Iron-copper interactions in iron-limited phytoplankton in the northeast subarctic Pacific Ocean
In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl...
Saved in:
Published in | Limnology and oceanography Vol. 61; no. 1; pp. 279 - 297 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.01.2016
John Wiley and Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0024-3590 1939-5590 |
DOI | 10.1002/lno.10210 |
Cover
Abstract | In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F
v/F
m), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F
v/F
m at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L−1 CuSO₄ resulted in a short-term increase in F
v/F
m of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 μm), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes. |
---|---|
AbstractList | In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F sub(v)/F sub(m)), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F sub(v)/F sub(m) at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L super(-1) CuSO sub(4) resulted in a short-term increase in F sub(v)/F sub(m) of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 mu m), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes. In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe- and Fe-light co-limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (F v/F m), and Fe uptake rates by the Cu-dependent high-affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and F v/F m at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe-limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu-limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L−1 CuSO₄ resulted in a short-term increase in F v/F m of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 μm), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes. In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the western coast of British Columbia, to investigate Cu physiology in Fe‐ and Fe‐light co‐limited phytoplankton. Chlorophyll a concentrations ([Chl a]), maximum variable fluorescence yield (Fv/Fm), and Fe uptake rates by the Cu‐dependent high‐affinity Fe transport system (HAFeTS) were measured. Additions of Fe resulted in an increase in [Chl a] and Fv/Fm at both stations compared with the controls, regardless of light availability, and confirmed that the phytoplankton communities were Fe‐limited. Uptake of Fe by the HAFeTS in both incubations increased with the addition of Fe, and likely reflects luxury Fe uptake and storage. While the in situ inorganic Cu concentrations were similar to those that can induce Cu‐limitation in laboratory cultures, increasing Cu availability had no effect on biomass accumulation during both incubations, regardless of Fe availability or light regime. At P26, additions of 1 nmol L−1 CuSO4 resulted in a short‐term increase in Fv/Fm of the phytoplankton community, and an increase in Fe uptake rates by large phytoplankton (>5 μm), but only when light was not limiting. These data confirm a complex interaction between light, Fe and Cu physiology in indigenous phytoplankton communities, and suggest that these interactions may be both spatially heterogeneous and different for different phytoplankton size classes. |
Author | Taylor, Rebecca L. Semeniuk, David M. Maldonado, Maria T. Robert, Marie Barbeau, Katherine A. Bundy, Randelle M. Johnson, W. Keith Cullen, Jay T. |
Author_xml | – sequence: 1 givenname: David M. surname: Semeniuk fullname: Semeniuk, David M. email: david.semeniuk@gmail.com organization: Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada – sequence: 2 givenname: Rebecca L. surname: Taylor fullname: Taylor, Rebecca L. organization: Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada – sequence: 3 givenname: Randelle M. surname: Bundy fullname: Bundy, Randelle M. organization: Scripps Institution of Oceanography, University of California San Diego, California, La Jolla – sequence: 4 givenname: W. Keith surname: Johnson fullname: Johnson, W. Keith organization: Institute of Ocean Sciences, Fisheries and Oceans Canada, British Columbia, Sydney, Canada – sequence: 5 givenname: Jay T. surname: Cullen fullname: Cullen, Jay T. organization: School of Earth and Ocean Sciences, University of Victoria, British Columbia, Victoria, Canada – sequence: 6 givenname: Marie surname: Robert fullname: Robert, Marie organization: Institute of Ocean Sciences, Fisheries and Oceans Canada, British Columbia, Sydney, Canada – sequence: 7 givenname: Katherine A. surname: Barbeau fullname: Barbeau, Katherine A. organization: Scripps Institution of Oceanography, University of California San Diego, California, La Jolla – sequence: 8 givenname: Maria T. surname: Maldonado fullname: Maldonado, Maria T. organization: Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada |
BookMark | eNo9kEtLAzEUhYMoWB8Lf4AwSzdjb14zzVJEq1BaBR_LkGYymHaajEmK9t-bOuLqnPCdEy7nBB067wxCFxiuMQAZd85nQzAcoBEWVJScCzhEo8xYSbM_RicxrgBAcM5HSD4G70rt-96EwrpkgtLJehfzo7B71tmNTaYp-o9d8n2n3Dp5t6fpwxTOhywqpiJulyrkqi6elLZt1oU2yp2ho1Z10Zz_6Sl6vb97uX0oZ4vp4-3NrLQsH1W2dUuJblkNE05xA3pplOBkqQlhgqtWVXqpBW5xw6ARmhHWcKMJow0H3gigp-hq-LcP_nNrYpIbG7Xp8r3Gb6PE9QRylADL0fEQ_bKd2ck-2I0KO4lB7heUeUH5u6CczRe_Jjcuh8YqJh_-G6SqyIRhmnk5cBuT-f7nKqxlVdOay_f5VM4xhfr57V3O6Q9xFIF3 |
ContentType | Journal Article |
Copyright | 2015 Association for the Sciences of Limnology and Oceanography |
Copyright_xml | – notice: 2015 Association for the Sciences of Limnology and Oceanography |
DBID | BSCLL 7TN F1W H95 H98 L.G M7N |
DOI | 10.1002/lno.10210 |
DatabaseName | Istex Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Oceanic Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 1939-5590 |
EndPage | 297 |
ExternalDocumentID | LNO10210 26628413 ark_67375_WNG_N1307QVW_N |
Genre | article |
GeographicLocations | Canada, British Columbia INE, Subarctic Pacific |
GeographicLocations_xml | – name: INE, Subarctic Pacific – name: Canada, British Columbia |
GroupedDBID | -~X ..I 0R~ 1OC 2AX 2WC 33P 42X 5GY 85S 8WZ A6W AAESR AAFWJ AAHBH AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANLZ AASGY AAXRX AAYCA AAYJJ AAZKR ABBHK ABCUV ABDPE ABEFU ABPPZ ABPVG ABSQW ABTAH ABXSQ ACAHQ ACCFJ ACCZN ACGFS ACHIC ACKIV ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AETEA AEUPB AEUYR AFBPY AFFPM AFGKR AFWVQ AGHNM AGUYK AGYGG AHBTC AHHXC AHJTV AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AQVQM AUFTA AZFZN AZVAB BFHJK BHBCM BMNLL BMXJE BRXPI BSCLL C1A D0L DCZOG DEVKO DPXWK DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F5P GENNL GODZA H13 HGD HGLYW H~9 IPSME JAAYA JBMMH JBS JEB JENOY JFNAL JHFFW JKQEH JLS JLXEF JPM JST LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MW2 MXFUL MXSTM NHB O66 O9- OK1 P2P P2W RLO RNS ROL SA0 SUPJJ TN5 UPT VOH WBKPD WH7 WIH WIK WIN WOHZO WUPDE WXSBR WYISQ XOL YQT YR2 YV5 YXE ZCA ZCG ZY4 ZZTAW ~02 AAMMB ADXHL AEFGJ AEYWJ AGXDD AIDQK AIDYY 0ZS 1OB 24P AEUQT AFPWT JAV JSODD SAMSI UAO VQA 7TN F1W H95 H98 L.G LH4 M7N |
ID | FETCH-LOGICAL-i4590-f7f32cf4708531d0cbea952bc22495afa6cbc91f1d40d9c424d5ec243d505d903 |
IEDL.DBID | JFNAL |
ISSN | 0024-3590 |
IngestDate | Fri Sep 05 09:15:52 EDT 2025 Wed Jan 22 16:59:08 EST 2025 Thu Jul 03 22:44:06 EDT 2025 Fri Apr 25 07:46:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4590-f7f32cf4708531d0cbea952bc22495afa6cbc91f1d40d9c424d5ec243d505d903 |
Notes | istex:07E1414A0CA8FEC47BF96E10479E851CA2678693 ark:/67375/WNG-N1307QVW-N ArticleID:LNO10210 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/lno.10210 |
PQID | 1780505204 |
PQPubID | 23462 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1780505204 wiley_primary_10_1002_lno_10210_LNO10210 jstor_primary_26628413 istex_primary_ark_67375_WNG_N1307QVW_N |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationTitle | Limnology and oceanography |
PublicationTitleAlternate | Limnol. Oceanogr |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons, Inc |
References | Barber, R. T., and J. H. Ryther. 1969. Organic chelators: Factors affecting primary production in the Cromwell Current upwelling. J. Exp. Mar. Biol. Ecol. 3: 191-199. doi:10.1016/0022-0981(69)90017-3 Buck, K. N., K. E. Selph, and K. A. Barbeau. 2010. Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean. Mar. Chem. 122: 148-159. doi:10.1016/j.marchem.2010.06.002 Parsons, T. R., Y. Maita, and C. M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis, 201 pp. Pergamon Press. Bundy, R. M., K. A. Barbeau, and K. N. Buck. 2013. Sources of strong copper-binding ligands in Antarctic Peninsula surface waters. Deep-Sea Res. II 90: 134-146. doi:10.1016/j.dsr2.2012.07.023 Jacquot, J. E., and J. W. Moffet. 2015. Copper distribution and speciation across the International GEOTRACES Section GA03. Mar. Chem. 116: 187-207. doi:10.1016/j.dsr2.2014.11.013 Marchetti, A., N. D. Sherry, H. Kiyosama, A. Tsuda, and P. J. Harrison. 2006b. Phytoplankton processes during a mesoscale iron environment in the NE subarctic Pacific: Part I-biomass and assemblage. Deep-Sea Res. II 53: 2095-2113. doi:10.1016/j.dsr2.2006.05.038 Marchetti, A., M. T. Maldonado, E. S. Lane, and P. J. Harrison. 2006a. Iron requirements of the pennate diatom Pseudo-nitzschia: Comparison of oceanic (high-nitrate, low-chlorophyll waters) and coastal species. Limnol. Oceanogr. 51: 2092-2101. doi:10.4319/lo.2006.51.5.2092 Jacquot, J. E., Y. Kondo, A. N. Knapp, and J. W. Moffett. 2013. The speciation of copper across active gradients in nitrogen-cycle processes in the eastern tropical South Pacific. Limnol. Oceanogr. 58: 1387-1394. doi:10.4319/lo.2013.58.4.1387 Lombardi, A. T., and M. T. Maldonado. 2011. The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynth. Res. 108: 77-87. doi:10.1007/s11120-011-9655-z Farkas, E., É. A. Enyedy, and I. Fábián. 2003. New insight into the oxidation of Fe(II) by desferrioxamine B (DFB): Spectrophotometric and capillary electrophoresis (CE) study. Inorg. Chem. Commun. 6: 131-134. doi:10.1016/S1387-7003(02)00703-7 Maldonado, M.T., and N.M. Price. 1999. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep-Sea Res. II 46, 2447-2473. doi:10.1016/S0967-0645(99)00071-5 Coale, K. H. 1991. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the Subarctic Pacific. Limnol. Oceanogr. 36: 1851-1864. doi:10.4319/lo.1991.36.8.1851 Sunda, W. G., and R. R. L. Guillard. 1976. Relationship between cupric ion activity and toxicity of copper to phytoplankton. J. Mar. Res. 34: 511-529. Jackson, G. A., and J. J. Morgan. 1978. Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. Limnol. Oceanogr. 23: 268-282. doi:10.4319/lo.1978.23.2.0268 Leal, M. F. C., and C. M. G. van den Berg. 1998. Evidence for strong copper(I) complexation by organic ligands in seawater. Aquat. Geochem. 4: 49-75. doi:10.1023/A:1009653002399 Laws, E. A., and Bannister, T. T. 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25: 457-473. Monzyk, B., and A. L. Crumbliss. 1982. Kinetics of mechanism of the stepwise dissociation of Fe(III) from ferrioxamine B in aqueous acid. J. Am. Chem. Soc. 104: 4921-4929. doi:10.1021/ja00382a031 Peers, G., and N. M. Price. 2006. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441: 341-344. doi:10.1038/nature04630 Razali, N. M., and Y. B. Wah. 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2: 21-33. Veldhuis, M. J. W., and G. W. Kraay. 2004. Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition. Deep-Sea Res. I 51: 507-530. doi:10.1016/j.dsr.2003.12.002 Heller, M. I., and P. L. Croot. 2015. Copper speciation and distribution in the Atlantic sector of the Southern Ocean. Mar. Chem. 173: 253-268. doi:10.1016/j.marchem.2014.09.017 Farkas, E., E. A. Enyedy, L. Zekany, and G. Deak. 2001. Interaction between iron(II) and hydroxamic acids: Oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. J. Inorg. Biochem. 83: 107-114. doi:10.1016/S0162-0134(00)00197-5 Maldonado, M. T., and others. 2001. Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment. Limnol. Oceanogr. 46: 1802-1808. doi:10.4319/lo.2001.46.7.1802 Maldonado, M. T., A. E. Allen, J. S. Chong, K. Lin, D. Leus, N. Karpenko, and S. Harris. 2006. Copper-dependent iron transport in coastal and oceanic diatoms. Limnol. Oceanogr. 51: 1729-1743. doi:10.4319/lo.2006.51.4.1729 Miller, C. B., B. W. Frost, P. A. Wheeler, M. R. Landry, N. Welschmeyer, and T. M. Powell. 1991. Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem. Limnol. Oceanogr. 36: 1600-1615. doi:10.4319/lo.1991.36.8.1600 Sunda, W. G., and S. A. Huntsman. 2004. Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom. Limnol. Oceanogr. 49: 1741-1753. doi:10.4319/lo.2004.49.5.1742 Sunda, W. G., R. T. Barber, and S. A. Hunstman. 1981. Phytoplankton growth in nutrient rich seawater: Important of copper-manganese cellular interactions. J. Mar. Res. 39: 567-587. Hudson, R. J., D. T. Covault, and F. M. M. Morel. 1992. Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes. Mar. Chem. 38: 209-235. doi:10.1016/0304-4203(92)90035-9 Shaked, Y., A. B. Kustka, and F. M. M. Morel. 2005. A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol. Oceanogr. 50: 872-882. doi:10.4319/lo.2005.50.3.0872 Vaulot, D. 1989. CYTOPC: Processing software for flow cytometric data. Signal Noise 2: 8. Jacquot, J. E., and others. 2014. Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary. Mar. Chem. 162: 37-49. doi:10.1016/j.marchem.2014.02.002 Lee, S., and J. A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microb. 53: 1298-1303. Maldonado, M.T., and N.M. Price. 2000. Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol. Oceanogr. 45, 814-826. doi:10.4319/lo.2000.45.4.0814 Sunda, W. G., and S. A. Huntsman. 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50: 189-206. Moore, C. M., and others. 2006. Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol. Oceanogr. 51: 936-949. doi:10.4319/lo.2006.51.2.0936 Moore, J. K., S. C. Doney, and K. Lindsay. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles 18: GB4028. doi:10.1029/2004GB002220 Zamzow, H., K. H. Coale, K. S. Johnson, and C. M. Sakamoto. 1998. Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection. Anal. Chim. Acta 377: 133-144. doi:10.1016/S0003-2670(98)00618-7 Whitney, F. A., and H. J. Freeland. 1999. Variability in upper-ocean water properties in the NE Pacific Ocean. Deep-Sea Res. II 46: 2351-2370. doi:10.1016/S0967-0645(99)00067-3 Hudson, R. J. M., and F. M. M. Morel. 1989. Distinguishing between extra- and intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34: 1113-1120. doi:10.4319/lo.1989.34.6.1113 Semeniuk, D. M., R. M. Bundy, C. D. Payne, K. A. Barbeau, and M. T. Maldonado. 2015. Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Mar. Chem. 173: 222-233. doi:10.1016/j.marchem.2015.01.005 Annett, A. L., S. Lapi, T. J. Ruth, and M. T. Maldonado. 2008. The effects of Cu and Fe availability on the growth and Cu:C ratios of marine diatoms. Limnol. Oceanogr. 53: 2451-2461. doi:10.4319/lo.2008.53.6.2451 Peers, G., S. A. Quesnel, and N. M. Price. 2005. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr. 50: 1149-1158. doi:10.4319/lo.2005.50.4.1149 Mélançon, J., and others. 2014. Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization. Limnol. Oceanogr. 59: 55-67. doi:10.4319/lo.2014.59.1.0055 Schuback, N., C. Schallenberg, C. Duckham, M. T. Maldonado, and P. D. Tortell. 2015. Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. PLoS ONE 10: e0133235. doi:10.1371/journal.pone.0133235 Maldonado, M. T., and N. M. Price. 1996. Influence of N substrate on Fe requirements of marine centric diatoms. Mar. Ecol. Prog. Ser. 141: 161-172. doi:10.3354/meps141161 Greene, R. M., R. J. Geider, and P. G. Falkowski. 1991. Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36: 1772-1782. doi:10.4319/lo.1991.36.8.1772 Aristilde, L., Y. Xu, and F. M. M. Morel. 2012. Weak organic ligands enhance zinc uptake in marine phytoplankton. Environ. Sci. Technol. 46: 5438-5445. doi:10.1021/es300335u Coale, K.H., Bruland, K.W., 1988. Copper complexation in the northeast Pacific. Limnol. Oceanogr. 33, 1084-1101. doi:10.4319/lo.1988.33.5.1084 Geider, R. J. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytol. 106: 1-34. doi:10.1111/j.1469-8137.1987.tb04788.x Maldonado, M. T., and N. M. Price. 2001. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J 1987; 106 2000; 45 2006; 36 2013; 128 1996; 382 1999; 46 1988; 33 1973 2001; 48 1982; 104 2008; 6 1996; 141 2013; 8 2001; 46 1987; 39 2003; 198 2015; 173 2009; 56 2013; 18 1989; 34 2013; 58 2006b; 53 1976; 34 1978; 23 1969; 3 2003; 6 1993; 32 2013; 118 2014; 59 1988; 331 1984 2014; 162 1982 1981; 39 1994; 39 1997; 390 2014; 164 2006; 441 2001; 440 1989; 2 1980; 25 1995; 50 1987; 53 1986; 92 1991; 36 2011; 2 2006; 51 1986; 96 2010 2004; 49 2015; 10 1998 2010; 122 2013; 90 1981; 68 2008; 53 1992; 38 2007; 54 1998; 377 2009; 457 2012; 109 2004; 431 2001; 83 1990; 116 2011; 108 2004; 51 2007; 315 2006a; 51 2004; 18 2015; 116 2006; 43 2005; 96 1988; 22 2005; 52 2001; 37 2012; 48 2005; 50 2012; 46 2007; 43 1998; 4 |
References_xml | – reference: de Winter, J. C. F. 2013. Using the Student's t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 18: 1-12. – reference: Strzepek, R. F., and P. J. Harrison. 2004. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431: 689-692. doi:10.1038/nature02954 – reference: Boyd, P. W., and E. R. Abraham. 2001. Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep-Sea Res. II 48: 2529-2550. doi:10.1016/S0967-0645(01)00007-8 – reference: Raven, J. 1990. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol. 116: 1-18. – reference: Veldhuis, M. J. W., and G. W. Kraay. 2004. Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition. Deep-Sea Res. I 51: 507-530. doi:10.1016/j.dsr.2003.12.002 – reference: Vaulot, D. 1989. CYTOPC: Processing software for flow cytometric data. Signal Noise 2: 8. – reference: Frost, B. W. 1987. Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. Mar. Ecol. Prog. Ser. 39: 49-68. doi:10.3354/meps039049 – reference: Peers, G., S. A. Quesnel, and N. M. Price. 2005. Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnol. Oceanogr. 50: 1149-1158. doi:10.4319/lo.2005.50.4.1149 – reference: Coale, K. H. 1991. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the Subarctic Pacific. Limnol. Oceanogr. 36: 1851-1864. doi:10.4319/lo.1991.36.8.1851 – reference: Walsh, M. J., and B. A. Ahner. 2013. Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes. J. Inorg. Biochem. 128: 112-123. doi:10.1016/j.jinorgbio.2013.07.012 – reference: Whitney, F. A., and H. J. Freeland. 1999. Variability in upper-ocean water properties in the NE Pacific Ocean. Deep-Sea Res. II 46: 2351-2370. doi:10.1016/S0967-0645(99)00067-3 – reference: Razali, N. M., and Y. B. Wah. 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2: 21-33. – reference: Coale, K.H., Bruland, K.W., 1988. Copper complexation in the northeast Pacific. Limnol. Oceanogr. 33, 1084-1101. doi:10.4319/lo.1988.33.5.1084 – reference: Moore, J. K., S. C. Doney, and K. Lindsay. 2004. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles 18: GB4028. doi:10.1029/2004GB002220 – reference: Shaked, Y., A. B. Kustka, and F. M. M. Morel. 2005. A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol. Oceanogr. 50: 872-882. doi:10.4319/lo.2005.50.3.0872 – reference: Sunda, W. G., and S. A. Huntsman. 1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50: 189-206. – reference: Heller, M. I., and P. L. Croot. 2015. Copper speciation and distribution in the Atlantic sector of the Southern Ocean. Mar. Chem. 173: 253-268. doi:10.1016/j.marchem.2014.09.017 – reference: Maldonado, M. T., P. W. Boyd, P. J. Harrison, and N. M. Price. 1999. Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean. Deep-Sea Res. II 46: 2475-2485. doi:10.1016/S0967-0645(99)00072-7 – reference: Sunda, W. G., and R. R. L. Guillard. 1976. Relationship between cupric ion activity and toxicity of copper to phytoplankton. J. Mar. Res. 34: 511-529. – reference: Zamzow, H., K. H. Coale, K. S. Johnson, and C. M. Sakamoto. 1998. Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection. Anal. Chim. Acta 377: 133-144. doi:10.1016/S0003-2670(98)00618-7 – reference: Jackson, G. A., and J. J. Morgan. 1978. Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. Limnol. Oceanogr. 23: 268-282. doi:10.4319/lo.1978.23.2.0268 – reference: Marchetti, A., M. T. Maldonado, E. S. Lane, and P. J. Harrison. 2006a. Iron requirements of the pennate diatom Pseudo-nitzschia: Comparison of oceanic (high-nitrate, low-chlorophyll waters) and coastal species. Limnol. Oceanogr. 51: 2092-2101. doi:10.4319/lo.2006.51.5.2092 – reference: Schlosser, C., and P. L. Croot. 2008. Application of cross-flow filtration for determining the solubility of iron species in open ocean seawater. Limnol. Oceanogr.: Methods 6: 630-642. doi:10.4319/lom.2008.6.630 – reference: Taylor, R. L., D. M. Semeniuk, C. D. Payne, J. Zhou, J.-É. Tremblay, J. T. Cullen, and M.T. Maldonado. 2013. Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer. J. Geophys. Res. Oceans 118: 1-17. doi:10.1002/jgrc.20244 – reference: Barber, R. T., and J. H. Ryther. 1969. Organic chelators: Factors affecting primary production in the Cromwell Current upwelling. J. Exp. Mar. Biol. Ecol. 3: 191-199. doi:10.1016/0022-0981(69)90017-3 – reference: Guo, J., S. Lapi, T. J. Ruth, and M. T. Maldonado. 2012. The effects of iron and copper availability on the copper stoichiometry of marine phytoplankton. J. Phycol. 48: 312-325. doi:10.1111/j.1529-8817.2012.01133.x – reference: Maldonado, M.T., and N.M. Price. 2000. Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol. Oceanogr. 45, 814-826. doi:10.4319/lo.2000.45.4.0814 – reference: Moffett, J. W., and C. Dupont. 2007. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea. Deep-Sea Res. I 54: 586-595. doi:10.1016/j.dsr.2006.12.013 – reference: Lee, S., and J. A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microb. 53: 1298-1303. – reference: Bundy, R. M., K. A. Barbeau, and K. N. Buck. 2013. Sources of strong copper-binding ligands in Antarctic Peninsula surface waters. Deep-Sea Res. II 90: 134-146. doi:10.1016/j.dsr2.2012.07.023 – reference: Jacquot, J. E., and J. W. Moffet. 2015. Copper distribution and speciation across the International GEOTRACES Section GA03. Mar. Chem. 116: 187-207. doi:10.1016/j.dsr2.2014.11.013 – reference: Leal, M. F. C., and C. M. G. van den Berg. 1998. Evidence for strong copper(I) complexation by organic ligands in seawater. Aquat. Geochem. 4: 49-75. doi:10.1023/A:1009653002399 – reference: Maldonado, M. T., and N. M. Price. 2001. Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J. Phycol. 37: 298-309. doi:10.1046/j.1529-8817.2001.037002298.x – reference: Booth, B. C., J. Lewin, and J. R. Postel. 1993. Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctic Pacific. Prog. Oceanogr. 32: 57-99. doi:10.1016/0079-6611(93)90009-3 – reference: Lohan, M. C., D. W. Crawford, D. A. Purdie, and P. J. Statham. 2005. Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth. Limnol. Oceanogr. 50: 1427-1437. doi:10.4319/lo.2005.50.5.1427 – reference: Aristilde, L., Y. Xu, and F. M. M. Morel. 2012. Weak organic ligands enhance zinc uptake in marine phytoplankton. Environ. Sci. Technol. 46: 5438-5445. doi:10.1021/es300335u – reference: Maldonado, M. T., A. E. Allen, J. S. Chong, K. Lin, D. Leus, N. Karpenko, and S. Harris. 2006. Copper-dependent iron transport in coastal and oceanic diatoms. Limnol. Oceanogr. 51: 1729-1743. doi:10.4319/lo.2006.51.4.1729 – reference: Stoecker, D. K., W. G. Sunda, and L. H. Davis. 1986. Effects of copper and zinc on two planktonic ciliates. Mar. Biol. 92: 21-29. doi:10.1007/BF00392741 – reference: Iwade, S., K. Kuma, Y. Isoda, M. Yoshida, I. Kudo, J. Nishioka, and K. Suzuki. 2006. Effect of high iron concentrations on iron uptake and growth of a coastal diatom Chaetoceros sociale. Aquat. Microb. Ecol. 43: 177-191. doi:10.3354/ame043177 – reference: Greene, R. M., R. J. Geider, and P. G. Falkowski. 1991. Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36: 1772-1782. doi:10.4319/lo.1991.36.8.1772 – reference: Geider, R. J. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytol. 106: 1-34. doi:10.1111/j.1469-8137.1987.tb04788.x – reference: Mélançon, J., and others. 2014. Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization. Limnol. Oceanogr. 59: 55-67. doi:10.4319/lo.2014.59.1.0055 – reference: Boyd, P. W., and others. 2007. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science 315: 612-617. doi:10.1126/science.1131669 – reference: Jacquot, J. E., and others. 2014. Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary. Mar. Chem. 162: 37-49. doi:10.1016/j.marchem.2014.02.002 – reference: Peers, G., and N. M. Price. 2006. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441: 341-344. doi:10.1038/nature04630 – reference: Buck, K. N., and K. W. Bruland. 2005. Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows. Mar. Chem. 96: 185-198. doi:10.1016/j.marchem.2005.01.001 – reference: Geider, R. J., and J. La Roche. 1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosyn. Res. 39: 275-301. doi:10.1007/BF00014588 – reference: Jacquot, J. E., Y. Kondo, A. N. Knapp, and J. W. Moffett. 2013. The speciation of copper across active gradients in nitrogen-cycle processes in the eastern tropical South Pacific. Limnol. Oceanogr. 58: 1387-1394. doi:10.4319/lo.2013.58.4.1387 – reference: Miller, C. B., B. W. Frost, P. A. Wheeler, M. R. Landry, N. Welschmeyer, and T. M. Powell. 1991. Ecological dynamics in the subarctic Pacific, a possibly iron-limited ecosystem. Limnol. Oceanogr. 36: 1600-1615. doi:10.4319/lo.1991.36.8.1600 – reference: Monzyk, B., and A. L. Crumbliss. 1982. Kinetics of mechanism of the stepwise dissociation of Fe(III) from ferrioxamine B in aqueous acid. J. Am. Chem. Soc. 104: 4921-4929. doi:10.1021/ja00382a031 – reference: Laws, E. A., and Bannister, T. T. 1980. Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol. Oceanogr. 25: 457-473. – reference: Sunda, W. G., and S. A. Huntsman. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390: 389-392. doi:10.1038/37093 – reference: Hudson, R. J. M., and F. M. M. Morel. 1989. Distinguishing between extra- and intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34: 1113-1120. doi:10.4319/lo.1989.34.6.1113 – reference: Marchetti, A., N. D. Sherry, H. Kiyosama, A. Tsuda, and P. J. Harrison. 2006b. Phytoplankton processes during a mesoscale iron environment in the NE subarctic Pacific: Part I-biomass and assemblage. Deep-Sea Res. II 53: 2095-2113. doi:10.1016/j.dsr2.2006.05.038 – reference: Sunda, W. G., and J. A. M. Lewis. 1978. Effect of complexation by natural organic ligands on the toxicity of cooper to a unicellular alga, Monochrysis lutheri. Limnol. Oceanogr. 23: 870-876. doi:10.4319/lo.1978.23.5.0870 – reference: Farkas, E., É. A. Enyedy, and I. Fábián. 2003. New insight into the oxidation of Fe(II) by desferrioxamine B (DFB): Spectrophotometric and capillary electrophoresis (CE) study. Inorg. Chem. Commun. 6: 131-134. doi:10.1016/S1387-7003(02)00703-7 – reference: Miller, C. B. 1993. Pelagic production processes in the Subarctic Pacific. Prog. Oceanogr. 32: 10-15. doi:10.1016/0079-6611(93)90007-Z – reference: Kustka, A. B., A. E. Allen, and F. M. M. Morel. 2007. Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. J. Phycol. 43: 715-729. doi:10.1111/j.1529-8817.2007.00359.x – reference: Semeniuk, D. M., J. T. Cullen, W. K. Johnson, K. Gagnon, T. J. Ruth, and M. T. Maldonado. 2009. Plankton copper requirements and uptake in the subarctic Northeast Pacific Ocean. Deep-Sea Res. I 56: 1130-1142. doi:10.1016/j.dsr.2009.03.003 – reference: Hoppe, C. J. M., C. S. Hassler, C. D. Payne, P. D. Tortell, B. Rost, and S. Trimborn. 2013. Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities. PLoS ONE 8. doi:10.1371/journal.pone.0079890 – reference: Hering, J. G., and F. M. M. Morel. 1988. Kinetics of trace metal complexation: Role of alkaline-earth metals. Enrivon. Sci. Technol. 22: 1469-1478. doi:10.1021/es00177a014 – reference: Lombardi, A. T., and M. T. Maldonado. 2011. The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynth. Res. 108: 77-87. doi:10.1007/s11120-011-9655-z – reference: Marchetti, A., and others. 2009. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457: 467-470. doi:10.1038/nature07539 – reference: Martin, J. H., and S. E. Fitzwater. 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331: 341-343. doi:10.1038/331341a0 – reference: Farkas, E., E. A. Enyedy, L. Zekany, and G. Deak. 2001. Interaction between iron(II) and hydroxamic acids: Oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions. J. Inorg. Biochem. 83: 107-114. doi:10.1016/S0162-0134(00)00197-5 – reference: Marchetti, A., and others. 2012. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl. Acad. Sci. 109: E317-325. doi:10.1073/pnas.1118408109 – reference: Kustka, A. B., B. M. Jones, M. Hatta, M. P. Field, and A. J. Milligan. 2015. The influence of iron and siderophores on eukaryotic phytoplankton growth rates and community composition in the Ross Sea. Mar. Chem. 173: 195-207. doi:10.1016/j.marchem.2014.12.002 – reference: Falkowski, P. G., T. G. Owens, A. C. Ley, and D. C. Mauzerall. 1981. Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton. Plant Physiol. 68: 969-973. doi:10.1104/pp.68.4.969 – reference: Johnson, W. K., L. A. Miller, N. E. Sutherland, and C. S. Wong. 2005. Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep-Sea Res. II 52: 933-953. doi:10.1016/j.dsr2.2004.08.017 – reference: Schuback, N., C. Schallenberg, C. Duckham, M. T. Maldonado, and P. D. Tortell. 2015. Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. PLoS ONE 10: e0133235. doi:10.1371/journal.pone.0133235 – reference: Achterberg, E. P., C. B. Braungardt, R. C. Sandford, and P. J. Worsfold. 2001. UV digestion of seawater samples prior to the determination of copper using flow injection with chemiluminescence detection. Anal. Chim. Acta 440: 27-36. doi:10.1016/S0003-2670(01)00824-8 – reference: Brand, L. E., W. G. Sunda, and R. R. L. Guillard. 1986. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96: 225-250. doi:10.1016/0022-0981(86)90205-4 – reference: Maldonado, M. T., and others. 2001. Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment. Limnol. Oceanogr. 46: 1802-1808. doi:10.4319/lo.2001.46.7.1802 – reference: Moore, C. M., and others. 2006. Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol. Oceanogr. 51: 936-949. doi:10.4319/lo.2006.51.2.0936 – reference: Wells, M. L., C. G. Trick, W. P. Cochlan, M. P. Hughes, and V. L. Trainer. 2005. Domoic acid: The synergy of iron, copper, and the toxicity of diatoms. Limnol. Oceanogr. 50: 1908-1917. doi:10.4319/lo.2005.50.6.1908 – reference: Maldonado, M.T., and N.M. Price. 1999. Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep-Sea Res. II 46, 2447-2473. doi:10.1016/S0967-0645(99)00071-5 – reference: Sunda, W. G., and S. A. Huntsman. 2004. Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom. Limnol. Oceanogr. 49: 1741-1753. doi:10.4319/lo.2004.49.5.1742 – reference: Buck, K. N., K. E. Selph, and K. A. Barbeau. 2010. Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean. Mar. Chem. 122: 148-159. doi:10.1016/j.marchem.2010.06.002 – reference: La Roche, J., P. W. Boyd, R. M. L. McKay, and R. J. Geider. 1996. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382: 802-805. doi:10.1038/382802a0 – reference: Öztuna, D., A. H. Elhan, and E. Tüccar. 2006. Investigation of four different normality tests in terms of type 1 error rate and power under different distributions. Turk. J. Med. Sci. 36: 171-176. – reference: Hudson, R. J., D. T. Covault, and F. M. M. Morel. 1992. Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes. Mar. Chem. 38: 209-235. doi:10.1016/0304-4203(92)90035-9 – reference: Cheah, S.-F., S. M. Kraemer, J. Cervini-Silva, and G. Sposito. 2003. Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: Implications for the microbial acquisition of iron. Chem. Geol. 198: 63-75. doi:10.1016/S0009-2541(02)00421-7 – reference: Semeniuk, D. M., R. M. Bundy, C. D. Payne, K. A. Barbeau, and M. T. Maldonado. 2015. Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Mar. Chem. 173: 222-233. doi:10.1016/j.marchem.2015.01.005 – reference: Maldonado, M. T., and N. M. Price. 1996. Influence of N substrate on Fe requirements of marine centric diatoms. Mar. Ecol. Prog. Ser. 141: 161-172. doi:10.3354/meps141161 – reference: Parsons, T. R., Y. Maita, and C. M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis, 201 pp. Pergamon Press. – reference: Annett, A. L., S. Lapi, T. J. Ruth, and M. T. Maldonado. 2008. The effects of Cu and Fe availability on the growth and Cu:C ratios of marine diatoms. Limnol. Oceanogr. 53: 2451-2461. doi:10.4319/lo.2008.53.6.2451 – reference: Thompson, C. M., M. J. Ellwood, and S. G. Sander. 2014. Dissolved copper speciation in the Tasman Sea, SW Pacific Ocean. Mar. Chem. 164: 84-94. doi:10.1016/j.marchem.2014.06.003 – reference: Sunda, W. G., R. T. Barber, and S. A. Hunstman. 1981. Phytoplankton growth in nutrient rich seawater: Important of copper-manganese cellular interactions. J. Mar. Res. 39: 567-587. – volume: 43 start-page: 177 year: 2006 end-page: 191 article-title: Effect of high iron concentrations on iron uptake and growth of a coastal diatom publication-title: Aquat. Microb. Ecol. – volume: 382 start-page: 802 year: 1996 end-page: 805 article-title: Flavodoxin as an in situ marker for iron stress in phytoplankton publication-title: Nature – start-page: 321 year: 1973 end-page: 338 – start-page: 239 year: 1998 end-page: 327 – volume: 50 start-page: 1427 year: 2005 end-page: 1437 article-title: Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth publication-title: Limnol. Oceanogr. – volume: 46 start-page: 1802 year: 2001 end-page: 1808 article-title: Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment publication-title: Limnol. Oceanogr. – volume: 51 start-page: 507 year: 2004 end-page: 530 article-title: Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition publication-title: Deep‐Sea Res. I – volume: 6 start-page: 131 year: 2003 end-page: 134 article-title: New insight into the oxidation of Fe(II) by desferrioxamine B (DFB): Spectrophotometric and capillary electrophoresis (CE) study publication-title: Inorg. Chem. Commun. – volume: 198 start-page: 63 year: 2003 end-page: 75 article-title: Steady‐state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: Implications for the microbial acquisition of iron publication-title: Chem. Geol. – volume: 3 start-page: 191 year: 1969 end-page: 199 article-title: Organic chelators: Factors affecting primary production in the Cromwell Current upwelling publication-title: J. Exp. Mar. Biol. Ecol. – volume: 2 start-page: 21 year: 2011 end-page: 33 article-title: Power comparisons of Shapiro‐Wilk, Kolmogorov‐Smirnov, Lilliefors and Anderson‐Darling tests publication-title: J. Stat. Model. Anal. – volume: 90 start-page: 134 year: 2013 end-page: 146 article-title: Sources of strong copper‐binding ligands in Antarctic Peninsula surface waters publication-title: Deep‐Sea Res. II – volume: 431 start-page: 689 year: 2004 end-page: 692 article-title: Photosynthetic architecture differs in coastal and oceanic diatoms publication-title: Nature – volume: 50 start-page: 1908 year: 2005 end-page: 1917 article-title: Domoic acid: The synergy of iron, copper, and the toxicity of diatoms publication-title: Limnol. Oceanogr. – volume: 32 start-page: 10 year: 1993 end-page: 15 article-title: Pelagic production processes in the Subarctic Pacific publication-title: Prog. Oceanogr. – volume: 390 start-page: 389 year: 1997 end-page: 392 article-title: Interrelated influence of iron, light and cell size on marine phytoplankton growth publication-title: Nature – volume: 6 start-page: 630 year: 2008 end-page: 642 article-title: Application of cross‐flow filtration for determining the solubility of iron species in open ocean seawater publication-title: Limnol. Oceanogr.: Methods – volume: 59 start-page: 55 year: 2014 end-page: 67 article-title: Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization publication-title: Limnol. Oceanogr. – volume: 48 start-page: 312 year: 2012 end-page: 325 article-title: The effects of iron and copper availability on the copper stoichiometry of marine phytoplankton publication-title: J. Phycol. – volume: 56 start-page: 1130 year: 2009 end-page: 1142 article-title: Plankton copper requirements and uptake in the subarctic Northeast Pacific Ocean publication-title: Deep‐Sea Res. I – volume: 50 start-page: 872 year: 2005 end-page: 882 article-title: A general kinetic model for iron acquisition by eukaryotic phytoplankton publication-title: Limnol. Oceanogr. – volume: 37 start-page: 298 year: 2001 end-page: 309 article-title: Reduction and transport of organically bound iron by (Bacillariophyceae) publication-title: J. Phycol. – volume: 2 start-page: 8 year: 1989 article-title: CYTOPC: Processing software for flow cytometric data publication-title: Signal Noise – volume: 440 start-page: 27 year: 2001 end-page: 36 article-title: UV digestion of seawater samples prior to the determination of copper using flow injection with chemiluminescence detection publication-title: Anal. Chim. Acta – volume: 34 start-page: 1113 year: 1989 end-page: 1120 article-title: Distinguishing between extra‐ and intracellular iron in marine phytoplankton publication-title: Limnol. Oceanogr. – volume: 109 start-page: E317 year: 2012 end-page: 325 article-title: Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability publication-title: Proc. Natl. Acad. Sci. – volume: 23 start-page: 268 year: 1978 end-page: 282 article-title: Trace metal‐chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations publication-title: Limnol. Oceanogr. – volume: 52 start-page: 933 year: 2005 end-page: 953 article-title: Iron transport by mesoscale Haida eddies in the Gulf of Alaska publication-title: Deep‐Sea Res. II – year: 1982 – volume: 173 start-page: 195 year: 2015 end-page: 207 article-title: The influence of iron and siderophores on eukaryotic phytoplankton growth rates and community composition in the Ross Sea publication-title: Mar. Chem. – volume: 162 start-page: 37 year: 2014 end-page: 49 article-title: Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary publication-title: Mar. Chem. – volume: 18 start-page: GB4028 year: 2004 article-title: Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model publication-title: Global Biogeochem. Cycles – volume: 50 start-page: 1149 year: 2005 end-page: 1158 article-title: Copper requirements for iron acquisition and growth of coastal and oceanic diatoms publication-title: Limnol. Oceanogr. – volume: 92 start-page: 21 year: 1986 end-page: 29 article-title: Effects of copper and zinc on two planktonic ciliates publication-title: Mar. Biol. – volume: 23 start-page: 870 year: 1978 end-page: 876 article-title: Effect of complexation by natural organic ligands on the toxicity of cooper to a unicellular alga, publication-title: Limnol. Oceanogr. – volume: 49 start-page: 1741 year: 2004 end-page: 1753 article-title: Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom publication-title: Limnol. Oceanogr. – volume: 8 year: 2013 article-title: Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities publication-title: PLoS ONE – volume: 141 start-page: 161 year: 1996 end-page: 172 article-title: Influence of N substrate on Fe requirements of marine centric diatoms publication-title: Mar. Ecol. Prog. Ser. – volume: 51 start-page: 2092 year: 2006a end-page: 2101 article-title: Iron requirements of the pennate diatom : Comparison of oceanic (high‐nitrate, low‐chlorophyll waters) and coastal species publication-title: Limnol. Oceanogr. – volume: 108 start-page: 77 year: 2011 end-page: 87 article-title: The effects of copper on the photosynthetic response of publication-title: Photosynth. Res. – volume: 46 start-page: 2351 year: 1999 end-page: 2370 article-title: Variability in upper‐ocean water properties in the NE Pacific Ocean publication-title: Deep‐Sea Res. II – volume: 58 start-page: 1387 year: 2013 end-page: 1394 article-title: The speciation of copper across active gradients in nitrogen‐cycle processes in the eastern tropical South Pacific publication-title: Limnol. Oceanogr. – volume: 104 start-page: 4921 year: 1982 end-page: 4929 article-title: Kinetics of mechanism of the stepwise dissociation of Fe(III) from ferrioxamine B in aqueous acid publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 209 year: 1992 end-page: 235 article-title: Investigations of iron coordination and redox reactions in seawater using Fe radiometry and ion‐pair solvent extraction of amphiphilic iron complexes publication-title: Mar. Chem. – volume: 10 start-page: e0133235 year: 2015 article-title: Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO ‐assimilation in marine phytoplankton publication-title: PLoS ONE – volume: 106 start-page: 1 year: 1987 end-page: 34 article-title: Light and temperature dependence of the carbon to chlorophyll ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton publication-title: New Phytol. – volume: 33 start-page: 1084 year: 1988 end-page: 1101 article-title: Copper complexation in the northeast Pacific publication-title: Limnol. Oceanogr – volume: 68 start-page: 969 year: 1981 end-page: 973 article-title: Effects of growth irradiance levels on the ratio of reaction centers in two species of marine phytoplankton publication-title: Plant Physiol. – volume: 36 start-page: 1772 year: 1991 end-page: 1782 article-title: Effect of iron limitation on photosynthesis in a marine diatom publication-title: Limnol. Oceanogr. – volume: 34 start-page: 511 year: 1976 end-page: 529 article-title: Relationship between cupric ion activity and toxicity of copper to phytoplankton publication-title: J. Mar. Res. – volume: 32 start-page: 57 year: 1993 end-page: 99 article-title: Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctic Pacific publication-title: Prog. Oceanogr. – volume: 116 start-page: 1 year: 1990 end-page: 18 article-title: Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway publication-title: New Phytol. – volume: 377 start-page: 133 year: 1998 end-page: 144 article-title: Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection publication-title: Anal. Chim. Acta – volume: 96 start-page: 225 year: 1986 end-page: 250 article-title: Reduction of marine phytoplankton reproduction rates by copper and cadmium publication-title: J. Exp. Mar. Biol. Ecol. – volume: 39 start-page: 275 year: 1994 end-page: 301 article-title: The role of iron in phytoplankton photosynthesis, and the potential for iron‐limitation of primary productivity in the sea publication-title: Photosyn. Res. – volume: 457 start-page: 467 year: 2009 end-page: 470 article-title: Ferritin is used for iron storage in bloom‐forming marine pennate diatoms publication-title: Nature – volume: 36 start-page: 1851 year: 1991 end-page: 1864 article-title: Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the Subarctic Pacific publication-title: Limnol. Oceanogr. – volume: 22 start-page: 1469 year: 1988 end-page: 1478 article-title: Kinetics of trace metal complexation: Role of alkaline‐earth metals publication-title: Enrivon. Sci. Technol. – volume: 53 start-page: 2451 year: 2008 end-page: 2461 article-title: The effects of Cu and Fe availability on the growth and Cu:C ratios of marine diatoms publication-title: Limnol. Oceanogr. – volume: 18 start-page: 1 year: 2013 end-page: 12 article-title: Using the Student's ‐test with extremely small sample sizes publication-title: Pract. Assess. Res. Eval. – volume: 441 start-page: 341 year: 2006 end-page: 344 article-title: Copper‐containing plastocyanin used for electron transport by an oceanic diatom publication-title: Nature – volume: 315 start-page: 612 year: 2007 end-page: 617 article-title: Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions publication-title: Science – volume: 25 start-page: 457 year: 1980 end-page: 473 article-title: Nutrient‐ and light‐limited growth of in continuous culture, with implications for phytoplankton growth in the ocean publication-title: Limnol. Oceanogr – volume: 53 start-page: 2095 year: 2006b end-page: 2113 article-title: Phytoplankton processes during a mesoscale iron environment in the NE subarctic Pacific: Part I—biomass and assemblage publication-title: Deep‐Sea Res. II – volume: 36 start-page: 1600 year: 1991 end-page: 1615 article-title: Ecological dynamics in the subarctic Pacific, a possibly iron‐limited ecosystem publication-title: Limnol. Oceanogr. – volume: 36 start-page: 171 year: 2006 end-page: 176 article-title: Investigation of four different normality tests in terms of type 1 error rate and power under different distributions publication-title: Turk. J. Med. Sci. – volume: 43 start-page: 715 year: 2007 end-page: 729 article-title: Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms publication-title: J. Phycol. – volume: 46 start-page: 2475 year: 1999 end-page: 2485 article-title: Co‐limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean publication-title: Deep‐Sea Res. II – volume: 173 start-page: 222 year: 2015 end-page: 233 article-title: Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean publication-title: Mar. Chem. – volume: 4 start-page: 49 year: 1998 end-page: 75 article-title: Evidence for strong copper(I) complexation by organic ligands in seawater publication-title: Aquat. Geochem. – volume: 50 start-page: 189 year: 1995 end-page: 206 article-title: Iron uptake and growth limitation in oceanic and coastal phytoplankton publication-title: Mar. Chem. – volume: 46 start-page: 2447 year: 1999 end-page: 2473 article-title: Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean publication-title: Deep‐Sea Res. II – volume: 331 start-page: 341 year: 1988 end-page: 343 article-title: Iron deficiency limits phytoplankton growth in the north‐east Pacific subarctic publication-title: Nature – year: 2010 – start-page: 201 year: 1984 – volume: 96 start-page: 185 year: 2005 end-page: 198 article-title: Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows publication-title: Mar. Chem. – volume: 53 start-page: 1298 year: 1987 end-page: 1303 article-title: Relationships between biovolume and biomass of naturally derived marine bacterioplankton publication-title: Appl. Environ. Microb. – volume: 54 start-page: 586 year: 2007 end-page: 595 article-title: Cu complexation by organic ligands in the sub‐arctic NW Pacific and Bering Sea publication-title: Deep‐Sea Res. I – volume: 48 start-page: 2529 year: 2001 end-page: 2550 article-title: Iron‐mediated changes in phytoplankton photosynthetic competence during SOIREE publication-title: Deep‐Sea Res. II – volume: 51 start-page: 1729 year: 2006 end-page: 1743 article-title: Copper‐dependent iron transport in coastal and oceanic diatoms publication-title: Limnol. Oceanogr. – volume: 39 start-page: 49 year: 1987 end-page: 68 article-title: Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: A model assessing the role of mesozooplankton, particularly the large calanoid copepods spp publication-title: Mar. Ecol. Prog. Ser. – volume: 46 start-page: 5438 year: 2012 end-page: 5445 article-title: Weak organic ligands enhance zinc uptake in marine phytoplankton publication-title: Environ. Sci. Technol. – volume: 83 start-page: 107 year: 2001 end-page: 114 article-title: Interaction between iron(II) and hydroxamic acids: Oxidation of iron(II) to iron(III) by desferrioxamine B under anaerobic conditions publication-title: J. Inorg. Biochem. – volume: 128 start-page: 112 year: 2013 end-page: 123 article-title: Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes publication-title: J. Inorg. Biochem. – volume: 45 start-page: 814 year: 2000 end-page: 826 article-title: Nitrate regulation of Fe reduction and transport by Fe‐limited Thalassiosira oceanica publication-title: Limnol. Oceanogr – volume: 164 start-page: 84 year: 2014 end-page: 94 article-title: Dissolved copper speciation in the Tasman Sea, SW Pacific Ocean publication-title: Mar. Chem. – volume: 122 start-page: 148 year: 2010 end-page: 159 article-title: Iron‐binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean publication-title: Mar. Chem. – volume: 51 start-page: 936 year: 2006 end-page: 949 article-title: Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea publication-title: Limnol. Oceanogr. – volume: 39 start-page: 567 year: 1981 end-page: 587 article-title: Phytoplankton growth in nutrient rich seawater: Important of copper‐manganese cellular interactions publication-title: J. Mar. Res. – volume: 173 start-page: 253 year: 2015 end-page: 268 article-title: Copper speciation and distribution in the Atlantic sector of the Southern Ocean publication-title: Mar. Chem. – volume: 116 start-page: 187 year: 2015 end-page: 207 article-title: Copper distribution and speciation across the International GEOTRACES Section GA03 publication-title: Mar. Chem. – volume: 118 start-page: 1 year: 2013 end-page: 17 article-title: Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer publication-title: J. Geophys. Res. Oceans |
SSID | ssj0009555 |
Score | 2.2642772 |
Snippet | In August 2010, iron (Fe) and Fe and copper (Cu) addition incubation experiments were conducted at two low Fe stations (P20 and P26) along Line P, off the... |
SourceID | proquest wiley jstor istex |
SourceType | Aggregation Database Publisher |
StartPage | 279 |
SubjectTerms | Marine |
Title | Iron-copper interactions in iron-limited phytoplankton in the northeast subarctic Pacific Ocean |
URI | https://api.istex.fr/ark:/67375/WNG-N1307QVW-N/fulltext.pdf https://www.jstor.org/stable/26628413 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flno.10210 https://www.proquest.com/docview/1780505204 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1dS8MwFA2yvYggfg3nFxFEfAlr07RdH4c4dcwOwbm9hTRNQTbS0m3go__Bf-gv8SbtxnzwraUNofemvae5556L0I2gsitF4JAEwC1hNEyJcAQjPkulCuF3zGOmOPklDp7GbDD1pzWJZlHTKi0v0GbxASAlc9WBIAJfUdObtgnh2If3rznox73hlrquX7UqoIx4fuSsJYQc2pnr3MgTmArZpjHc55p4-AdSbgNTG1n6B2i_hoS4V_nwEO0ofYT2RlIJXetJHyPxXOb65-tb5kWhSmxEHsqqJGEBJ9jUqpF5VauEYcAyL-ZCzwDXmauA8bA2-RnTpwcvVgksbpgL14Q8bKc6QeP-w9v9E6m7I5APBo9IsjDzqMxYCKDJc1NHJkpEPk0kNe2kRSYCmcjIzdyUOWkkGWWpryRlXgqgJwUntFBD51qdIuxEWdL1BFNW_y9igMqUFArCViYDVwRtdGtNx4tKAYOLcmYIYaHPJ_EjjyEOhq_vEx63UcvadnPj2nNtdL02Nof1a5ISQqt8teCuaapgyDisje6sFzaDK0VlysGF3LqQD-ORPTj7b55ztAuIpt4juUCNZblSl4AalslVvWZ-AdX6wCk |
linkProvider | JSTOR |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bS8MwFA7iHhRBvOK8RhDxJaxN09Y-ijg3nR2Cl72FNE1BNtLSbuCj_8F_6C_xJO3GfPCtpQmh54SeLz3f-Q5CF4LKaykChyQAbgmjYUqEIxjxWSpVCMcxj5ni5Kc46L2yh5E_akg0VUOrtLxAm8UHgJRMVAeCCHxFTW_alindhjNW66Eb3wyW1HX9ulUBZcTzI2cuIeTQzkTnRp7AVMi2jOE-58TDP5ByGZjayNLdQpsNJMQ3tQ-30YrSO2hjKJXQjZ70LhL9Mtc_X98yLwpVYiPyUNYlCRXcYFOrRiZ1rRKGCdO8mAg9BlxnngLGw9rkZ0yfHlzNEtjcsBZuCHnYLrWHXrt3L7c90nRHIB8MXpFkYeZRmbEQQJPnpo5MlIh8mkhq2kmLTAQykZGbuSlz0kgyylJfScq8FEBPCk7YR6s61-oAYSfKkmtPMGX1_yIGqExJoSBsZTJwRdBGl9Z0vKgVMLgox4YQFvr8Pb7nMcTB8PntncdttG9tuxg491wbnc-NzWH_mqSE0CqfVdw1TRUMGYe10ZX1wmJyrahMObiQWxfyQTy0F4f_rXOG1novTwM-6MePR2gd0E3zv-QYrU7LmToBBDFNTpv98wsGUcMZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LS8QwEA7igoggPnF9RhDxErZN09YeRV1XXauCr1tIkxRkl7R0d8Gj_8F_6C9xknYXPXhracPQmWnna2bmG4SOBJWnUkQeyQDcEkZjRYQnGAmZkjqG37GA2ebkuzTqPbObt_CtIYseNWWVri7QZfEBIGVD3SlV3oFAAl9SO5-2Zdu34R1s3XTTs_4vht2wHldAGQnCxJvSCHm0MzSFpSiwXbItq7yPafHhH1j5G5y66NJdQcsNLMRntR1X0Zw2a2jpXmphGk7pdSSuq8J8f37Joix1hS3RQ1W3JYzgBNt-NTKs-5UwLBgX5VCYAWA7exVwHjY2R2Nn9eDRJAMHB1m4KcrDTtQGeu5ePp33SDMhgbwzeESSx3lAZc5iAE6BrzyZaZGENJPUjpQWuYhkJhM_9xXzVCIZZSrUkrJAAfBRYIhNNG8Ko7cQ9pI8Ow0E044DMGGAzLQUGkJXLiNfRG107FTHy5oFg4tqYIvC4pC_plc8hVgYP7688rSNNp1uZzdOLddGh1Nlc_Bhm5gQRheTEfftYAVbkMPa6MRZYba4ZlWmHEzInQl5P713B9v_yTlACw8XXd6_Tm930CIAnGbLZBfNj6uJ3gMQMc72G_f5AegtxCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron-copper+interactions+in+iron-limited+phytoplankton+in+the+northeast+subarctic+Pacific+Ocean&rft.jtitle=Limnology+and+oceanography&rft.au=Semeniuk%2C+David+M&rft.au=Taylor%2C+Rebecca+L&rft.au=Bundy%2C+Randelle+M&rft.au=Johnson%2C+WKeith&rft.date=2016-01-01&rft.issn=0024-3590&rft.eissn=1939-5590&rft.volume=61&rft.issue=1&rft.spage=279&rft.epage=297&rft_id=info:doi/10.1002%2Flno.10210&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3590&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3590&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3590&client=summon |