
22290181 - Nat Methods. 2012 Feb;9(2):117-8
11780124 - Nature. 2002 Jan 3;415(6867):92-6
6828385 - Nucleic Acids Res. 1983 Mar 11;11(5):1405-18
21757685 - J Biol Chem. 2011 Sep 2;286(35):30253-7
18182484 - Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):728-33
21311021 - Science. 2011 Feb 11;331(6018):760-4
25404664 - EMBO J. 2014 Dec 17;33(24):2887-9
11779465 - Cell. 2001 Dec 28;107(7):893-903
6304706 - Proc Natl Acad Sci U S A. 1983 Jun;80(11):3309-12
15109492 - Cell. 2004 Apr 30;117(3):311-21
20129916 - J Biol Chem. 2010 Apr 2;285(14):10959-68
24260346 - PLoS One. 2013;8(11):e80135
25087875 - Mol Cell. 2014 Sep 4;55(5):758-70
18953339 - Nat Genet. 2008 Nov;40(11):1375-83
17979529 - Antioxid Redox Signal. 2007 Dec;9(12):2323-33
4342972 - Proc Natl Acad Sci U S A. 1972 Oct;69(10):3009-13
7489523 - RNA. 1995 Aug;1(6):644-56
15653639 - Nucleic Acids Res. 2005;33(1):388-99
6186399 - Cell. 1983 Feb;32(2):547-57
6297798 - Cell. 1983 Feb;32(2):537-46
21209330 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1290-5
10357823 - EMBO J. 1999 Jun 1;18(11):3119-32
22426497 - Cell Mol Life Sci. 2012 Aug;69(16):2657-70
References_xml – reference: Kaine BP, Gupta R, Woese CR (1983) Putative introns in tRNA genes of prokaryotes. Proc Natl Acad Sci USA 80: 3309-3312
– reference: Nwagwu M, Nana M (1980) Ribonucleic acid synthesis in embryonic chick muscle, rates of synthesis and half-lives of transfer and ribosomal RNA species. J Embryol Exp Morphol 56: 253-267
– reference: Taylor RC, Dillin A (2013) XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153: 153-1447
– reference: Greer CL, Peebles CL, Gegenheimer P, Abelson J (1983) Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32: 537-546
– reference: Laski FA, Fire AZ, RajBhandary UL, Sharp PA (1983) Characterization of tRNA precursor splicing in mammalian extracts. J Biol Chem 258: 11974-11980
– reference: Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92-96
– reference: Gonzalez TN, Sidrauski C, Dörfler S, Walter P (1999) Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J 18: 3119-3132
– reference: Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu G-F, Anderson P (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285: 10959-10968
– reference: Filipowicz W, Shatkin AJ (1983) Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell 32: 547-557
– reference: Filipowicz W, Konarska M, Gross HJ, Shatkin AJ (1983) RNA 3′-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract. Nucleic Acids Res 11: 1405-1418
– reference: Silber R, Malathi VG, Hurwitz J (1972) Purification and properties of bacteriophage T4-induced RNA ligase. Proc Natl Acad Sci USA 69: 3009-3013
– reference: Englert M, Sheppard K, Aslanian A, Yates JR III, Söll D (2011) Archaeal 3′-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. Proc Natl Acad Sci USA 108: 1290-1295
– reference: Yoshida H (2007) Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid Redox Signal 9: 2323-2334
– reference: Englert M, Beier H (2005) Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins. Nucleic Acids Res 33: 388-399
– reference: Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR (2004) Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117: 311-321
– reference: Hanada T, Weitzer S, Mair B, Bernreuther C, Wainger BJ, Ichida J, Hanada R, Orthofer M, Cronin SJ, Komnenovic V et al (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495: 474-480
– reference: Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43: 613-623
– reference: Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43: 513-525
– reference: Tarn WY, Yario TA, Steitz JA (1995) U12 snRNA in vertebrates: evolutionary conservation of 5′ sequences implicated in splicing of pre-mRNAs containing a minor class of introns. RNA 1: 644-656
– reference: Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87: 391-404
– reference: Tanaka N, Meineke B, Shuman S (2011) RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 286: 30253-30257
– reference: Popow J, Schleiffer A, Martinez J (2012) Diversity and roles of (t)RNA ligases. Cell Mol Life Sci 69: 2657-2670
– reference: Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci USA 105: 728-733
– reference: Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B, Mechtler K, Trowitzsch S, Will CL, Lührmann R, Söll D et al (2011) HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331: 760-764
– reference: Frøkjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen Jorgensen, (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40: 1375-1383
– reference: Frøkjær-Jensen C, Davis MW, Ailion M, Jorgensen Jorgensen (2012) Improved Mos1-mediated transgenesis in C. elegans. Nat Methods 9: 117-118
– reference: Qabazard B, Ahmed S, Li L, Arlt VM, Moore PK, Stürzenbaum SR (2013) Caenorhabditis elegans aging is modulated by hydrogen sulfide and the sulfhydrylase/cysteine synthase cysl-2. PLoS ONE 8: e80135
– reference: Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucl Acids Res 37: D93-D97
– reference: Knapp G, Beckmann JS, Johnson PF, Fuhrman SA, Abelson J (1978) Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14: 221-236
– reference: Lu Y, Liang F-X, Wang X (2014) A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol Cell 55: 758-770
– reference: Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6: 111-119
– reference: Saikia M, Krokowski D, Guan B-J, Ivanov P, Parisien M, Hu G, Anderson P, Pan T, Hatzoglou M (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287: 42708-42725
– reference: Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K et al (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107: 893-903
– volume: 69
  start-page: 2657
  year: 2012
  end-page: 2670
  ident: CR11
  article-title: Diversity and roles of (t)RNA ligases
  publication-title: Cell Mol Life Sci
– volume: 108
  start-page: 1290
  year: 2011
  end-page: 1295
  ident: CR15
  article-title: Archaeal 3′‐phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation
  publication-title: Proc Natl Acad Sci USA
– volume: 55
  start-page: 758
  year: 2014
  end-page: 770
  ident: CR24
  article-title: A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB
  publication-title: Mol Cell
– volume: 56
  start-page: 253
  year: 1980
  end-page: 267
  ident: CR18
  article-title: Ribonucleic acid synthesis in embryonic chick muscle, rates of synthesis and half‐lives of transfer and ribosomal RNA species
  publication-title: J Embryol Exp Morphol
– volume: 80
  start-page: 3309
  year: 1983
  end-page: 3312
  ident: CR13
  article-title: Putative introns in tRNA genes of prokaryotes
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 221
  year: 1978
  end-page: 236
  ident: CR12
  article-title: Transcription and processing of intervening sequences in yeast tRNA genes
  publication-title: Cell
– volume: 105
  start-page: 728
  year: 2008
  end-page: 733
  ident: CR27
  article-title: Hypothesis‐based RNAi screening identifies neuroprotective genes in a Parkinson's disease model
  publication-title: Proc Natl Acad Sci USA
– volume: 415
  start-page: 92
  year: 2002
  end-page: 96
  ident: CR6
  article-title: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP‐1 mRNA
  publication-title: Nature
– volume: 43
  start-page: 613
  year: 2011
  end-page: 623
  ident: CR17
  article-title: Angiogenin‐induced tRNA fragments inhibit translation initiation
  publication-title: Mol Cell
– volume: 69
  start-page: 3009
  year: 1972
  end-page: 3013
  ident: CR7
  article-title: Purification and properties of bacteriophage T4‐induced RNA ligase
  publication-title: Proc Natl Acad Sci USA
– volume: 117
  start-page: 311
  year: 2004
  end-page: 321
  ident: CR4
  article-title: Identification of a human endonuclease complex reveals a link between tRNA splicing and pre‐mRNA 3′ end formation
  publication-title: Cell
– volume: 153
  start-page: 153
  year: 2013
  end-page: 1447
  ident: CR33
  article-title: XBP‐1 is a cell‐nonautonomous regulator of stress resistance and longevity
  publication-title: Cell
– volume: 32
  start-page: 537
  year: 1983
  end-page: 546
  ident: CR9
  article-title: Mechanism of action of a yeast RNA ligase in tRNA splicing
  publication-title: Cell
– volume: 107
  start-page: 893
  year: 2001
  end-page: 903
  ident: CR5
  article-title: Complementary signaling pathways regulate the unfolded protein response and are required for development
  publication-title: Cell
– volume: 1
  start-page: 644
  year: 1995
  end-page: 656
  ident: CR32
  article-title: U12 snRNA in vertebrates: evolutionary conservation of 5′ sequences implicated in splicing of pre‐mRNAs containing a minor class of introns
  publication-title: RNA
– volume: 37
  start-page: D93
  year: 2009
  end-page: D97
  ident: CR14
  article-title: GtRNAdb: a database of transfer RNA genes detected in genomic sequence
  publication-title: Nucl Acids Res
– volume: 43
  start-page: 513
  year: 2004
  end-page: 525
  ident: CR29
  article-title: Kinesin transports RNA: isolation and characterization of an RNA‐transporting granule
  publication-title: Neuron
– volume: 495
  start-page: 474
  year: 2013
  end-page: 480
  ident: CR26
  article-title: CLP1 links tRNA metabolism to progressive motor‐neuron loss
  publication-title: Nature
– volume: 40
  start-page: 1375
  year: 2008
  end-page: 1383
  ident: CR30
  article-title: Single‐copy insertion of transgenes in
  publication-title: Nat Genet
– volume: 8
  start-page: e80135
  year: 2013
  ident: CR22
  article-title: aging is modulated by hydrogen sulfide and the sulfhydrylase/cysteine synthase cysl‐2
  publication-title: PLoS ONE
– volume: 11
  start-page: 1405
  year: 1983
  end-page: 1418
  ident: CR1
  article-title: RNA 3′‐terminal phosphate cyclase activity and RNA ligation in HeLa cell extract
  publication-title: Nucleic Acids Res
– volume: 32
  start-page: 547
  year: 1983
  end-page: 557
  ident: CR2
  article-title: Origin of splice junction phosphate in tRNAs processed by HeLa cell extract
  publication-title: Cell
– volume: 18
  start-page: 3119
  year: 1999
  end-page: 3132
  ident: CR28
  article-title: Mechanism of non‐spliceosomal mRNA splicing in the unfolded protein response pathway
  publication-title: EMBO J
– volume: 285
  start-page: 10959
  year: 2010
  end-page: 10968
  ident: CR16
  article-title: Angiogenin‐induced tRNA‐derived stress‐induced RNAs promote stress‐induced stress granule assembly
  publication-title: J Biol Chem
– volume: 6
  start-page: 111
  year: 2007
  end-page: 119
  ident: CR23
  article-title: Inhibition of mRNA translation extends lifespan in
  publication-title: Aging Cell
– volume: 33
  start-page: 388
  year: 2005
  end-page: 399
  ident: CR8
  article-title: Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins
  publication-title: Nucleic Acids Res
– volume: 87
  start-page: 391
  year: 1996
  end-page: 404
  ident: CR19
  article-title: A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response
  publication-title: Cell
– volume: 287
  start-page: 42708
  year: 2012
  end-page: 42725
  ident: CR25
  article-title: Genome‐wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress
  publication-title: J Biol Chem
– volume: 9
  start-page: 2323
  year: 2007
  end-page: 2334
  ident: CR21
  article-title: Unconventional splicing of XBP‐1 mRNA in the unfolded protein response
  publication-title: Antioxid Redox Signal
– volume: 286
  start-page: 30253
  year: 2011
  end-page: 30257
  ident: CR20
  article-title: RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing
  publication-title: J Biol Chem
– volume: 258
  start-page: 11974
  year: 1983
  end-page: 11980
  ident: CR3
  article-title: Characterization of tRNA precursor splicing in mammalian extracts
  publication-title: J Biol Chem
– volume: 331
  start-page: 760
  year: 2011
  end-page: 764
  ident: CR10
  article-title: HSPC117 is the essential subunit of a human tRNA splicing ligase complex
  publication-title: Science
– volume: 9
  start-page: 117
  year: 2012
  end-page: 118
  ident: CR31
  article-title: Improved Mos1‐mediated transgenesis in
  publication-title: Nat Methods
– volume: 415
  start-page: 92
  year: 2002
  end-page: 96
  article-title: IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP‐1 mRNA
  publication-title: Nature
– volume: 69
  start-page: 2657
  year: 2012
  end-page: 2670
  article-title: Diversity and roles of (t)RNA ligases
  publication-title: Cell Mol Life Sci
– volume: 80
  start-page: 3309
  year: 1983
  end-page: 3312
  article-title: Putative introns in tRNA genes of prokaryotes
  publication-title: Proc Natl Acad Sci USA
– volume: 69
  start-page: 3009
  year: 1972
  end-page: 3013
  article-title: Purification and properties of bacteriophage T4‐induced RNA ligase
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 111
  year: 2007
  end-page: 119
  article-title: Inhibition of mRNA translation extends lifespan in
  publication-title: Aging Cell
– volume: 9
  start-page: 117
  year: 2012
  end-page: 118
  article-title: Improved Mos1‐mediated transgenesis in
  publication-title: Nat Methods
– volume: 37
  start-page: D93
  year: 2009
  end-page: D97
  article-title: GtRNAdb: a database of transfer RNA genes detected in genomic sequence
  publication-title: Nucl Acids Res
– volume: 153
  start-page: 153
  year: 2013
  end-page: 1447
  article-title: XBP‐1 is a cell‐nonautonomous regulator of stress resistance and longevity
  publication-title: Cell
– volume: 258
  start-page: 11974
  year: 1983
  end-page: 11980
  article-title: Characterization of tRNA precursor splicing in mammalian extracts
  publication-title: J Biol Chem
– volume: 495
  start-page: 474
  year: 2013
  end-page: 480
  article-title: CLP1 links tRNA metabolism to progressive motor‐neuron loss
  publication-title: Nature
– volume: 331
  start-page: 760
  year: 2011
  end-page: 764
  article-title: HSPC117 is the essential subunit of a human tRNA splicing ligase complex
  publication-title: Science
– volume: 14
  start-page: 221
  year: 1978
  end-page: 236
  article-title: Transcription and processing of intervening sequences in yeast tRNA genes
  publication-title: Cell
– volume: 43
  start-page: 513
  year: 2004
  end-page: 525
  article-title: Kinesin transports RNA: isolation and characterization of an RNA‐transporting granule
  publication-title: Neuron
– volume: 56
  start-page: 253
  year: 1980
  end-page: 267
  article-title: Ribonucleic acid synthesis in embryonic chick muscle, rates of synthesis and half‐lives of transfer and ribosomal RNA species
  publication-title: J Embryol Exp Morphol
– volume: 18
  start-page: 3119
  year: 1999
  end-page: 3132
  article-title: Mechanism of non‐spliceosomal mRNA splicing in the unfolded protein response pathway
  publication-title: EMBO J
– volume: 105
  start-page: 728
  year: 2008
  end-page: 733
  article-title: Hypothesis‐based RNAi screening identifies neuroprotective genes in a Parkinson's disease model
  publication-title: Proc Natl Acad Sci USA
– volume: 33
  start-page: 388
  year: 2005
  end-page: 399
  article-title: Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins
  publication-title: Nucleic Acids Res
– volume: 107
  start-page: 893
  year: 2001
  end-page: 903
  article-title: Complementary signaling pathways regulate the unfolded protein response and are required for development
  publication-title: Cell
– volume: 43
  start-page: 613
  year: 2011
  end-page: 623
  article-title: Angiogenin‐induced tRNA fragments inhibit translation initiation
  publication-title: Mol Cell
– volume: 286
  start-page: 30253
  year: 2011
  end-page: 30257
  article-title: RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing
  publication-title: J Biol Chem
– volume: 11
  start-page: 1405
  year: 1983
  end-page: 1418
  article-title: RNA 3′‐terminal phosphate cyclase activity and RNA ligation in HeLa cell extract
  publication-title: Nucleic Acids Res
– volume: 8
  start-page: e80135
  year: 2013
  article-title: aging is modulated by hydrogen sulfide and the sulfhydrylase/cysteine synthase cysl‐2
  publication-title: PLoS ONE
– volume: 108
  start-page: 1290
  year: 2011
  end-page: 1295
  article-title: Archaeal 3′‐phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation
  publication-title: Proc Natl Acad Sci USA
– volume: 55
  start-page: 758
  year: 2014
  end-page: 770
  article-title: A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB
  publication-title: Mol Cell
– volume: 40
  start-page: 1375
  year: 2008
  end-page: 1383
  article-title: Single‐copy insertion of transgenes in
  publication-title: Nat Genet
– volume: 1
  start-page: 644
  year: 1995
  end-page: 656
  article-title: U12 snRNA in vertebrates: evolutionary conservation of 5′ sequences implicated in splicing of pre‐mRNAs containing a minor class of introns
  publication-title: RNA
– volume: 32
  start-page: 547
  year: 1983
  end-page: 557
  article-title: Origin of splice junction phosphate in tRNAs processed by HeLa cell extract
  publication-title: Cell
– volume: 32
  start-page: 537
  year: 1983
  end-page: 546
  article-title: Mechanism of action of a yeast RNA ligase in tRNA splicing
  publication-title: Cell
– volume: 87
  start-page: 391
  year: 1996
  end-page: 404
  article-title: A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response
  publication-title: Cell
– volume: 287
  start-page: 42708
  year: 2012
  end-page: 42725
  article-title: Genome‐wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress
  publication-title: J Biol Chem
– volume: 117
  start-page: 311
  year: 2004
  end-page: 321
  article-title: Identification of a human endonuclease complex reveals a link between tRNA splicing and pre‐mRNA 3′ end formation
  publication-title: Cell
– volume: 285
  start-page: 10959
  year: 2010
  end-page: 10968
  article-title: Angiogenin‐induced tRNA‐derived stress‐induced RNAs promote stress‐induced stress granule assembly
  publication-title: J Biol Chem
– volume: 9
  start-page: 2323
  year: 2007
  end-page: 2334
  article-title: Unconventional splicing of XBP‐1 mRNA in the unfolded protein response
  publication-title: Antioxid Redox Signal
– reference: 7489523 - RNA. 1995 Aug;1(6):644-56
– reference: 25087875 - Mol Cell. 2014 Sep 4;55(5):758-70
– reference: 10357823 - EMBO J. 1999 Jun 1;18(11):3119-32
– reference: 15312650 - Neuron. 2004 Aug 19;43(4):513-25
– reference: 11779465 - Cell. 2001 Dec 28;107(7):893-903
– reference: 23086926 - J Biol Chem. 2012 Dec 14;287(51):42708-25
– reference: 22426497 - Cell Mol Life Sci. 2012 Aug;69(16):2657-70
– reference: 15653639 - Nucleic Acids Res. 2005;33(1):388-99
– reference: 21311021 - Science. 2011 Feb 11;331(6018):760-4
– reference: 18984615 - Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7
– reference: 21855800 - Mol Cell. 2011 Aug 19;43(4):613-23
– reference: 6186399 - Cell. 1983 Feb;32(2):547-57
– reference: 17979529 - Antioxid Redox Signal. 2007 Dec;9(12):2323-33
– reference: 24260346 - PLoS One. 2013;8(11):e80135
– reference: 6828385 - Nucleic Acids Res. 1983 Mar 11;11(5):1405-18
– reference: 25404664 - EMBO J. 2014 Dec 17;33(24):2887-9
– reference: 7400745 - J Embryol Exp Morphol. 1980 Apr;56:253-67
– reference: 20129916 - J Biol Chem. 2010 Apr 2;285(14):10959-68
– reference: 6297798 - Cell. 1983 Feb;32(2):537-46
– reference: 11780124 - Nature. 2002 Jan 3;415(6867):92-6
– reference: 21757685 - J Biol Chem. 2011 Sep 2;286(35):30253-7
– reference: 15109492 - Cell. 2004 Apr 30;117(3):311-21
– reference: 21209330 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1290-5
– reference: 6304706 - Proc Natl Acad Sci U S A. 1983 Jun;80(11):3309-12
– reference: 18182484 - Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):728-33
– reference: 6413507 - J Biol Chem. 1983 Oct 10;258(19):11974-80
– reference: 23791175 - Cell. 2013 Jun 20;153(7):1435-47
– reference: 17266680 - Aging Cell. 2007 Feb;6(1):111-9
– reference: 4342972 - Proc Natl Acad Sci U S A. 1972 Oct;69(10):3009-13
– reference: 352537 - Cell. 1978 Jun;14(2):221-36
– reference: 8898193 - Cell. 1996 Nov 1;87(3):391-404
– reference: 22290181 - Nat Methods. 2012 Feb;9(2):117-8
– reference: 23474986 - Nature. 2013 Mar 28;495(7442):474-80
– reference: 18953339 - Nat Genet. 2008 Nov;40(11):1375-83
SSID ssj0005978
Score 2.4882076
SecondaryResourceType review_article
Snippet RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded...
SourceID pubmedcentral
proquest
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1278
SubjectTerms Animals
Caenorhabditis elegans
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Carrier Proteins - genetics
EMBO32
EMBO36
Enzymes
HSPC117
Life span
Molecular biology
Protein folding
Ribonucleic acid
RNA
RNA Ligase (ATP) - genetics
RNA Ligase (ATP) - metabolism
RtcB
Scientific Report
tRNA
Unfolded Protein Response - genetics
Unfolded Protein Response - physiology
xbp-1
Title The RtcB RNA ligase is an essential component of the metazoan unfolded protein response
URI https://api.istex.fr/ark:/67375/WNG-1JR7D5BF-V/fulltext.pdf
https://link.springer.com/article/10.15252/embr.201439531
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201439531
https://www.ncbi.nlm.nih.gov/pubmed/25366321
https://www.proquest.com/docview/1628844382
https://www.proquest.com/docview/1629966972
https://pubmed.ncbi.nlm.nih.gov/PMC4264930
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hJqa9TBtsIxsgI02T9hAt8Y-keaSFDiG1kyoYfbPsxN4iSjqVVtr467lLQkY19sBbLJ9sx3eOv8udPwN8LCLn0JMwoS9QDTI3RZh5H4dc5jZykcctns4Oj8bJ6YU8m6ppS5JEZ2Eexu8VV_yLu7ZE24nbeqbovPQzFYuEzHeQDP7mcmT1JxdXfRZyHk9bDp9HGkAMStP3-zFA-W9eZBccXYeu9d4zfAUvW9DIjhotv4YNV23DVnON5J9teD5qA-Q7cIlqZ5Nl3meT8RGblT9wk2LlDTMVI5LwCtfzjFEa-bzCApt7hgCQXbuluZ2jzArNbVa4gtX0DWXFFk0KrXsDF8OT88Fp2N6dEJZ0u3nouCh61to4dtJIIZ3xStqIe9dLLUIQRGkmzXs2R3jh8cGTn-SiyCrJrTeFeAubFQ5lF1iSqExElojljDRKWCHRDVKKS9SydSaAT_WU6l8NP4Y2iytKF0uVvhx_1fHZJD1W_aH-HsDe_ZzrdqXc6JjuO5YUjgzgsKtGG6fAhancfFXLkFuWpSjzrlFR1xlXAkETjwNI15TXCRB_9npNVf6sebQJDOKbBfD5Xs0PhoW-EZmPJvPRnfkEIGo76Fr_j5w-GfUnXen9E3r4AC_oucmY2YPN5WLl9hH3LO1BbfMH9Bvx2x26qvr1
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5NoA1epo3xIwOGJ02TeIhIHLtpHmlHVxjtQwWjb5ad2Fu0kk6llWB__e6SEKgGD3uL45Pt-M7xd7rzZ4BPWWAtehLadxmqQaQ68xPnQp-L1AQ2cLjF09nhwbDVvxRnYzmuSZLoLMzj-L3kkh_Za0O0nbitJ5LOS68KdJMpd6_b6j7kciTlLxdXfeJzHo5rDp8nGkAMStN3-xSg_DcvsgmOLkPXcu_pvYHXNWhkx5WW38ILW2zAy-oaybsNeDWoA-Tv4ArVzkbztMNGw2M2yX_gJsXyG6YLRiThBa7nCaM08mmBBTZ1DAEgu7Zz_WeKMgs0t0lmM1bSN-QFm1UptHYTLnsnF92-X9-d4Od0u7lveZS1jTFhaIUWkbDaSWEC7mw7NghBEKXpOG2bFOGFwwdHfpINAiMFN05n0RasFDiUHWCtlkyiwBCxnBZaRiYS6AZJyQVq2VjtwedyStXvih9D6dkvSheLpboaflXh2Sj-Ijs99d2Dvfs5V_VKuVEh3XcsKBzpwcemGm2cAhe6sNNFKUNuWRKjzHaloqYzLiMETTz0IF5SXiNA_NnLNUX-s-TRJjCIX-bB4b2aHw0LfSMyH0Xmoxrz8SAq7aBp_Rk5dTLojJrS-__o4QDW-heDc3V-Ovy2C-v0vsqe2YOV-Wxh9xEDzc2H0v7_Ar_6_OM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQEHtDbHyFbWAkhMRDtMSxm-Zx7daNQStUMdY3y07sEdG5U5tKwF-_O-cDqo0H3hLlFDu-S-53ufPvCHlXRMZAJKFCW4AaeK6KMLM2DhnPdWQiCy4e9w6PJ72zC34-E7OmNmfVVru3Kcl6TwOyNLnq8Kawbb8edmiuNZJ5grPPBO6ifghhis_SDnvDPxUemf8Qw7cgCxmLZw2zzz03AGSKi_rzPph5t1qyS5luAlrvkUZPyOMGStKjWvc75IFxu-RR3Vzy1y7ZHjdp86fkEoyBTqt8QKeTIzovr8B10XJFlaNIHe7gLZ9TLC5fODihC0sBFtJrU6nfC5BZgxHOC1NQT-pQOrqsC2vNM3IxOvk6PAubjgphiT3PQ8OSoq-1jmPDFU-4UVZwHTFr-qkGYALYTaV5X-cAOiwcWIyeTBRpwZm2qkieky0HU3lJaK8nsiTSSDenuBKJTjgER0IwDrrXRgXkvV9SeVOzZki1_IFFZKmQl5NTGZ9P02MxGMlvAdlv11w2789KxtgFmWOSMiBvu8tg-ZjOUM4s1l4Gg7UsBZkXtYq6wZhIAEqxOCDphvI6AWTV3rziyu-eXRshIjxZQD60av5rWhAxoflINB_ZmU9AEm8H3d3_ISdPxoNpd_bqP0Z4Q7a_HI_k54-TT3v4a6EtqdknW9VybQ4AGFX6tTf_W-wyBTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+RtcB+RNA+ligase+is+an+essential+component+of+the+metazoan+unfolded+protein+response&rft.jtitle=EMBO+reports&rft.au=Kosmaczewski%2C+Sara+Guckian&rft.au=Edwards%2C+Tyson+James&rft.au=Han%2C+Sung+Min&rft.au=Eckwahl%2C+Matthew+J&rft.date=2014-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=15&rft.issue=12&rft.spage=1278&rft.epage=1285&rft_id=info:doi/10.15252%2Fembr.201439531&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_1JR7D5BF_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon