Relative velocities of solids in a turbulent protoplanetary disc
We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 405; no. 4; pp. 2339 - 2344 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
11.07.2010
Wiley-Blackwell Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0035-8711 1365-2966 |
DOI | 10.1111/j.1365-2966.2010.16653.x |
Cover
Loading…
Abstract | We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities Vrel are calculated between two particles i and j such that Sti≫Stj and Stj≪ 1, the data matches the analytical model of Ormel & Cuzzi. However, if Vrel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range. |
---|---|
AbstractList | We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities Vrel are calculated between two particles i and j such that Sti≫Stj and Stj≪ 1, the data matches the analytical model of Ormel & Cuzzi. However, if Vrel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range. We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities Vrel are calculated between two particles i and j such that Sti >>Stj and Stj < 1, the data matches the analytical model of Ormel & Cuzzi. However, if Vrel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with [Display omitted] because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range. We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities V rel are calculated between two particles i and j such that Sti ≫Stj and Stj ≪ 1, the data matches the analytical model of Ormel & Cuzzi. However, if V rel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low-St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range. We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St , which measures the aerodynamic coupling to the gas. When relative velocities V rel are calculated between two particles i and j such that Sti>>Stj and Stj<< 1, the data matches the analytical model of Ormel & Cuzzi. However, if V rel corresponds to two particles with the same St , only the data for the more loosely coupled solids (i.e. those with large St ) follow the model. The discrepancy at the low- St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence-induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time-scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range. [PUBLICATION ABSTRACT] ABSTRACT We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational instability. Relative velocities are calculated as functions of particle Stokes number St, which measures the aerodynamic coupling to the gas. When relative velocities Vrel are calculated between two particles i and j such that Sti≫Stj and Stj≪ 1, the data matches the analytical model of Ormel & Cuzzi. However, if Vrel corresponds to two particles with the same St, only the data for the more loosely coupled solids (i.e. those with large St) follow the model. The discrepancy at the low‐St end can be attributed to: (i) the numerical disc model's coarse resolution, which is unable to probe smaller turbulent eddies and, therefore, the dominant contribution to the particle relative velocities is given by the interpolation of the gas velocity inside the grid cells; (ii) the sparse particle sampling, which prevents the measurement of relative velocities between two particles in the same place at the same time. The distribution of turbulence‐induced relative speeds can have a wide spread of values, which may lead to particle shattering, subject to the turbulent gas velocity. Codes such as the one used in this work, in general, underestimate relative velocities in turbulence for particles with because they lack energy on short time‐scales (relative to a Kolmogorov spectrum). In making comparisons with theory, it is important to use the exact numerical energy spectrum instead of assuming a Kolmogorov inertial range. |
Author | Carballido, Augusto Hogan, Robert C. Cuzzi, Jeffrey N. |
Author_xml | – sequence: 1 givenname: Augusto surname: Carballido fullname: Carballido, Augusto email: augusto@astroscu.unam.mx, * augusto@astroscu.unam.mx organization: Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, Cd. Universitaria, México D. F. 04510, Mexico – sequence: 2 givenname: Jeffrey N. surname: Cuzzi fullname: Cuzzi, Jeffrey N. organization: NASA Ames Research Center, MS 245-3, Moffet Field, CA 94035-1000, USA – sequence: 3 givenname: Robert C. surname: Hogan fullname: Hogan, Robert C. organization: Bay Area Environmental Research Institute, Sonoma, CA 95476, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22963698$$DView record in Pascal Francis |
BookMark | eNp9kV1LHDEUhoNY6Kr9D0Eo9ma2J9-ZG2lZqitoBatQvAmZmQxkGyfbyYxd_70ZV_aipeYmIed5z9d7gPa72DmEMIE5yefzak6YFAUtpZxTmH6lFGy-2UOzXWAfzQCYKLQi5D06SGkFAJxROUNfblywg390-NGFWPvBu4Rji1MMvknYd9jiYeyrMbhuwOs-DnEdbOcG2z_hxqf6CL1rbUjuw-t9iO7Ovt0ulsXl9fnF4utl4bnkrJCtLRXlbSUZaNVUnKmGWQ7MgubW1tBY0uiKA6WgK00qCdSSslWtlFDrhh2ik23e3MPv0aXBPOTqLkzNxDEZJfK0JQeRyU9vkkQqInSpQWb0-C90Fce-y3MYoZQoS0l0hj6-QjbVNrS97WqfzLr3D3kJhuYNM1lO3OmW--ODe9rFCZjJKLMykx9m8sNMRpkXo8zGXH2_eXnmBGybII7r_8iLf-RZVWxVPg1us9PZ_peRiilhlj_vjdJLuuD3PwywZ06apwE |
CODEN | MNRAA4 |
ContentType | Journal Article |
Copyright | 2010 The Authors. Journal compilation © 2010 RAS 2010 2010 The Authors. Journal compilation © 2010 RAS 2015 INIST-CNRS Journal compilation © 2010 RAS |
Copyright_xml | – notice: 2010 The Authors. Journal compilation © 2010 RAS 2010 – notice: 2010 The Authors. Journal compilation © 2010 RAS – notice: 2015 INIST-CNRS – notice: Journal compilation © 2010 RAS |
DBID | BSCLL IQODW 8FD H8D L7M 7TG KL. |
DOI | 10.1111/j.1365-2966.2010.16653.x |
DatabaseName | Istex Pascal-Francis Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 2344 |
ExternalDocumentID | 2071601021 22963698 MNR16653 10.1111/j.1365-2966.2010.16653.x ark_67375_HXZ_78H2C4ZS_0 |
Genre | article |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHTB AAIJN AAJKP AAJQQ AAKDD AAMMB AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABVLG ABXVV ABZBJ ACBWZ ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEFGJ AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFZJQ AGINJ AGQPQ AGSYK AGXDD AHXPO AIDQK AIDYY AJAOE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT ASPBG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE CO8 COF D-E D-F DAKXR DCZOG DILTD DR2 DU5 D~K E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 V8K W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX 2WC AAHHS AASNB ABFSI ABJNI ABSAR ABSMQ ABTAH ACBNA ACCFJ ACFRR ACUTJ ADRIX AEEZP AEQDE AETEA AFFNX AFXEN AGMDO AIWBW AJBDE ASAOO ATDFG BCRHZ CXTWN DFGAJ E.L EAD EAP ESX MBTAY O0~ OHT RHF RNP ROX UQL VOH WRC ZY4 AHGBF APJGH IQODW 8FD H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-i4643-6fa9724fb63087db437d3a403a084aac0da1d8b402208b81b602a19f7f660c8d3 |
IEDL.DBID | DR2 |
ISSN | 0035-8711 |
IngestDate | Fri Jul 11 09:05:53 EDT 2025 Fri Jul 11 04:27:22 EDT 2025 Fri Jul 25 04:35:14 EDT 2025 Mon Jul 21 09:13:31 EDT 2025 Wed Jan 22 16:30:45 EST 2025 Wed Aug 28 03:23:45 EDT 2024 Tue Aug 05 16:46:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | MHD diffusion protoplanetary discs turbulence Interpolation Magnetohydrodynamics Turbulence Energy spectra Digital simulation Models Magnetorotational instability Diffusion |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4643-6fa9724fb63087db437d3a403a084aac0da1d8b402208b81b602a19f7f660c8d3 |
Notes | ark:/67375/HXZ-78H2C4ZS-0 istex:998989A9CC3AF18789A3EB9B0EF6859EE1C159CF ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/405/4/2339/18435171/mnras0405-2339.pdf |
PQID | 577599618 |
PQPubID | 42411 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_753659405 proquest_miscellaneous_1671589806 proquest_journals_577599618 pascalfrancis_primary_22963698 wiley_primary_10_1111_j_1365_2966_2010_16653_x_MNR16653 oup_primary_10_1111_j_1365-2966_2010_16653_x istex_primary_ark_67375_HXZ_78H2C4ZS_0 |
PublicationCentury | 2000 |
PublicationDate | 2010-07-11 |
PublicationDateYYYYMMDD | 2010-07-11 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Malden, MA – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAbbrev | Monthly Notices of the Royal Astronomical Society |
PublicationTitleAlternate | Monthly Notices of the Royal Astronomical Society |
PublicationYear | 2010 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Oxford University Press |
References | 2007; 466 2010; 708 2007; 448 1991; 376 1980; 85 2010 2005; 434 2008; 628 2007 2006 2008; 489 2009; 691 2008; 386 2006; 452 2008; 480 1991; 242 1992b; 80 2008; 46 2000; 143 1995; 440 2003; 588 2008; 177 2003; 583 2003; 164 1992a; 80 2001; 556 |
References_xml | – volume: 480 start-page: 859 year: 2008 publication-title: A&A – volume: 556 start-page: 958 year: 2001 publication-title: ApJ – volume: 489 start-page: 931 year: 2008 publication-title: A&A – volume: 448 start-page: 1022 year: 2007 publication-title: Nat – start-page: 215 year: 2007 publication-title: A&A 461 – volume: 164 start-page: 127 year: 2003 publication-title: Icarus – volume: 143 start-page: 74 year: 2000 publication-title: Icarus – volume: 80 start-page: 753 year: 1992a publication-title: ApJS – volume: 242 start-page: 286 year: 1991 publication-title: A&A – volume: 85 start-page: 316 year: 1980 publication-title: A&A – volume: 466 start-page: 413 year: 2007 publication-title: A&A – start-page: 783 year: 2007 – volume: 588 start-page: L113 year: 2003 publication-title: ApJ – volume: 386 start-page: 145 year: 2008 publication-title: MNRAS – volume: 583 start-page: 996 year: 2003 publication-title: ApJ – year: 2010 – volume: 628 start-page: 515 year: 2008 publication-title: ApJ – start-page: 353 year: 2006 – volume: 376 start-page: 214 year: 1991 publication-title: ApJ – volume: 46 start-page: 21 year: 2008 publication-title: ARA&A – volume: 177 start-page: 373 year: 2008 publication-title: ApJS – volume: 708 start-page: 188 year: 2010 publication-title: ApJ – volume: 691 start-page: L133 year: 2009 publication-title: ApJ – volume: 452 start-page: 751 year: 2006 publication-title: A&A – volume: 434 start-page: 971 year: 2005 publication-title: A&A – volume: 80 start-page: 791 year: 1992b publication-title: ApJS – volume: 440 start-page: 742 year: 1995 publication-title: ApJ |
SSID | ssj0004326 |
Score | 2.1149187 |
Snippet | We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the magnetorotational... ABSTRACT We use magnetohydrodynamic simulations to measure relative speeds of solids in a protoplanetary disc with turbulence generated by the... |
SourceID | proquest pascalfrancis wiley oup istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2339 |
SubjectTerms | Accretion disks Aerodynamics Astronomy Computational fluid dynamics diffusion Discs Disks Earth, ocean, space Exact sciences and technology Fluid flow Magnetism Mathematical models MHD Planets protoplanetary discs Turbulence Turbulence models Turbulent flow Velocity |
Title | Relative velocities of solids in a turbulent protoplanetary disc |
URI | https://api.istex.fr/ark:/67375/HXZ-78H2C4ZS-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2010.16653.x https://www.proquest.com/docview/577599618 https://www.proquest.com/docview/1671589806 https://www.proquest.com/docview/753659405 |
Volume | 405 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH5CO01CsA3QwmAyEtqJVE7iX7kxFaYKqTsMJlW7WHbcSFWhqZp2Gvz1vOe0ZQV2Qdwc2Y7iZz_788vnzwBvlfFBltKn3GsK3dA1L4U3aW1ELT33RtYUGhheqsG1-DSSozX_ic7CdPoQ24AbeUacr8nBnW93nTwytBCvdwytTClZ9AhPYgbJ6H-4-qUkJYp481pUaMQ9QrZL6vnrixCukqXvNkffHs9di3aruwsvdhDpfVwbF6aLpzDdNKnjo0x7q6XvVT9-U3v8P20-gCdr_MrOuwF3CI_GsyM4Pm8pot58-87OWEx3AZP2CJIhovJmEYP3mNn_OkGIHJ-ewfuOiXc7ZkRcqqK2K2tqhu4wCS2bzJhjuCL6Fa2MjBQlmjlxc5fYAEbHiZ_D9cXHL_1Bur7RIZ0IhD6pql2pc1F7RUKEwYtCh8IJXjhuhHMVDy4Lxgs6_ms8ImrFc5eVta6V4pUJxQvYmzWz8TEwVyBWrIzwgTrXh9KpUobAce0RXuUhgbPYe3beqXZYt5gSiU1LOxjdWG0GeV_cfLY8gXfYvdti9zZFG1NbMrWNprZ3CZzujINtxRyLFqo0CZxsBoZdzwetlVqTDk6GuW-2uejI9HcG7dasWny_zqQpDVcJsAfK4N5SyRIxdgI6jpMHPtv-8dl2eHkVky__ueYJ7HfUCZ1m2SvYWy5W49eIyJb-NPraTwiZJaw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH5C4wASYjBAC4NhJLQTqfLDv3JjKkwB1h7GJlW7WHbdSNW2pmraafDX857TlhXYBXFzZCeKn_3izy-fvwfwTmrnRSFcnDhFoRtK85I7HVeaV8IlTouKQgO9vizP-JeBGCzTAdFZmFYfYh1wI88I32tycApIb3p5oGghYG8pWqmUIu8goLzPEXfQTuzjyS8tKZ6H3GtBoxF3CekmreevT0LASra-WR1-ezS1DVqualNebGDS28g2LE1H23C56lTLSLnoLOauM_zxm97jf-r1E3i8hLDssJ1zT-HeaLIDu4cNBdXrq-_sgIVyGzNpdiDqITCvZyF-j5XdyzGi5HD1DD60ZLzrESPu0jDIu7K6YugRY9-w8YRZhouiW9DiyEhUop4SPXeOPWB0ovg5nB19Ou2W8TKpQzzmiH5iWdlCZbxykrQIveO58rnlSW4Tza0dJt6mXjtOJ4C1Q1Atk8ymRaUqKZOh9vkL2JrUk9EuMJsjXBxq7jyNrvOFlYXwPsHlhzuZ-QgOwvCZaSvcYezsgnhsSphycG6ULrMuP_9mkgje4_ium93aF61MbcjUJpja3ESwvzER1jdm2DSXhY5gbzUzzPKT0BihFEnhpFj7dl2Lvkw_aNBu9aLB56tU6EInMgJ2RxvcXkpRIMyOQIWJcsdrmz9e2_T6J6H48p_vfAMPytPesTn-3P-6Bw9bJoWK0_QVbM1ni9FrBGhztx8c7yd03inL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bixMxFA6yggjiZVV2XF0jyD45JTOT27y5VEu9tMjqQtmXkEwaKF07pdPK6q_3nExbt-q-iG8ZkgyTk5zky5kvXwh5KbXzohQuZU5h6AaveSmcToPmQTjmtAgYGhgMZf-Mvx-J0Zr_hGdhWn2IbcANPSPO1-jgcx92nTwytACvtwytTEpRdABP3uQSgAUCpNNfUlK8iFevRYlG2CRku6yev74J8Cqa-nJz9u3O3DZguNDeeLEDSa8C27gy9e6R6aZNLSFl2lktXaf68Zvc4_9p9H1ydw1g6Uk74h6QG-PZPjk4aTCkXn_9To9pTLcRk2afJAOA5fUiRu8hs3sxAYwcnx6S1y0V79uYInOpiuKutA4U_GHiGzqZUUthSXQrXBopSkrUcyTnLqEBFM8TPyJnvbdfuv10faVDOuGAfVIZbKlyHpxEJULveKF8YTkrLNPc2op5m3ntOJ7_1Q4gtWS5zcqggpSs0r54TPZm9Wx8QKgtACxWmjuPnet8aWUpvGew-HAnc5-Q49h7Zt7Kdhi7mCKLTQnTH50bpft5l59_Niwhr6B7t8Wu7Io2pjZoahNNbS4TcrQzDrYVcyhayFIn5HAzMMx6QmiMUAqFcDLIfbHNBU_G3zNgt3rVwPtVJnSpmUwIvaYMbC6lKAFkJ0TFcXLNZ5s_PtsMhqcx-eSfaz4ntz696ZmP74YfDsntlkah0ix7SvaWi9X4GaCzpTuKbvcTwYgoeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+velocities+of+solids+in+a+turbulent+protoplanetary+disc&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Carballido%2C+Augusto&rft.au=Cuzzi%2C+Jeffrey+N.&rft.au=Hogan%2C+Robert+C.&rft.date=2010-07-11&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=405&rft.issue=4&rft.spage=2339&rft.epage=2344&rft_id=info:doi/10.1111%2Fj.1365-2966.2010.16653.x&rft.externalDocID=10.1111%2Fj.1365-2966.2010.16653.x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |