Relative velocities of solids in a turbulent protoplanetary disc

We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 405; no. 4; pp. 2339 - 2344
Main Authors Carballido, Augusto, Cuzzi, Jeffrey N., Hogan, Robert C.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 11.07.2010
Wiley-Blackwell
Oxford University Press
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1111/j.1365-2966.2010.16653.x

Cover

Loading…
Abstract We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities Vrel are calculated between two particles i and j such that Sti≫Stj and Stj≪ 1, the data matches the analytical model of Ormel & Cuzzi. However, if Vrel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range.
AbstractList We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities Vrel are calculated between two particles i and j such that Sti≫Stj and Stj≪ 1, the data matches the analytical model of Ormel & Cuzzi. However, if Vrel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range.
We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities Vrel are calculated between two particles i and j such that Sti >>Stj and Stj < 1, the data matches the analytical model of Ormel & Cuzzi. However, if Vrel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with [Display omitted] because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range.
We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities V rel are calculated between two particles i and j such that Sti ≫Stj and Stj ≪ 1, the data matches the analytical model of Ormel & Cuzzi. However, if V rel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range.
We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St , which measures the aerodynamic coupling to the gas. When relative velocities V rel are calculated between two particles i and j such that Sti>>Stj and Stj<< 1, the data matches the analytical model of Ormel & Cuzzi. However, if V rel corresponds to two particles with the same St , only the data for the more loosely coupled solids (i.e. those with large St ) follow the model. The discrepancy at the low- St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range. [PUBLICATION ABSTRACT]
ABSTRACT We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities Vrel are calculated between two particles i and j such that Sti≫Stj and Stj≪ 1, the data matches the analytical model of Ormel & Cuzzi. However, if Vrel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low‐St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence‐induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time‐scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range.
Author Carballido, Augusto
Hogan, Robert C.
Cuzzi, Jeffrey N.
Author_xml – sequence: 1
  givenname: Augusto
  surname: Carballido
  fullname: Carballido, Augusto
  email: augusto@astroscu.unam.mx, * augusto@astroscu.unam.mx
  organization: Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, Cd. Universitaria, México D. F. 04510, Mexico
– sequence: 2
  givenname: Jeffrey N.
  surname: Cuzzi
  fullname: Cuzzi, Jeffrey N.
  organization: NASA Ames Research Center, MS 245-3, Moffet Field, CA 94035-1000, USA
– sequence: 3
  givenname: Robert C.
  surname: Hogan
  fullname: Hogan, Robert C.
  organization: Bay Area Environmental Research Institute, Sonoma, CA 95476, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22963698$$DView record in Pascal Francis
BookMark eNp9kV1LHDEUhoNY6Kr9D0Eo9ma2J9-ZG2lZqitoBatQvAmZmQxkGyfbyYxd_70ZV_aipeYmIed5z9d7gPa72DmEMIE5yefzak6YFAUtpZxTmH6lFGy-2UOzXWAfzQCYKLQi5D06SGkFAJxROUNfblywg390-NGFWPvBu4Rji1MMvknYd9jiYeyrMbhuwOs-DnEdbOcG2z_hxqf6CL1rbUjuw-t9iO7Ovt0ulsXl9fnF4utl4bnkrJCtLRXlbSUZaNVUnKmGWQ7MgubW1tBY0uiKA6WgK00qCdSSslWtlFDrhh2ik23e3MPv0aXBPOTqLkzNxDEZJfK0JQeRyU9vkkQqInSpQWb0-C90Fce-y3MYoZQoS0l0hj6-QjbVNrS97WqfzLr3D3kJhuYNM1lO3OmW--ODe9rFCZjJKLMykx9m8sNMRpkXo8zGXH2_eXnmBGybII7r_8iLf-RZVWxVPg1us9PZ_peRiilhlj_vjdJLuuD3PwywZ06apwE
CODEN MNRAA4
ContentType Journal Article
Copyright 2010 The Authors. Journal compilation © 2010 RAS 2010
2010 The Authors. Journal compilation © 2010 RAS
2015 INIST-CNRS
Journal compilation © 2010 RAS
Copyright_xml – notice: 2010 The Authors. Journal compilation © 2010 RAS 2010
– notice: 2010 The Authors. Journal compilation © 2010 RAS
– notice: 2015 INIST-CNRS
– notice: Journal compilation © 2010 RAS
DBID BSCLL
IQODW
8FD
H8D
L7M
7TG
KL.
DOI 10.1111/j.1365-2966.2010.16653.x
DatabaseName Istex
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic

Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 2344
ExternalDocumentID 2071601021
22963698
MNR16653
10.1111/j.1365-2966.2010.16653.x
ark_67375_HXZ_78H2C4ZS_0
Genre article
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABVLG
ABXVV
ABZBJ
ACBWZ
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGQPQ
AGSYK
AGXDD
AHXPO
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
2WC
AAHHS
AASNB
ABFSI
ABJNI
ABSAR
ABSMQ
ABTAH
ACBNA
ACCFJ
ACFRR
ACUTJ
ADRIX
AEEZP
AEQDE
AETEA
AFFNX
AFXEN
AGMDO
AIWBW
AJBDE
ASAOO
ATDFG
BCRHZ
CXTWN
DFGAJ
E.L
EAD
EAP
ESX
MBTAY
O0~
OHT
RHF
RNP
ROX
UQL
VOH
WRC
ZY4
AHGBF
APJGH
IQODW
8FD
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-i4643-6fa9724fb63087db437d3a403a084aac0da1d8b402208b81b602a19f7f660c8d3
IEDL.DBID DR2
ISSN 0035-8711
IngestDate Fri Jul 11 09:05:53 EDT 2025
Fri Jul 11 04:27:22 EDT 2025
Fri Jul 25 04:35:14 EDT 2025
Mon Jul 21 09:13:31 EDT 2025
Wed Jan 22 16:30:45 EST 2025
Wed Aug 28 03:23:45 EDT 2024
Tue Aug 05 16:46:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MHD
diffusion
protoplanetary discs
turbulence
Interpolation
Magnetohydrodynamics
Turbulence
Energy spectra
Digital simulation
Models
Magnetorotational instability
Diffusion
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4643-6fa9724fb63087db437d3a403a084aac0da1d8b402208b81b602a19f7f660c8d3
Notes ark:/67375/HXZ-78H2C4ZS-0
istex:998989A9CC3AF18789A3EB9B0EF6859EE1C159CF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/405/4/2339/18435171/mnras0405-2339.pdf
PQID 577599618
PQPubID 42411
PageCount 6
ParticipantIDs proquest_miscellaneous_753659405
proquest_miscellaneous_1671589806
proquest_journals_577599618
pascalfrancis_primary_22963698
wiley_primary_10_1111_j_1365_2966_2010_16653_x_MNR16653
oup_primary_10_1111_j_1365-2966_2010_16653_x
istex_primary_ark_67375_HXZ_78H2C4ZS_0
PublicationCentury 2000
PublicationDate 2010-07-11
PublicationDateYYYYMMDD 2010-07-11
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-11
  day: 11
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden, MA
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationTitleAlternate Monthly Notices of the Royal Astronomical Society
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Oxford University Press
References 2007; 466
2010; 708
2007; 448
1991; 376
1980; 85
2010
2005; 434
2008; 628
2007
2006
2008; 489
2009; 691
2008; 386
2006; 452
2008; 480
1991; 242
1992b; 80
2008; 46
2000; 143
1995; 440
2003; 588
2008; 177
2003; 583
2003; 164
1992a; 80
2001; 556
References_xml – volume: 480
  start-page: 859
  year: 2008
  publication-title: A&A
– volume: 556
  start-page: 958
  year: 2001
  publication-title: ApJ
– volume: 489
  start-page: 931
  year: 2008
  publication-title: A&A
– volume: 448
  start-page: 1022
  year: 2007
  publication-title: Nat
– start-page: 215
  year: 2007
  publication-title: A&A 461
– volume: 164
  start-page: 127
  year: 2003
  publication-title: Icarus
– volume: 143
  start-page: 74
  year: 2000
  publication-title: Icarus
– volume: 80
  start-page: 753
  year: 1992a
  publication-title: ApJS
– volume: 242
  start-page: 286
  year: 1991
  publication-title: A&A
– volume: 85
  start-page: 316
  year: 1980
  publication-title: A&A
– volume: 466
  start-page: 413
  year: 2007
  publication-title: A&A
– start-page: 783
  year: 2007
– volume: 588
  start-page: L113
  year: 2003
  publication-title: ApJ
– volume: 386
  start-page: 145
  year: 2008
  publication-title: MNRAS
– volume: 583
  start-page: 996
  year: 2003
  publication-title: ApJ
– year: 2010
– volume: 628
  start-page: 515
  year: 2008
  publication-title: ApJ
– start-page: 353
  year: 2006
– volume: 376
  start-page: 214
  year: 1991
  publication-title: ApJ
– volume: 46
  start-page: 21
  year: 2008
  publication-title: ARA&A
– volume: 177
  start-page: 373
  year: 2008
  publication-title: ApJS
– volume: 708
  start-page: 188
  year: 2010
  publication-title: ApJ
– volume: 691
  start-page: L133
  year: 2009
  publication-title: ApJ
– volume: 452
  start-page: 751
  year: 2006
  publication-title: A&A
– volume: 434
  start-page: 971
  year: 2005
  publication-title: A&A
– volume: 80
  start-page: 791
  year: 1992b
  publication-title: ApJS
– volume: 440
  start-page: 742
  year: 1995
  publication-title: ApJ
SSID ssj0004326
Score 2.1149187
Snippet We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational...
ABSTRACT We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the...
SourceID proquest
pascalfrancis
wiley
oup
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2339
SubjectTerms Accretion disks
Aerodynamics
Astronomy
Computational fluid dynamics
diffusion
Discs
Disks
Earth, ocean, space
Exact sciences and technology
Fluid flow
Magnetism
Mathematical models
MHD
Planets
protoplanetary discs
Turbulence
Turbulence models
Turbulent flow
Velocity
Title Relative velocities of solids in a turbulent protoplanetary disc
URI https://api.istex.fr/ark:/67375/HXZ-78H2C4ZS-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2010.16653.x
https://www.proquest.com/docview/577599618
https://www.proquest.com/docview/1671589806
https://www.proquest.com/docview/753659405
Volume 405
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH5CO01CsA3QwmAyEtqJVE7iX7kxFaYKqTsMJlW7WHbcSFWhqZp2Gvz1vOe0ZQV2Qdwc2Y7iZz_788vnzwBvlfFBltKn3GsK3dA1L4U3aW1ELT33RtYUGhheqsG1-DSSozX_ic7CdPoQ24AbeUacr8nBnW93nTwytBCvdwytTClZ9AhPYgbJ6H-4-qUkJYp481pUaMQ9QrZL6vnrixCukqXvNkffHs9di3aruwsvdhDpfVwbF6aLpzDdNKnjo0x7q6XvVT9-U3v8P20-gCdr_MrOuwF3CI_GsyM4Pm8pot58-87OWEx3AZP2CJIhovJmEYP3mNn_OkGIHJ-ewfuOiXc7ZkRcqqK2K2tqhu4wCS2bzJhjuCL6Fa2MjBQlmjlxc5fYAEbHiZ_D9cXHL_1Bur7RIZ0IhD6pql2pc1F7RUKEwYtCh8IJXjhuhHMVDy4Lxgs6_ms8ImrFc5eVta6V4pUJxQvYmzWz8TEwVyBWrIzwgTrXh9KpUobAce0RXuUhgbPYe3beqXZYt5gSiU1LOxjdWG0GeV_cfLY8gXfYvdti9zZFG1NbMrWNprZ3CZzujINtxRyLFqo0CZxsBoZdzwetlVqTDk6GuW-2uejI9HcG7dasWny_zqQpDVcJsAfK4N5SyRIxdgI6jpMHPtv-8dl2eHkVky__ueYJ7HfUCZ1m2SvYWy5W49eIyJb-NPraTwiZJaw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH5C4wASYjBAC4NhJLQTqfLDv3JjKkwB1h7GJlW7WHbdSNW2pmraafDX857TlhXYBXFzZCeKn_3izy-fvwfwTmrnRSFcnDhFoRtK85I7HVeaV8IlTouKQgO9vizP-JeBGCzTAdFZmFYfYh1wI88I32tycApIb3p5oGghYG8pWqmUIu8goLzPEXfQTuzjyS8tKZ6H3GtBoxF3CekmreevT0LASra-WR1-ezS1DVqualNebGDS28g2LE1H23C56lTLSLnoLOauM_zxm97jf-r1E3i8hLDssJ1zT-HeaLIDu4cNBdXrq-_sgIVyGzNpdiDqITCvZyF-j5XdyzGi5HD1DD60ZLzrESPu0jDIu7K6YugRY9-w8YRZhouiW9DiyEhUop4SPXeOPWB0ovg5nB19Ou2W8TKpQzzmiH5iWdlCZbxykrQIveO58rnlSW4Tza0dJt6mXjtOJ4C1Q1Atk8ymRaUqKZOh9vkL2JrUk9EuMJsjXBxq7jyNrvOFlYXwPsHlhzuZ-QgOwvCZaSvcYezsgnhsSphycG6ULrMuP_9mkgje4_ium93aF61MbcjUJpja3ESwvzER1jdm2DSXhY5gbzUzzPKT0BihFEnhpFj7dl2Lvkw_aNBu9aLB56tU6EInMgJ2RxvcXkpRIMyOQIWJcsdrmz9e2_T6J6H48p_vfAMPytPesTn-3P-6Bw9bJoWK0_QVbM1ni9FrBGhztx8c7yd03inL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bixMxFA6yggjiZVV2XF0jyD45JTOT27y5VEu9tMjqQtmXkEwaKF07pdPK6q_3nExbt-q-iG8ZkgyTk5zky5kvXwh5KbXzohQuZU5h6AaveSmcToPmQTjmtAgYGhgMZf-Mvx-J0Zr_hGdhWn2IbcANPSPO1-jgcx92nTwytACvtwytTEpRdABP3uQSgAUCpNNfUlK8iFevRYlG2CRku6yev74J8Cqa-nJz9u3O3DZguNDeeLEDSa8C27gy9e6R6aZNLSFl2lktXaf68Zvc4_9p9H1ydw1g6Uk74h6QG-PZPjk4aTCkXn_9To9pTLcRk2afJAOA5fUiRu8hs3sxAYwcnx6S1y0V79uYInOpiuKutA4U_GHiGzqZUUthSXQrXBopSkrUcyTnLqEBFM8TPyJnvbdfuv10faVDOuGAfVIZbKlyHpxEJULveKF8YTkrLNPc2op5m3ntOJ7_1Q4gtWS5zcqggpSs0r54TPZm9Wx8QKgtACxWmjuPnet8aWUpvGew-HAnc5-Q49h7Zt7Kdhi7mCKLTQnTH50bpft5l59_Niwhr6B7t8Wu7Io2pjZoahNNbS4TcrQzDrYVcyhayFIn5HAzMMx6QmiMUAqFcDLIfbHNBU_G3zNgt3rVwPtVJnSpmUwIvaYMbC6lKAFkJ0TFcXLNZ5s_PtsMhqcx-eSfaz4ntz696ZmP74YfDsntlkah0ix7SvaWi9X4GaCzpTuKbvcTwYgoeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+velocities+of+solids+in+a+turbulent+protoplanetary+disc&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Carballido%2C+Augusto&rft.au=Cuzzi%2C+Jeffrey+N.&rft.au=Hogan%2C+Robert+C.&rft.date=2010-07-11&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=405&rft.issue=4&rft.spage=2339&rft.epage=2344&rft_id=info:doi/10.1111%2Fj.1365-2966.2010.16653.x&rft.externalDocID=10.1111%2Fj.1365-2966.2010.16653.x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon