Iron-copper interactions in iron-limited phytoplankton in the northeast subarctic Pacific Ocean

In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl...

Full description

Saved in:
Bibliographic Details
Published inLimnology and oceanography Vol. 61; no. 1; pp. 279 - 297
Main Authors Semeniuk, David M., Taylor, Rebecca L., Bundy, Randelle M., Johnson, W. Keith, Cullen, Jay T., Robert, Marie, Barbeau, Katherine A., Maldonado, Maria T.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.01.2016
John Wiley and Sons, Inc
Subjects
Online AccessGet full text
ISSN0024-3590
1939-5590
DOI10.1002/lno.10210

Cover

Abstract In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F v/F m), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F v/F m at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L−1 CuSO₄ resulted in a short-term increase in F v/F m of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 μm), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes.
AbstractList In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F sub(v)/F sub(m)), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F sub(v)/F sub(m) at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L super(-1) CuSO sub(4) resulted in a short-term increase in F sub(v)/F sub(m) of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 mu m), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes.
In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F v/F m), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F v/F m at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L−1 CuSO₄ resulted in a short-term increase in F v/F m of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 μm), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes.
In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe‐ and Fe‐light co‐limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (Fv/Fm), and Fe uptake rates by the Cu‐dependent high‐affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and Fv/Fm at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe‐limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu‐limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L−1 CuSO4 resulted in a short‐term increase in Fv/Fm of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 μm), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes.
Author Taylor, Rebecca L.
Semeniuk, David M.
Maldonado, Maria T.
Robert, Marie
Barbeau, Katherine A.
Bundy, Randelle M.
Johnson, W. Keith
Cullen, Jay T.
Author_xml – sequence: 1
  givenname: David M.
  surname: Semeniuk
  fullname: Semeniuk, David M.
  email: david.semeniuk@gmail.com
  organization: Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada
– sequence: 2
  givenname: Rebecca L.
  surname: Taylor
  fullname: Taylor, Rebecca L.
  organization: Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada
– sequence: 3
  givenname: Randelle M.
  surname: Bundy
  fullname: Bundy, Randelle M.
  organization: Scripps Institution of Oceanography, University of California San Diego, California, La Jolla
– sequence: 4
  givenname: W. Keith
  surname: Johnson
  fullname: Johnson, W. Keith
  organization: Institute of Ocean Sciences, Fisheries and Oceans Canada, British Columbia, Sydney, Canada
– sequence: 5
  givenname: Jay T.
  surname: Cullen
  fullname: Cullen, Jay T.
  organization: School of Earth and Ocean Sciences, University of Victoria, British Columbia, Victoria, Canada
– sequence: 6
  givenname: Marie
  surname: Robert
  fullname: Robert, Marie
  organization: Institute of Ocean Sciences, Fisheries and Oceans Canada, British Columbia, Sydney, Canada
– sequence: 7
  givenname: Katherine A.
  surname: Barbeau
  fullname: Barbeau, Katherine A.
  organization: Scripps Institution of Oceanography, University of California San Diego, California, La Jolla
– sequence: 8
  givenname: Maria T.
  surname: Maldonado
  fullname: Maldonado, Maria T.
  organization: Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada
BookMark eNo9kEtLAzEUhYMoWB8Lf4AwSzdjb14zzVJEq1BaBR_LkGYymHaajEmK9t-bOuLqnPCdEy7nBB067wxCFxiuMQAZd85nQzAcoBEWVJScCzhEo8xYSbM_RicxrgBAcM5HSD4G70rt-96EwrpkgtLJehfzo7B71tmNTaYp-o9d8n2n3Dp5t6fpwxTOhywqpiJulyrkqi6elLZt1oU2yp2ho1Z10Zz_6Sl6vb97uX0oZ4vp4-3NrLQsH1W2dUuJblkNE05xA3pplOBkqQlhgqtWVXqpBW5xw6ARmhHWcKMJow0H3gigp-hq-LcP_nNrYpIbG7Xp8r3Gb6PE9QRylADL0fEQ_bKd2ck-2I0KO4lB7heUeUH5u6CczRe_Jjcuh8YqJh_-G6SqyIRhmnk5cBuT-f7nKqxlVdOay_f5VM4xhfr57V3O6Q9xFIF3
ContentType Journal Article
Copyright 2015 Association for the Sciences of Limnology and Oceanography
Copyright_xml – notice: 2015 Association for the Sciences of Limnology and Oceanography
DBID BSCLL
7TN
F1W
H95
H98
L.G
M7N
DOI 10.1002/lno.10210
DatabaseName Istex
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Oceanic Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional


DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 1939-5590
EndPage 297
ExternalDocumentID LNO10210
26628413
ark_67375_WNG_N1307QVW_N
Genre article
GeographicLocations Canada, British Columbia
INE, Subarctic Pacific
GeographicLocations_xml – name: INE, Subarctic Pacific
– name: Canada, British Columbia
GroupedDBID -~X
..I
0R~
1OC
2AX
2WC
33P
42X
5GY
85S
8WZ
A6W
AAESR
AAFWJ
AAHBH
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABBHK
ABCUV
ABDPE
ABEFU
ABPPZ
ABPVG
ABSQW
ABTAH
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACGFS
ACHIC
ACKIV
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AETEA
AEUPB
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGUYK
AGYGG
AHBTC
AHHXC
AHJTV
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AQVQM
AUFTA
AZFZN
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
C1A
D0L
DCZOG
DEVKO
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F5P
GENNL
GODZA
H13
HGD
HGLYW
H~9
IPSME
JAAYA
JBMMH
JBS
JEB
JENOY
JFNAL
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
NHB
O66
O9-
OK1
P2P
P2W
RLO
RNS
ROL
SA0
SUPJJ
TN5
UPT
VOH
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WUPDE
WXSBR
WYISQ
XOL
YQT
YR2
YV5
YXE
ZCA
ZCG
ZY4
ZZTAW
~02
AAMMB
ADXHL
AEFGJ
AEYWJ
AGXDD
AIDQK
AIDYY
0ZS
1OB
24P
AEUQT
AFPWT
JAV
JSODD
SAMSI
UAO
VQA
7TN
F1W
H95
H98
L.G
LH4
M7N
ID FETCH-LOGICAL-i4590-f7f32cf4708531d0cbea952bc22495afa6cbc91f1d40d9c424d5ec243d505d903
IEDL.DBID JFNAL
ISSN 0024-3590
IngestDate Fri Sep 05 09:15:52 EDT 2025
Wed Jan 22 16:59:08 EST 2025
Thu Jul 03 22:44:06 EDT 2025
Fri Apr 25 07:46:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4590-f7f32cf4708531d0cbea952bc22495afa6cbc91f1d40d9c424d5ec243d505d903
Notes istex:07E1414A0CA8FEC47BF96E10479E851CA2678693
ark:/67375/WNG-N1307QVW-N
ArticleID:LNO10210
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lno.10210
PQID 1780505204
PQPubID 23462
PageCount 19
ParticipantIDs proquest_miscellaneous_1780505204
wiley_primary_10_1002_lno_10210_LNO10210
jstor_primary_26628413
istex_primary_ark_67375_WNG_N1307QVW_N
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationTitle Limnology and oceanography
PublicationTitleAlternate Limnol. Oceanogr
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley and Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons, Inc
References Barber, R. T., and J. H. Ryther. 1969. Organic chelators: Factors affecting primary production in the Cromwell Current upwelling. J. Exp. Mar. Biol. Ecol. 3: 191-199. doi:10.1016/0022-0981(69)90017-3
Buck, K. N., K. E. Selph, and K. A. Barbeau. 2010. Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean. Mar. Chem. 122: 148-159. doi:10.1016/j.marchem.2010.06.002
Parsons, T. R., Y. Maita, and C. M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis, 201 pp. Pergamon Press.
Bundy, R. M., K. A. Barbeau, and K. N. Buck. 2013. Sources of strong copper-binding ligands in Antarctic Peninsula surface waters. Deep-Sea Res. II 90: 134-146. doi:10.1016/j.dsr2.2012.07.023
Jacquot, J. E., and J. W. Moffet. 2015. Copper distribution and speciation across the International GEOTRACES Section GA03. Mar. Chem. 116: 187-207. doi:10.1016/j.dsr2.2014.11.013
Marchetti, A., N. D. Sherry, H. Kiyosama, A. Tsuda, and P. J. Harrison. 2006b. Phytoplankton processes during a mesoscale iron environment in the NE subarctic Pacific: Part I-biomass and assemblage. Deep-Sea Res. II 53: 2095-2113. doi:10.1016/j.dsr2.2006.05.038
Marchetti, A., M. T. Maldonado, E. S. Lane, and P. J. Harrison. 2006a. Iron requirements of the pennate diatom Pseudo-nitzschia: Comparison of oceanic (high-nitrate, low-chlorophyll waters) and coastal species. Limnol. Oceanogr. 51: 2092-2101. doi:10.4319/lo.2006.51.5.2092
Jacquot, J. E., Y. Kondo, A. N. Knapp, and J. W. Moffett. 2013. The speciation of copper across active gradients in nitrogen-cycle processes in the eastern tropical South Pacific. Limnol. Oceanogr. 58: 1387-1394. doi:10.4319/lo.2013.58.4.1387
Lombardi, A. T., and M. T. Maldonado. 2011. The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynth. Res. 108: 77-87. doi:10.1007/s11120-011-9655-z
Farkas, E., É. A. Enyedy, and I. Fábián. 2003. New insight into the oxidation of Fe(II) by desferrioxamine B (DFB): Spectrophotometric and capillary electrophoresis (CE) study. Inorg. Chem. Commun. 6: 131-134. doi:10.1016/S1387-7003(02)00703-7
Maldonado, M.T., and N.M. Price. 1999. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep-Sea Res. II 46, 2447-2473. doi:10.1016/S0967-0645(99)00071-5
Coale, K. H. 1991. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the Subarctic Pacific. Limnol. Oceanogr. 36: 1851-1864. doi:10.4319/lo.1991.36.8.1851
Sunda, W. G., and R. R. L. Guillard. 1976. Relationship between cupric ion activity and toxicity of copper to phytoplankton. J. Mar. Res. 34: 511-529.
Jackson, G. A., and J. J. Morgan. 1978. Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. Limnol. Oceanogr. 23: 268-282. doi:10.4319/lo.1978.23.2.0268
Leal, M. F. C., and C. M. G. van den Berg. 1998. Evidence for strong copper(I) complexation by organic ligands in seawater. Aquat. Geochem. 4: 49-75. doi:10.1023/A:1009653002399
Laws, E. A., and Bannister, T. T. 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25: 457-473.
Monzyk, B., and A. L. Crumbliss. 1982. Kinetics of mechanism of the stepwise dissociation of Fe(III) from ferrioxamine B in aqueous acid. J. Am. Chem. Soc. 104: 4921-4929. doi:10.1021/ja00382a031
Peers, G., and N. M. Price. 2006. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441: 341-344. doi:10.1038/nature04630
Razali, N. M., and Y. B. Wah. 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2: 21-33.
Veldhuis, M. J. W., and G. W. Kraay. 2004. Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition. Deep-Sea Res. I 51: 507-530. doi:10.1016/j.dsr.2003.12.002
Heller, M. I., and P. L. Croot. 2015. Copper speciation and distribution in the Atlantic sector of the Southern Ocean. Mar. Chem. 173: 253-268. doi:10.1016/j.marchem.2014.09.017
Farkas, E., E. A. Enyedy, L. Zekany, and G. Deak. 2001. Interaction between iron(II) and hydroxamic acids: Oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. J. Inorg. Biochem. 83: 107-114. doi:10.1016/S0162-0134(00)00197-5
Maldonado, M. T., and others. 2001. Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment. Limnol. Oceanogr. 46: 1802-1808. doi:10.4319/lo.2001.46.7.1802
Maldonado, M. T., A. E. Allen, J. S. Chong, K. Lin, D. Leus, N. Karpenko, and S. Harris. 2006. Copper-dependent iron transport in coastal and oceanic diatoms. Limnol. Oceanogr. 51: 1729-1743. doi:10.4319/lo.2006.51.4.1729
Miller, C. B., B. W. Frost, P. A. Wheeler, M. R. Landry, N. Welschmeyer, and T. M. Powell. 1991. Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem. Limnol. Oceanogr. 36: 1600-1615. doi:10.4319/lo.1991.36.8.1600
Sunda, W. G., and S. A. Huntsman. 2004. Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom. Limnol. Oceanogr. 49: 1741-1753. doi:10.4319/lo.2004.49.5.1742
Sunda, W. G., R. T. Barber, and S. A. Hunstman. 1981. Phytoplankton growth in nutrient rich seawater: Important of copper-manganese cellular interactions. J. Mar. Res. 39: 567-587.
Hudson, R. J., D. T. Covault, and F. M. M. Morel. 1992. Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes. Mar. Chem. 38: 209-235. doi:10.1016/0304-4203(92)90035-9
Shaked, Y., A. B. Kustka, and F. M. M. Morel. 2005. A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol. Oceanogr. 50: 872-882. doi:10.4319/lo.2005.50.3.0872
Vaulot, D. 1989. CYTOPC: Processing software for flow cytometric data. Signal Noise 2: 8.
Jacquot, J. E., and others. 2014. Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary. Mar. Chem. 162: 37-49. doi:10.1016/j.marchem.2014.02.002
Lee, S., and J. A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microb. 53: 1298-1303.
Maldonado, M.T., and N.M. Price. 2000. Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol. Oceanogr. 45, 814-826. doi:10.4319/lo.2000.45.4.0814
Sunda, W. G., and S. A. Huntsman. 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50: 189-206.
Moore, C. M., and others. 2006. Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol. Oceanogr. 51: 936-949. doi:10.4319/lo.2006.51.2.0936
Moore, J. K., S. C. Doney, and K. Lindsay. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles 18: GB4028. doi:10.1029/2004GB002220
Zamzow, H., K. H. Coale, K. S. Johnson, and C. M. Sakamoto. 1998. Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection. Anal. Chim. Acta 377: 133-144. doi:10.1016/S0003-2670(98)00618-7
Whitney, F. A., and H. J. Freeland. 1999. Variability in upper-ocean water properties in the NE Pacific Ocean. Deep-Sea Res. II 46: 2351-2370. doi:10.1016/S0967-0645(99)00067-3
Hudson, R. J. M., and F. M. M. Morel. 1989. Distinguishing between extra- and intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34: 1113-1120. doi:10.4319/lo.1989.34.6.1113
Semeniuk, D. M., R. M. Bundy, C. D. Payne, K. A. Barbeau, and M. T. Maldonado. 2015. Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Mar. Chem. 173: 222-233. doi:10.1016/j.marchem.2015.01.005
Annett, A. L., S. Lapi, T. J. Ruth, and M. T. Maldonado. 2008. The effects of Cu and Fe availability on the growth and Cu:C ratios of marine diatoms. Limnol. Oceanogr. 53: 2451-2461. doi:10.4319/lo.2008.53.6.2451
Peers, G., S. A. Quesnel, and N. M. Price. 2005. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr. 50: 1149-1158. doi:10.4319/lo.2005.50.4.1149
Mélançon, J., and others. 2014. Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization. Limnol. Oceanogr. 59: 55-67. doi:10.4319/lo.2014.59.1.0055
Schuback, N., C. Schallenberg, C. Duckham, M. T. Maldonado, and P. D. Tortell. 2015. Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. PLoS ONE 10: e0133235. doi:10.1371/journal.pone.0133235
Maldonado, M. T., and N. M. Price. 1996. Influence of N substrate on Fe requirements of marine centric diatoms. Mar. Ecol. Prog. Ser. 141: 161-172. doi:10.3354/meps141161
Greene, R. M., R. J. Geider, and P. G. Falkowski. 1991. Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36: 1772-1782. doi:10.4319/lo.1991.36.8.1772
Aristilde, L., Y. Xu, and F. M. M. Morel. 2012. Weak organic ligands enhance zinc uptake in marine phytoplankton. Environ. Sci. Technol. 46: 5438-5445. doi:10.1021/es300335u
Coale, K.H., Bruland, K.W., 1988. Copper complexation in the northeast Pacific. Limnol. Oceanogr. 33, 1084-1101. doi:10.4319/lo.1988.33.5.1084
Geider, R. J. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytol. 106: 1-34. doi:10.1111/j.1469-8137.1987.tb04788.x
Maldonado, M. T., and N. M. Price. 2001. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J
1987; 106
2000; 45
2006; 36
2013; 128
1996; 382
1999; 46
1988; 33
1973
2001; 48
1982; 104
2008; 6
1996; 141
2013; 8
2001; 46
1987; 39
2003; 198
2015; 173
2009; 56
2013; 18
1989; 34
2013; 58
2006b; 53
1976; 34
1978; 23
1969; 3
2003; 6
1993; 32
2013; 118
2014; 59
1988; 331
1984
2014; 162
1982
1981; 39
1994; 39
1997; 390
2014; 164
2006; 441
2001; 440
1989; 2
1980; 25
1995; 50
1987; 53
1986; 92
1991; 36
2011; 2
2006; 51
1986; 96
2010
2004; 49
2015; 10
1998
2010; 122
2013; 90
1981; 68
2008; 53
1992; 38
2007; 54
1998; 377
2009; 457
2012; 109
2004; 431
2001; 83
1990; 116
2011; 108
2004; 51
2007; 315
2006a; 51
2004; 18
2015; 116
2006; 43
2005; 96
1988; 22
2005; 52
2001; 37
2012; 48
2005; 50
2012; 46
2007; 43
1998; 4
References_xml – reference: de Winter, J. C. F. 2013. Using the Student's t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 18: 1-12.
– reference: Strzepek, R. F., and P. J. Harrison. 2004. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431: 689-692. doi:10.1038/nature02954
– reference: Boyd, P. W., and E. R. Abraham. 2001. Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep-Sea Res. II 48: 2529-2550. doi:10.1016/S0967-0645(01)00007-8
– reference: Raven, J. 1990. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol. 116: 1-18.
– reference: Veldhuis, M. J. W., and G. W. Kraay. 2004. Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition. Deep-Sea Res. I 51: 507-530. doi:10.1016/j.dsr.2003.12.002
– reference: Vaulot, D. 1989. CYTOPC: Processing software for flow cytometric data. Signal Noise 2: 8.
– reference: Frost, B. W. 1987. Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39: 49-68. doi:10.3354/meps039049
– reference: Peers, G., S. A. Quesnel, and N. M. Price. 2005. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr. 50: 1149-1158. doi:10.4319/lo.2005.50.4.1149
– reference: Coale, K. H. 1991. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the Subarctic Pacific. Limnol. Oceanogr. 36: 1851-1864. doi:10.4319/lo.1991.36.8.1851
– reference: Walsh, M. J., and B. A. Ahner. 2013. Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes. J. Inorg. Biochem. 128: 112-123. doi:10.1016/j.jinorgbio.2013.07.012
– reference: Whitney, F. A., and H. J. Freeland. 1999. Variability in upper-ocean water properties in the NE Pacific Ocean. Deep-Sea Res. II 46: 2351-2370. doi:10.1016/S0967-0645(99)00067-3
– reference: Razali, N. M., and Y. B. Wah. 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2: 21-33.
– reference: Coale, K.H., Bruland, K.W., 1988. Copper complexation in the northeast Pacific. Limnol. Oceanogr. 33, 1084-1101. doi:10.4319/lo.1988.33.5.1084
– reference: Moore, J. K., S. C. Doney, and K. Lindsay. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles 18: GB4028. doi:10.1029/2004GB002220
– reference: Shaked, Y., A. B. Kustka, and F. M. M. Morel. 2005. A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol. Oceanogr. 50: 872-882. doi:10.4319/lo.2005.50.3.0872
– reference: Sunda, W. G., and S. A. Huntsman. 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50: 189-206.
– reference: Heller, M. I., and P. L. Croot. 2015. Copper speciation and distribution in the Atlantic sector of the Southern Ocean. Mar. Chem. 173: 253-268. doi:10.1016/j.marchem.2014.09.017
– reference: Maldonado, M. T., P. W. Boyd, P. J. Harrison, and N. M. Price. 1999. Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean. Deep-Sea Res. II 46: 2475-2485. doi:10.1016/S0967-0645(99)00072-7
– reference: Sunda, W. G., and R. R. L. Guillard. 1976. Relationship between cupric ion activity and toxicity of copper to phytoplankton. J. Mar. Res. 34: 511-529.
– reference: Zamzow, H., K. H. Coale, K. S. Johnson, and C. M. Sakamoto. 1998. Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection. Anal. Chim. Acta 377: 133-144. doi:10.1016/S0003-2670(98)00618-7
– reference: Jackson, G. A., and J. J. Morgan. 1978. Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. Limnol. Oceanogr. 23: 268-282. doi:10.4319/lo.1978.23.2.0268
– reference: Marchetti, A., M. T. Maldonado, E. S. Lane, and P. J. Harrison. 2006a. Iron requirements of the pennate diatom Pseudo-nitzschia: Comparison of oceanic (high-nitrate, low-chlorophyll waters) and coastal species. Limnol. Oceanogr. 51: 2092-2101. doi:10.4319/lo.2006.51.5.2092
– reference: Schlosser, C., and P. L. Croot. 2008. Application of cross-flow filtration for determining the solubility of iron species in open ocean seawater. Limnol. Oceanogr.: Methods 6: 630-642. doi:10.4319/lom.2008.6.630
– reference: Taylor, R. L., D. M. Semeniuk, C. D. Payne, J. Zhou, J.-É. Tremblay, J. T. Cullen, and M.T. Maldonado. 2013. Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer. J. Geophys. Res. Oceans 118: 1-17. doi:10.1002/jgrc.20244
– reference: Barber, R. T., and J. H. Ryther. 1969. Organic chelators: Factors affecting primary production in the Cromwell Current upwelling. J. Exp. Mar. Biol. Ecol. 3: 191-199. doi:10.1016/0022-0981(69)90017-3
– reference: Guo, J., S. Lapi, T. J. Ruth, and M. T. Maldonado. 2012. The effects of iron and copper availability on the copper stoichiometry of marine phytoplankton. J. Phycol. 48: 312-325. doi:10.1111/j.1529-8817.2012.01133.x
– reference: Maldonado, M.T., and N.M. Price. 2000. Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol. Oceanogr. 45, 814-826. doi:10.4319/lo.2000.45.4.0814
– reference: Moffett, J. W., and C. Dupont. 2007. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea. Deep-Sea Res. I 54: 586-595. doi:10.1016/j.dsr.2006.12.013
– reference: Lee, S., and J. A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microb. 53: 1298-1303.
– reference: Bundy, R. M., K. A. Barbeau, and K. N. Buck. 2013. Sources of strong copper-binding ligands in Antarctic Peninsula surface waters. Deep-Sea Res. II 90: 134-146. doi:10.1016/j.dsr2.2012.07.023
– reference: Jacquot, J. E., and J. W. Moffet. 2015. Copper distribution and speciation across the International GEOTRACES Section GA03. Mar. Chem. 116: 187-207. doi:10.1016/j.dsr2.2014.11.013
– reference: Leal, M. F. C., and C. M. G. van den Berg. 1998. Evidence for strong copper(I) complexation by organic ligands in seawater. Aquat. Geochem. 4: 49-75. doi:10.1023/A:1009653002399
– reference: Maldonado, M. T., and N. M. Price. 2001. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J. Phycol. 37: 298-309. doi:10.1046/j.1529-8817.2001.037002298.x
– reference: Booth, B. C., J. Lewin, and J. R. Postel. 1993. Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctic Pacific. Prog. Oceanogr. 32: 57-99. doi:10.1016/0079-6611(93)90009-3
– reference: Lohan, M. C., D. W. Crawford, D. A. Purdie, and P. J. Statham. 2005. Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth. Limnol. Oceanogr. 50: 1427-1437. doi:10.4319/lo.2005.50.5.1427
– reference: Aristilde, L., Y. Xu, and F. M. M. Morel. 2012. Weak organic ligands enhance zinc uptake in marine phytoplankton. Environ. Sci. Technol. 46: 5438-5445. doi:10.1021/es300335u
– reference: Maldonado, M. T., A. E. Allen, J. S. Chong, K. Lin, D. Leus, N. Karpenko, and S. Harris. 2006. Copper-dependent iron transport in coastal and oceanic diatoms. Limnol. Oceanogr. 51: 1729-1743. doi:10.4319/lo.2006.51.4.1729
– reference: Stoecker, D. K., W. G. Sunda, and L. H. Davis. 1986. Effects of copper and zinc on two planktonic ciliates. Mar. Biol. 92: 21-29. doi:10.1007/BF00392741
– reference: Iwade, S., K. Kuma, Y. Isoda, M. Yoshida, I. Kudo, J. Nishioka, and K. Suzuki. 2006. Effect of high iron concentrations on iron uptake and growth of a coastal diatom Chaetoceros sociale. Aquat. Microb. Ecol. 43: 177-191. doi:10.3354/ame043177
– reference: Greene, R. M., R. J. Geider, and P. G. Falkowski. 1991. Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36: 1772-1782. doi:10.4319/lo.1991.36.8.1772
– reference: Geider, R. J. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytol. 106: 1-34. doi:10.1111/j.1469-8137.1987.tb04788.x
– reference: Mélançon, J., and others. 2014. Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization. Limnol. Oceanogr. 59: 55-67. doi:10.4319/lo.2014.59.1.0055
– reference: Boyd, P. W., and others. 2007. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science 315: 612-617. doi:10.1126/science.1131669
– reference: Jacquot, J. E., and others. 2014. Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary. Mar. Chem. 162: 37-49. doi:10.1016/j.marchem.2014.02.002
– reference: Peers, G., and N. M. Price. 2006. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441: 341-344. doi:10.1038/nature04630
– reference: Buck, K. N., and K. W. Bruland. 2005. Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows. Mar. Chem. 96: 185-198. doi:10.1016/j.marchem.2005.01.001
– reference: Geider, R. J., and J. La Roche. 1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosyn. Res. 39: 275-301. doi:10.1007/BF00014588
– reference: Jacquot, J. E., Y. Kondo, A. N. Knapp, and J. W. Moffett. 2013. The speciation of copper across active gradients in nitrogen-cycle processes in the eastern tropical South Pacific. Limnol. Oceanogr. 58: 1387-1394. doi:10.4319/lo.2013.58.4.1387
– reference: Miller, C. B., B. W. Frost, P. A. Wheeler, M. R. Landry, N. Welschmeyer, and T. M. Powell. 1991. Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem. Limnol. Oceanogr. 36: 1600-1615. doi:10.4319/lo.1991.36.8.1600
– reference: Monzyk, B., and A. L. Crumbliss. 1982. Kinetics of mechanism of the stepwise dissociation of Fe(III) from ferrioxamine B in aqueous acid. J. Am. Chem. Soc. 104: 4921-4929. doi:10.1021/ja00382a031
– reference: Laws, E. A., and Bannister, T. T. 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25: 457-473.
– reference: Sunda, W. G., and S. A. Huntsman. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390: 389-392. doi:10.1038/37093
– reference: Hudson, R. J. M., and F. M. M. Morel. 1989. Distinguishing between extra- and intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34: 1113-1120. doi:10.4319/lo.1989.34.6.1113
– reference: Marchetti, A., N. D. Sherry, H. Kiyosama, A. Tsuda, and P. J. Harrison. 2006b. Phytoplankton processes during a mesoscale iron environment in the NE subarctic Pacific: Part I-biomass and assemblage. Deep-Sea Res. II 53: 2095-2113. doi:10.1016/j.dsr2.2006.05.038
– reference: Sunda, W. G., and J. A. M. Lewis. 1978. Effect of complexation by natural organic ligands on the toxicity of cooper to a unicellular alga, Monochrysis lutheri. Limnol. Oceanogr. 23: 870-876. doi:10.4319/lo.1978.23.5.0870
– reference: Farkas, E., É. A. Enyedy, and I. Fábián. 2003. New insight into the oxidation of Fe(II) by desferrioxamine B (DFB): Spectrophotometric and capillary electrophoresis (CE) study. Inorg. Chem. Commun. 6: 131-134. doi:10.1016/S1387-7003(02)00703-7
– reference: Miller, C. B. 1993. Pelagic production processes in the Subarctic Pacific. Prog. Oceanogr. 32: 10-15. doi:10.1016/0079-6611(93)90007-Z
– reference: Kustka, A. B., A. E. Allen, and F. M. M. Morel. 2007. Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J. Phycol. 43: 715-729. doi:10.1111/j.1529-8817.2007.00359.x
– reference: Semeniuk, D. M., J. T. Cullen, W. K. Johnson, K. Gagnon, T. J. Ruth, and M. T. Maldonado. 2009. Plankton copper requirements and uptake in the subarctic Northeast Pacific Ocean. Deep-Sea Res. I 56: 1130-1142. doi:10.1016/j.dsr.2009.03.003
– reference: Hoppe, C. J. M., C. S. Hassler, C. D. Payne, P. D. Tortell, B. Rost, and S. Trimborn. 2013. Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities. PLoS ONE 8. doi:10.1371/journal.pone.0079890
– reference: Hering, J. G., and F. M. M. Morel. 1988. Kinetics of trace metal complexation: Role of alkaline-earth metals. Enrivon. Sci. Technol. 22: 1469-1478. doi:10.1021/es00177a014
– reference: Lombardi, A. T., and M. T. Maldonado. 2011. The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynth. Res. 108: 77-87. doi:10.1007/s11120-011-9655-z
– reference: Marchetti, A., and others. 2009. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457: 467-470. doi:10.1038/nature07539
– reference: Martin, J. H., and S. E. Fitzwater. 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331: 341-343. doi:10.1038/331341a0
– reference: Farkas, E., E. A. Enyedy, L. Zekany, and G. Deak. 2001. Interaction between iron(II) and hydroxamic acids: Oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. J. Inorg. Biochem. 83: 107-114. doi:10.1016/S0162-0134(00)00197-5
– reference: Marchetti, A., and others. 2012. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl. Acad. Sci. 109: E317-325. doi:10.1073/pnas.1118408109
– reference: Kustka, A. B., B. M. Jones, M. Hatta, M. P. Field, and A. J. Milligan. 2015. The influence of iron and siderophores on eukaryotic phytoplankton growth rates and community composition in the Ross Sea. Mar. Chem. 173: 195-207. doi:10.1016/j.marchem.2014.12.002
– reference: Falkowski, P. G., T. G. Owens, A. C. Ley, and D. C. Mauzerall. 1981. Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Plant Physiol. 68: 969-973. doi:10.1104/pp.68.4.969
– reference: Johnson, W. K., L. A. Miller, N. E. Sutherland, and C. S. Wong. 2005. Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep-Sea Res. II 52: 933-953. doi:10.1016/j.dsr2.2004.08.017
– reference: Schuback, N., C. Schallenberg, C. Duckham, M. T. Maldonado, and P. D. Tortell. 2015. Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. PLoS ONE 10: e0133235. doi:10.1371/journal.pone.0133235
– reference: Achterberg, E. P., C. B. Braungardt, R. C. Sandford, and P. J. Worsfold. 2001. UV digestion of seawater samples prior to the determination of copper using flow injection with chemiluminescence detection. Anal. Chim. Acta 440: 27-36. doi:10.1016/S0003-2670(01)00824-8
– reference: Brand, L. E., W. G. Sunda, and R. R. L. Guillard. 1986. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96: 225-250. doi:10.1016/0022-0981(86)90205-4
– reference: Maldonado, M. T., and others. 2001. Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment. Limnol. Oceanogr. 46: 1802-1808. doi:10.4319/lo.2001.46.7.1802
– reference: Moore, C. M., and others. 2006. Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol. Oceanogr. 51: 936-949. doi:10.4319/lo.2006.51.2.0936
– reference: Wells, M. L., C. G. Trick, W. P. Cochlan, M. P. Hughes, and V. L. Trainer. 2005. Domoic acid: The synergy of iron, copper, and the toxicity of diatoms. Limnol. Oceanogr. 50: 1908-1917. doi:10.4319/lo.2005.50.6.1908
– reference: Maldonado, M.T., and N.M. Price. 1999. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep-Sea Res. II 46, 2447-2473. doi:10.1016/S0967-0645(99)00071-5
– reference: Sunda, W. G., and S. A. Huntsman. 2004. Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom. Limnol. Oceanogr. 49: 1741-1753. doi:10.4319/lo.2004.49.5.1742
– reference: Buck, K. N., K. E. Selph, and K. A. Barbeau. 2010. Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean. Mar. Chem. 122: 148-159. doi:10.1016/j.marchem.2010.06.002
– reference: La Roche, J., P. W. Boyd, R. M. L. McKay, and R. J. Geider. 1996. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382: 802-805. doi:10.1038/382802a0
– reference: Öztuna, D., A. H. Elhan, and E. Tüccar. 2006. Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turk. J. Med. Sci. 36: 171-176.
– reference: Hudson, R. J., D. T. Covault, and F. M. M. Morel. 1992. Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes. Mar. Chem. 38: 209-235. doi:10.1016/0304-4203(92)90035-9
– reference: Cheah, S.-F., S. M. Kraemer, J. Cervini-Silva, and G. Sposito. 2003. Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: Implications for the microbial acquisition of iron. Chem. Geol. 198: 63-75. doi:10.1016/S0009-2541(02)00421-7
– reference: Semeniuk, D. M., R. M. Bundy, C. D. Payne, K. A. Barbeau, and M. T. Maldonado. 2015. Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Mar. Chem. 173: 222-233. doi:10.1016/j.marchem.2015.01.005
– reference: Maldonado, M. T., and N. M. Price. 1996. Influence of N substrate on Fe requirements of marine centric diatoms. Mar. Ecol. Prog. Ser. 141: 161-172. doi:10.3354/meps141161
– reference: Parsons, T. R., Y. Maita, and C. M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis, 201 pp. Pergamon Press.
– reference: Annett, A. L., S. Lapi, T. J. Ruth, and M. T. Maldonado. 2008. The effects of Cu and Fe availability on the growth and Cu:C ratios of marine diatoms. Limnol. Oceanogr. 53: 2451-2461. doi:10.4319/lo.2008.53.6.2451
– reference: Thompson, C. M., M. J. Ellwood, and S. G. Sander. 2014. Dissolved copper speciation in the Tasman Sea, SW Pacific Ocean. Mar. Chem. 164: 84-94. doi:10.1016/j.marchem.2014.06.003
– reference: Sunda, W. G., R. T. Barber, and S. A. Hunstman. 1981. Phytoplankton growth in nutrient rich seawater: Important of copper-manganese cellular interactions. J. Mar. Res. 39: 567-587.
– volume: 43
  start-page: 177
  year: 2006
  end-page: 191
  article-title: Effect of high iron concentrations on iron uptake and growth of a coastal diatom
  publication-title: Aquat. Microb. Ecol.
– volume: 382
  start-page: 802
  year: 1996
  end-page: 805
  article-title: Flavodoxin as an in situ marker for iron stress in phytoplankton
  publication-title: Nature
– start-page: 321
  year: 1973
  end-page: 338
– start-page: 239
  year: 1998
  end-page: 327
– volume: 50
  start-page: 1427
  year: 2005
  end-page: 1437
  article-title: Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth
  publication-title: Limnol. Oceanogr.
– volume: 46
  start-page: 1802
  year: 2001
  end-page: 1808
  article-title: Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment
  publication-title: Limnol. Oceanogr.
– volume: 51
  start-page: 507
  year: 2004
  end-page: 530
  article-title: Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition
  publication-title: Deep‐Sea Res. I
– volume: 6
  start-page: 131
  year: 2003
  end-page: 134
  article-title: New insight into the oxidation of Fe(II) by desferrioxamine B (DFB): Spectrophotometric and capillary electrophoresis (CE) study
  publication-title: Inorg. Chem. Commun.
– volume: 198
  start-page: 63
  year: 2003
  end-page: 75
  article-title: Steady‐state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: Implications for the microbial acquisition of iron
  publication-title: Chem. Geol.
– volume: 3
  start-page: 191
  year: 1969
  end-page: 199
  article-title: Organic chelators: Factors affecting primary production in the Cromwell Current upwelling
  publication-title: J. Exp. Mar. Biol. Ecol.
– volume: 2
  start-page: 21
  year: 2011
  end-page: 33
  article-title: Power comparisons of Shapiro‐Wilk, Kolmogorov‐Smirnov, Lilliefors and Anderson‐Darling tests
  publication-title: J. Stat. Model. Anal.
– volume: 90
  start-page: 134
  year: 2013
  end-page: 146
  article-title: Sources of strong copper‐binding ligands in Antarctic Peninsula surface waters
  publication-title: Deep‐Sea Res. II
– volume: 431
  start-page: 689
  year: 2004
  end-page: 692
  article-title: Photosynthetic architecture differs in coastal and oceanic diatoms
  publication-title: Nature
– volume: 50
  start-page: 1908
  year: 2005
  end-page: 1917
  article-title: Domoic acid: The synergy of iron, copper, and the toxicity of diatoms
  publication-title: Limnol. Oceanogr.
– volume: 32
  start-page: 10
  year: 1993
  end-page: 15
  article-title: Pelagic production processes in the Subarctic Pacific
  publication-title: Prog. Oceanogr.
– volume: 390
  start-page: 389
  year: 1997
  end-page: 392
  article-title: Interrelated influence of iron, light and cell size on marine phytoplankton growth
  publication-title: Nature
– volume: 6
  start-page: 630
  year: 2008
  end-page: 642
  article-title: Application of cross‐flow filtration for determining the solubility of iron species in open ocean seawater
  publication-title: Limnol. Oceanogr.: Methods
– volume: 59
  start-page: 55
  year: 2014
  end-page: 67
  article-title: Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization
  publication-title: Limnol. Oceanogr.
– volume: 48
  start-page: 312
  year: 2012
  end-page: 325
  article-title: The effects of iron and copper availability on the copper stoichiometry of marine phytoplankton
  publication-title: J. Phycol.
– volume: 56
  start-page: 1130
  year: 2009
  end-page: 1142
  article-title: Plankton copper requirements and uptake in the subarctic Northeast Pacific Ocean
  publication-title: Deep‐Sea Res. I
– volume: 50
  start-page: 872
  year: 2005
  end-page: 882
  article-title: A general kinetic model for iron acquisition by eukaryotic phytoplankton
  publication-title: Limnol. Oceanogr.
– volume: 37
  start-page: 298
  year: 2001
  end-page: 309
  article-title: Reduction and transport of organically bound iron by (Bacillariophyceae)
  publication-title: J. Phycol.
– volume: 2
  start-page: 8
  year: 1989
  article-title: CYTOPC: Processing software for flow cytometric data
  publication-title: Signal Noise
– volume: 440
  start-page: 27
  year: 2001
  end-page: 36
  article-title: UV digestion of seawater samples prior to the determination of copper using flow injection with chemiluminescence detection
  publication-title: Anal. Chim. Acta
– volume: 34
  start-page: 1113
  year: 1989
  end-page: 1120
  article-title: Distinguishing between extra‐ and intracellular iron in marine phytoplankton
  publication-title: Limnol. Oceanogr.
– volume: 109
  start-page: E317
  year: 2012
  end-page: 325
  article-title: Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability
  publication-title: Proc. Natl. Acad. Sci.
– volume: 23
  start-page: 268
  year: 1978
  end-page: 282
  article-title: Trace metal‐chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations
  publication-title: Limnol. Oceanogr.
– volume: 52
  start-page: 933
  year: 2005
  end-page: 953
  article-title: Iron transport by mesoscale Haida eddies in the Gulf of Alaska
  publication-title: Deep‐Sea Res. II
– year: 1982
– volume: 173
  start-page: 195
  year: 2015
  end-page: 207
  article-title: The influence of iron and siderophores on eukaryotic phytoplankton growth rates and community composition in the Ross Sea
  publication-title: Mar. Chem.
– volume: 162
  start-page: 37
  year: 2014
  end-page: 49
  article-title: Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary
  publication-title: Mar. Chem.
– volume: 18
  start-page: GB4028
  year: 2004
  article-title: Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model
  publication-title: Global Biogeochem. Cycles
– volume: 50
  start-page: 1149
  year: 2005
  end-page: 1158
  article-title: Copper requirements for iron acquisition and growth of coastal and oceanic diatoms
  publication-title: Limnol. Oceanogr.
– volume: 92
  start-page: 21
  year: 1986
  end-page: 29
  article-title: Effects of copper and zinc on two planktonic ciliates
  publication-title: Mar. Biol.
– volume: 23
  start-page: 870
  year: 1978
  end-page: 876
  article-title: Effect of complexation by natural organic ligands on the toxicity of cooper to a unicellular alga,
  publication-title: Limnol. Oceanogr.
– volume: 49
  start-page: 1741
  year: 2004
  end-page: 1753
  article-title: Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom
  publication-title: Limnol. Oceanogr.
– volume: 8
  year: 2013
  article-title: Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities
  publication-title: PLoS ONE
– volume: 141
  start-page: 161
  year: 1996
  end-page: 172
  article-title: Influence of N substrate on Fe requirements of marine centric diatoms
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 51
  start-page: 2092
  year: 2006a
  end-page: 2101
  article-title: Iron requirements of the pennate diatom : Comparison of oceanic (high‐nitrate, low‐chlorophyll waters) and coastal species
  publication-title: Limnol. Oceanogr.
– volume: 108
  start-page: 77
  year: 2011
  end-page: 87
  article-title: The effects of copper on the photosynthetic response of
  publication-title: Photosynth. Res.
– volume: 46
  start-page: 2351
  year: 1999
  end-page: 2370
  article-title: Variability in upper‐ocean water properties in the NE Pacific Ocean
  publication-title: Deep‐Sea Res. II
– volume: 58
  start-page: 1387
  year: 2013
  end-page: 1394
  article-title: The speciation of copper across active gradients in nitrogen‐cycle processes in the eastern tropical South Pacific
  publication-title: Limnol. Oceanogr.
– volume: 104
  start-page: 4921
  year: 1982
  end-page: 4929
  article-title: Kinetics of mechanism of the stepwise dissociation of Fe(III) from ferrioxamine B in aqueous acid
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 209
  year: 1992
  end-page: 235
  article-title: Investigations of iron coordination and redox reactions in seawater using Fe radiometry and ion‐pair solvent extraction of amphiphilic iron complexes
  publication-title: Mar. Chem.
– volume: 10
  start-page: e0133235
  year: 2015
  article-title: Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO ‐assimilation in marine phytoplankton
  publication-title: PLoS ONE
– volume: 106
  start-page: 1
  year: 1987
  end-page: 34
  article-title: Light and temperature dependence of the carbon to chlorophyll ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton
  publication-title: New Phytol.
– volume: 33
  start-page: 1084
  year: 1988
  end-page: 1101
  article-title: Copper complexation in the northeast Pacific
  publication-title: Limnol. Oceanogr
– volume: 68
  start-page: 969
  year: 1981
  end-page: 973
  article-title: Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton
  publication-title: Plant Physiol.
– volume: 36
  start-page: 1772
  year: 1991
  end-page: 1782
  article-title: Effect of iron limitation on photosynthesis in a marine diatom
  publication-title: Limnol. Oceanogr.
– volume: 34
  start-page: 511
  year: 1976
  end-page: 529
  article-title: Relationship between cupric ion activity and toxicity of copper to phytoplankton
  publication-title: J. Mar. Res.
– volume: 32
  start-page: 57
  year: 1993
  end-page: 99
  article-title: Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctic Pacific
  publication-title: Prog. Oceanogr.
– volume: 116
  start-page: 1
  year: 1990
  end-page: 18
  article-title: Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway
  publication-title: New Phytol.
– volume: 377
  start-page: 133
  year: 1998
  end-page: 144
  article-title: Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection
  publication-title: Anal. Chim. Acta
– volume: 96
  start-page: 225
  year: 1986
  end-page: 250
  article-title: Reduction of marine phytoplankton reproduction rates by copper and cadmium
  publication-title: J. Exp. Mar. Biol. Ecol.
– volume: 39
  start-page: 275
  year: 1994
  end-page: 301
  article-title: The role of iron in phytoplankton photosynthesis, and the potential for iron‐limitation of primary productivity in the sea
  publication-title: Photosyn. Res.
– volume: 457
  start-page: 467
  year: 2009
  end-page: 470
  article-title: Ferritin is used for iron storage in bloom‐forming marine pennate diatoms
  publication-title: Nature
– volume: 36
  start-page: 1851
  year: 1991
  end-page: 1864
  article-title: Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the Subarctic Pacific
  publication-title: Limnol. Oceanogr.
– volume: 22
  start-page: 1469
  year: 1988
  end-page: 1478
  article-title: Kinetics of trace metal complexation: Role of alkaline‐earth metals
  publication-title: Enrivon. Sci. Technol.
– volume: 53
  start-page: 2451
  year: 2008
  end-page: 2461
  article-title: The effects of Cu and Fe availability on the growth and Cu:C ratios of marine diatoms
  publication-title: Limnol. Oceanogr.
– volume: 18
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Using the Student's ‐test with extremely small sample sizes
  publication-title: Pract. Assess. Res. Eval.
– volume: 441
  start-page: 341
  year: 2006
  end-page: 344
  article-title: Copper‐containing plastocyanin used for electron transport by an oceanic diatom
  publication-title: Nature
– volume: 315
  start-page: 612
  year: 2007
  end-page: 617
  article-title: Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions
  publication-title: Science
– volume: 25
  start-page: 457
  year: 1980
  end-page: 473
  article-title: Nutrient‐ and light‐limited growth of in continuous culture, with implications for phytoplankton growth in the ocean
  publication-title: Limnol. Oceanogr
– volume: 53
  start-page: 2095
  year: 2006b
  end-page: 2113
  article-title: Phytoplankton processes during a mesoscale iron environment in the NE subarctic Pacific: Part I—biomass and assemblage
  publication-title: Deep‐Sea Res. II
– volume: 36
  start-page: 1600
  year: 1991
  end-page: 1615
  article-title: Ecological dynamics in the subarctic Pacific, a possibly iron‐limited ecosystem
  publication-title: Limnol. Oceanogr.
– volume: 36
  start-page: 171
  year: 2006
  end-page: 176
  article-title: Investigation of four different normality tests in terms of type 1 error rate and power under different distributions
  publication-title: Turk. J. Med. Sci.
– volume: 43
  start-page: 715
  year: 2007
  end-page: 729
  article-title: Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms
  publication-title: J. Phycol.
– volume: 46
  start-page: 2475
  year: 1999
  end-page: 2485
  article-title: Co‐limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean
  publication-title: Deep‐Sea Res. II
– volume: 173
  start-page: 222
  year: 2015
  end-page: 233
  article-title: Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean
  publication-title: Mar. Chem.
– volume: 4
  start-page: 49
  year: 1998
  end-page: 75
  article-title: Evidence for strong copper(I) complexation by organic ligands in seawater
  publication-title: Aquat. Geochem.
– volume: 50
  start-page: 189
  year: 1995
  end-page: 206
  article-title: Iron uptake and growth limitation in oceanic and coastal phytoplankton
  publication-title: Mar. Chem.
– volume: 46
  start-page: 2447
  year: 1999
  end-page: 2473
  article-title: Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean
  publication-title: Deep‐Sea Res. II
– volume: 331
  start-page: 341
  year: 1988
  end-page: 343
  article-title: Iron deficiency limits phytoplankton growth in the north‐east Pacific subarctic
  publication-title: Nature
– year: 2010
– start-page: 201
  year: 1984
– volume: 96
  start-page: 185
  year: 2005
  end-page: 198
  article-title: Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows
  publication-title: Mar. Chem.
– volume: 53
  start-page: 1298
  year: 1987
  end-page: 1303
  article-title: Relationships between biovolume and biomass of naturally derived marine bacterioplankton
  publication-title: Appl. Environ. Microb.
– volume: 54
  start-page: 586
  year: 2007
  end-page: 595
  article-title: Cu complexation by organic ligands in the sub‐arctic NW Pacific and Bering Sea
  publication-title: Deep‐Sea Res. I
– volume: 48
  start-page: 2529
  year: 2001
  end-page: 2550
  article-title: Iron‐mediated changes in phytoplankton photosynthetic competence during SOIREE
  publication-title: Deep‐Sea Res. II
– volume: 51
  start-page: 1729
  year: 2006
  end-page: 1743
  article-title: Copper‐dependent iron transport in coastal and oceanic diatoms
  publication-title: Limnol. Oceanogr.
– volume: 39
  start-page: 49
  year: 1987
  end-page: 68
  article-title: Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods spp
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 46
  start-page: 5438
  year: 2012
  end-page: 5445
  article-title: Weak organic ligands enhance zinc uptake in marine phytoplankton
  publication-title: Environ. Sci. Technol.
– volume: 83
  start-page: 107
  year: 2001
  end-page: 114
  article-title: Interaction between iron(II) and hydroxamic acids: Oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions
  publication-title: J. Inorg. Biochem.
– volume: 128
  start-page: 112
  year: 2013
  end-page: 123
  article-title: Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes
  publication-title: J. Inorg. Biochem.
– volume: 45
  start-page: 814
  year: 2000
  end-page: 826
  article-title: Nitrate regulation of Fe reduction and transport by Fe‐limited Thalassiosira oceanica
  publication-title: Limnol. Oceanogr
– volume: 164
  start-page: 84
  year: 2014
  end-page: 94
  article-title: Dissolved copper speciation in the Tasman Sea, SW Pacific Ocean
  publication-title: Mar. Chem.
– volume: 122
  start-page: 148
  year: 2010
  end-page: 159
  article-title: Iron‐binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean
  publication-title: Mar. Chem.
– volume: 51
  start-page: 936
  year: 2006
  end-page: 949
  article-title: Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea
  publication-title: Limnol. Oceanogr.
– volume: 39
  start-page: 567
  year: 1981
  end-page: 587
  article-title: Phytoplankton growth in nutrient rich seawater: Important of copper‐manganese cellular interactions
  publication-title: J. Mar. Res.
– volume: 173
  start-page: 253
  year: 2015
  end-page: 268
  article-title: Copper speciation and distribution in the Atlantic sector of the Southern Ocean
  publication-title: Mar. Chem.
– volume: 116
  start-page: 187
  year: 2015
  end-page: 207
  article-title: Copper distribution and speciation across the International GEOTRACES Section GA03
  publication-title: Mar. Chem.
– volume: 118
  start-page: 1
  year: 2013
  end-page: 17
  article-title: Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer
  publication-title: J. Geophys. Res. Oceans
SSID ssj0009555
Score 2.2642772
Snippet In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the...
SourceID proquest
wiley
jstor
istex
SourceType Aggregation Database
Publisher
StartPage 279
SubjectTerms Marine
Title Iron-copper interactions in iron-limited phytoplankton in the northeast subarctic Pacific Ocean
URI https://api.istex.fr/ark:/67375/WNG-N1307QVW-N/fulltext.pdf
https://www.jstor.org/stable/26628413
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flno.10210
https://www.proquest.com/docview/1780505204
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1dS8MwFA2yvYggfg3nFxFEfAlr07RdH4c4dcwOwbm9hTRNQTbS0m3go__Bf-gv8SbtxnzwraUNofemvae5556L0I2gsitF4JAEwC1hNEyJcAQjPkulCuF3zGOmOPklDp7GbDD1pzWJZlHTKi0v0GbxASAlc9WBIAJfUdObtgnh2If3rznox73hlrquX7UqoIx4fuSsJYQc2pnr3MgTmArZpjHc55p4-AdSbgNTG1n6B2i_hoS4V_nwEO0ofYT2RlIJXetJHyPxXOb65-tb5kWhSmxEHsqqJGEBJ9jUqpF5VauEYcAyL-ZCzwDXmauA8bA2-RnTpwcvVgksbpgL14Q8bKc6QeP-w9v9E6m7I5APBo9IsjDzqMxYCKDJc1NHJkpEPk0kNe2kRSYCmcjIzdyUOWkkGWWpryRlXgqgJwUntFBD51qdIuxEWdL1BFNW_y9igMqUFArCViYDVwRtdGtNx4tKAYOLcmYIYaHPJ_EjjyEOhq_vEx63UcvadnPj2nNtdL02Nof1a5ISQqt8teCuaapgyDisje6sFzaDK0VlysGF3LqQD-ORPTj7b55ztAuIpt4juUCNZblSl4AalslVvWZ-AdX6wCk
linkProvider JSTOR
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bS8MwFA7iHhRBvOK8RhDxJaxN09Y-ijg3nR2Cl72FNE1BNtLSbuCj_8F_6C_xJO3GfPCtpQmh54SeLz3f-Q5CF4LKaykChyQAbgmjYUqEIxjxWSpVCMcxj5ni5Kc46L2yh5E_akg0VUOrtLxAm8UHgJRMVAeCCHxFTW_alindhjNW66Eb3wyW1HX9ulUBZcTzI2cuIeTQzkTnRp7AVMi2jOE-58TDP5ByGZjayNLdQpsNJMQ3tQ-30YrSO2hjKJXQjZ70LhL9Mtc_X98yLwpVYiPyUNYlCRXcYFOrRiZ1rRKGCdO8mAg9BlxnngLGw9rkZ0yfHlzNEtjcsBZuCHnYLrWHXrt3L7c90nRHIB8MXpFkYeZRmbEQQJPnpo5MlIh8mkhq2kmLTAQykZGbuSlz0kgyylJfScq8FEBPCk7YR6s61-oAYSfKkmtPMGX1_yIGqExJoSBsZTJwRdBGl9Z0vKgVMLgox4YQFvr8Pb7nMcTB8PntncdttG9tuxg491wbnc-NzWH_mqSE0CqfVdw1TRUMGYe10ZX1wmJyrahMObiQWxfyQTy0F4f_rXOG1novTwM-6MePR2gd0E3zv-QYrU7LmToBBDFNTpv98wsGUcMZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8QwEA7igoggPnF9RhDxErZN09YeRV1XXauCr1tIkxRkl7R0d8Gj_8F_6C9xknYXPXhracPQmWnna2bmG4SOBJWnUkQeyQDcEkZjRYQnGAmZkjqG37GA2ebkuzTqPbObt_CtIYseNWWVri7QZfEBIGVD3SlV3oFAAl9SO5-2Zdu34R1s3XTTs_4vht2wHldAGQnCxJvSCHm0MzSFpSiwXbItq7yPafHhH1j5G5y66NJdQcsNLMRntR1X0Zw2a2jpXmphGk7pdSSuq8J8f37Joix1hS3RQ1W3JYzgBNt-NTKs-5UwLBgX5VCYAWA7exVwHjY2R2Nn9eDRJAMHB1m4KcrDTtQGeu5ePp33SDMhgbwzeESSx3lAZc5iAE6BrzyZaZGENJPUjpQWuYhkJhM_9xXzVCIZZSrUkrJAAfBRYIhNNG8Ko7cQ9pI8Ow0E044DMGGAzLQUGkJXLiNfRG107FTHy5oFg4tqYIvC4pC_plc8hVgYP7688rSNNp1uZzdOLddGh1Nlc_Bhm5gQRheTEfftYAVbkMPa6MRZYba4ZlWmHEzInQl5P713B9v_yTlACw8XXd6_Tm930CIAnGbLZBfNj6uJ3gMQMc72G_f5AegtxCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron-copper+interactions+in+iron-limited+phytoplankton+in+the+northeast+subarctic+Pacific+Ocean&rft.jtitle=Limnology+and+oceanography&rft.au=Semeniuk%2C+David+M&rft.au=Taylor%2C+Rebecca+L&rft.au=Bundy%2C+Randelle+M&rft.au=Johnson%2C+WKeith&rft.date=2016-01-01&rft.issn=0024-3590&rft.eissn=1939-5590&rft.volume=61&rft.issue=1&rft.spage=279&rft.epage=297&rft_id=info:doi/10.1002%2Flno.10210&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3590&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3590&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3590&client=summon