Effect of Additive Oxygen on the Reactive Species Profile and Microbicidal Property of a Helium Atmospheric Pressure Plasma Jet
Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric‐pressure plasma jet ignited...
Saved in:
Published in | Plasma processes and polymers Vol. 13; no. 11; pp. 1089 - 1105 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.11.2016
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric‐pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air.
A combination of inactivation experiments, test strip measurements, and a 2D model of afterglow chemistry is employed to identify the key active species and reaction pathways leading to Escherichia coli inactivation by an atmospheric‐pressure plasma jet. The jet operates either in helium or in a helium/oxygen mixture, and it is shown that the inactivation mechanisms are different in the two cases. |
---|---|
AbstractList | Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric-pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air. Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This article investigated the efficacy of an atmospheric-pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air. Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric-pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air. A combination of inactivation experiments, test strip measurements, and a 2D model of afterglow chemistry is employed to identify the key active species and reaction pathways leading to Escherichia coli inactivation by an atmospheric-pressure plasma jet. The jet operates either in helium or in a helium/oxygen mixture, and it is shown that the inactivation mechanisms are different in the two cases. Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric‐pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air. A combination of inactivation experiments, test strip measurements, and a 2D model of afterglow chemistry is employed to identify the key active species and reaction pathways leading to Escherichia coli inactivation by an atmospheric‐pressure plasma jet. The jet operates either in helium or in a helium/oxygen mixture, and it is shown that the inactivation mechanisms are different in the two cases. |
Author | Ptasinska, Sylwia Jones, Brendan T. Zajíčková, Lenka Obrusník, Adam Arjunan, Krishna Priya |
Author_xml | – sequence: 1 givenname: Krishna Priya surname: Arjunan fullname: Arjunan, Krishna Priya email: krishnapriya@gmail.com organization: Radiation Laboratory, University of Notre Dame, Indiana, 46556, Notre Dame – sequence: 2 givenname: Adam surname: Obrusník fullname: Obrusník, Adam organization: Department of Physical Electronics, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic – sequence: 3 givenname: Brendan T. surname: Jones fullname: Jones, Brendan T. organization: Radiation Laboratory, University of Notre Dame, 46556, Notre Dame, Indiana – sequence: 4 givenname: Lenka surname: Zajíčková fullname: Zajíčková, Lenka organization: Department of Physical Electronics, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic – sequence: 5 givenname: Sylwia surname: Ptasinska fullname: Ptasinska, Sylwia organization: Radiation Laboratory, University of Notre Dame, 46556, Notre Dame, Indiana |
BackLink | https://www.osti.gov/servlets/purl/1533212$$D View this record in Osti.gov |
BookMark | eNpdkUtv1DAUhSNUJNrClrUFGzYpfsSOsxxVfYBKG15CYmM59jXjksTBdqCz4q-TMGgWrGxff-dI556T4mgMIxTFc4LPCMb09TTp6YxiIjDGXD4qjokgtJRSNEeHO8dPipOU7jFmC4OPi98XzoHJKDi0sdZn_xPQ3cPuG4wojChvAX0Abf6OP05gPCTUxuB8D0iPFr3zJobOG291v35MEPNuNdPoGno_D2iTh5CmLURvFgBSmiOgttdp0Ogt5KfFY6f7BM_-nafF58uLT-fX5c3d1ZvzzU3pK1bLspNWYmexwaZiVHLiOgOSVdqKqnHguJSVBWpw09BGWOEM1l3HgDvmGmwtOy1e7H1Dyl4l4zOYrQnjuIRXhDNGCV2gV3toiuHHDCmrwScDfa9HCHNSRIqK13VDyYK-_A-9D3MclwgLVfGKM0xXw2ZP_VoWtlNT9IOOO0WwWhtTa2Pq0Jhq2017eC3acq_1KcPDQavjdyVqVnP15fZKvRd1-1VIoW7ZHwJNnc8 |
ContentType | Journal Article |
Copyright | 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Univ. of Notre Dame, IN (United States) |
CorporateAuthor_xml | – name: Univ. of Notre Dame, IN (United States) |
DBID | BSCLL 7SR 8FD JG9 OIOZB OTOTI |
DOI | 10.1002/ppap.201600058 |
DatabaseName | Istex Engineered Materials Abstracts Technology Research Database Materials Research Database OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1612-8869 |
EndPage | 1105 |
ExternalDocumentID | 1533212 4268629001 PPAP201600058 ark_67375_WNG_Q67PZ686_N |
Genre | article |
GrantInformation_xml | – fundername: National Sustainability Programme II |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ 7SR 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-i4378-b8d80fd0c0c432851fbce834ad649fef5884de2c099296d6fc0abb3e5f3f90dd3 |
IEDL.DBID | DR2 |
ISSN | 1612-8850 |
IngestDate | Fri May 19 00:59:31 EDT 2023 Fri Jul 11 02:51:14 EDT 2025 Sun Jul 13 03:36:30 EDT 2025 Wed Jan 22 16:26:45 EST 2025 Wed Oct 30 09:51:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4378-b8d80fd0c0c432851fbce834ad649fef5884de2c099296d6fc0abb3e5f3f90dd3 |
Notes | National Sustainability Programme II ark:/67375/WNG-Q67PZ686-N ArticleID:PPAP201600058 istex:75976A0B741C33D154546BDD4F18DFDD032082C9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) Ministry of Education, Youth and Sports of the Czech Republic FC02-04ER15533 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1533212 |
PQID | 1845453022 |
PQPubID | 1036335 |
PageCount | 17 |
ParticipantIDs | osti_scitechconnect_1533212 proquest_miscellaneous_1864577921 proquest_journals_1845453022 wiley_primary_10_1002_ppap_201600058_PPAP201600058 istex_primary_ark_67375_WNG_Q67PZ686_N |
PublicationCentury | 2000 |
PublicationDate | November 2016 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Plasma processes and polymers |
PublicationTitleAlternate | Plasma Process. Polym |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | T. Maisch, T. Shimizu, G. Isbary, J. Heinlin, S. Karrer, T. G. Klämpfl, Y.-F. Li, G. Morfill, J. L. Zimmermann, Appl. Environ. Microbiol. 2012, 78, 4242. K. Arjunan, V. Sharma, S. Ptasinska, Int. J. Mol. Sci. 2015, 16, 2971. N. Y. Babaeva, M. J. Kushner, Plasma Sources Sci. Technol. 2014, 23, 015007. M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 2004, 233, 81. E. Adhikari, S. Ptasinska., Eur. Phys. J. D 2016, in press, DOI: 10.1140/epjd/e2016-70274-6. M. J. Pavlovich, T. Ono, C. Galleher, B. Curtis, D. S. Clark, Z. Machala, D. B. Graves, J. Phys. D Appl. Phys. 2014, 47, 505202. P. Synek, A. Obrusník, S. Hübner, S. Nijdam, L. Zajíčková, Plasma Sources Sci. Technol. 2015, 24, 025030. Y. Sakiyama, D. B. Graves, Plasma Sources Sci. Technol. 2009, 18, 025022. R. Bryk, P. Griffin, C. Nathan, Nature 2000, 407, 211. J. S. Sousa, K. Niemi, L. J. Cox, Q. T. Algwari, T. Gans, D. O'Connell, J. Appl. Phys. 2011, 109, 123302. X. Zhang, J. Huang, X. Liu, L. Peng, L. Guo, G. Lv, W. Chen, K. Feng, S.-z. Yang, J. Appl. Phys. 2009, 105, 063302. T. G. Klämpfl, G. Isbary, T. Shimizu, Y.-F. Li, J. L. Zimmermann, W. Stolz, J. Schlegel, G. E. Morfill, H.-U. Schmidt, Appl. Environ. Microbiol. 2012, 78, 5077. B. Bahnev, M. Bowden, A. Stypczyńska, S. Ptasińska, N. Mason, N. J. Braithwaite, Eur. Phys. J. D 2014, 68, 1. C.-H. Kim, S. Kwon, J. H. Bahn, K. Lee, S. I. Jun, P. D. Rack, S. J. Baek, Appl. Phys. Lett. 2010, 96, 243701. E. Stoffels, A. J. Flikweert, W. W. Stoffels, G. M. W. Kroesen, Plasma Sources Sci. Technol. 2002, 11, 383. S. Pfeiffer, A. C. F. Gorren, K. Schmidt, E. R. Werner, B. Hansert, D. S. Bohle, B. Mayer, J. Biol. Chem. 1997, 272, 3465. R. M. Walk, J. A. Snyder, P. Srinivasan, J. Kirsch, S. O. Diaz, F. C. Blanco, A. Shashurin, M. Keidar, A. D. Sandler, J. Pediatr. Surg. 2013, 48, 67. H. C. Baxter, G. A. Campbell, P. R. Richardson, A. C. Jones, I. R. Whittle, M. Casey, A. G. Whittaker, R. L. Baxter, IEEE Trans. Plasma Sci. 2006, 34, 1337. M. Leduc, D. Guay, R. L. Leask, S. Coulombe, New J. Phys. 2009, 11, 115021. S. P. Kuo, C. Cheng-Yen, L. Chuan-Shun, C. Shu-Hsing, IEEE Trans. Plasma Sci. 2012, 40, 1117. S. P. Kuo, J. Biomed. Sci. Eng. 2012, 5, 481. G. Y. Gerasimov, O. P. Shatalov, J. Eng. Phys. Thermophys. 2013, 86, 987. E. D. Yildirim, H. Ayan, V. N. Vasilets, A. Fridman, S. Guceri, W. Sun, Plasma Process. Polym. 2008, 5, 58. S. Schneider, J. W. Lackmann, F. Narberhaus, J. E. Bandow, B. Denis, J. Benedikt, J. Phys. D Appl. Phys. 2011, 44, 295201. S. P. Kuo, O. Tarasenko, J. Chang, S. Popovic, C. Y. Chen, H. W. Fan, A. Scott, M. Lahiani, P. Alusta, J. D. Drake, M. Nikolic, New J. Phys. 2009, 11, 115016. T. Murakami, K. Niemi, T. Gans, D. O'Connell, W. G. Graham, Plasma Sources Sci. Technol. 2014, 23, 025005. J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, B. A. Freeman, Proc. Nat. Acad. Sci. USA 1990, 87, 1620. W. V. Gaens, A. Bogaerts, J. Phys. D Appl. Phys. 2013, 46, 275201. D. Ellerweg, J. Benedikt, A. v. Keudell, N. Knake, V.S. -v. d. Gathen, New J. Phys. 2010, 12, 013021. L. F. Gaunt, C. B. Beggs, G. E. Georghiou, IEEE Trans. Plasma Sci. 2006, 34, 1257. S. J. Kim, T. H. Chung, S. H. Bae, S. H. Leem, Appl. Phys. Lett. 2010, 97, 023702. G. E. Morfill, T. Shimizu, B. Steffes, H. U. Schmidt, New J. Phys. 2009, 11, 115019. M. R. Pervez, A. Begum, M. Laroussi, Int. J. Eng. Technol. 2014, 14, 7. R. I. Komanapalli, S. B. H. Lau, Appl. Microbiol. Biotechnol. 1996, 46, 610. X. Y. Liu, X. K. Pei, X. P. Lu, D. W. Liu, Plasma Sources Sci. Technol. 2014, 23, 035007. M. Hähnel, T. von Woedtke, K.-D. Weltmann, Plasma Process. Polym. 2010, 7, 244. K. Oehmigen, M. Hähnel, R. Brandenburg, C. Wilke, K. D. Weltmann, T. von Woedtke, Plasma Process. Polym. 2010, 7, 250. J. Goree, B. Liu, D. Drake, E. Stoffels, IEEE Trans. Plasma Sci. 2006, 34, 1317. G. Isbary, J. Heinlin, T. Shimizu, J. L. Zimmermann, G. Morfill, H. U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler, W. Stolz, Br. J. Dermatol. 2012, 167, 404. N. Barekzi, M. Laroussi, J. Phys. D Appl. Phys. 2012, 45, 422002. M. Thiyagarajan, L. Waldbeser, A. Whitmill, Stud. Health Technol. Inform. 2012, 173, 515. J. Goree, L. Bin, D. David, J. Phys. D Appl. Phys. 2006, 39, 3479. G. Fridman, A. Shereshevsky, M. Jost, A. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Plasma Chem. Plasma Process. 2007, 27, 163. X. Han, W. A. Cantrell, E. E. Escobar, S. Ptasinska, Eur. Phys. J. D 2014, 68, 1. E. Robert, E. Barbosa, S. Dozias, M. Vandamme, C. Cachoncinlle, R. Viladrosa, J. M. Pouvesle, Plasma Process. Polym. 2009, 6, 795. E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 3rd edition, Cambridge University Press, New York 2009. X. Han, M. Klas, Y. Liu, M. Sharon Stack, S. Ptasinska, Appl. Phys. Lett. 2013, 102, 233703. N. K. Kaushik, Y. H. Kim, Y. G. Han, E. H. Choi, Curr. Appl. Phys. 2013, 13, 176. J. Voráč, A. Obrusník, V. Procházka, P. Dvořák, M. Talába, Plasma Sources Sci. Technol. 2014, 23, 025011. X. Lu, C. Yinguang, P. Yang, X. Qing, X. Zilan, Y. Xian, Y. Pan, IEEE Trans. Plasma Sci. 2009, 37, 668. M. T. Madigan, J. M. Martinko, Brock biology of microorganisms, 11th edition, Pearson Prentice Hall, Upper Saddle River, NJ 2006. S. Kelly, M. M. Turner, Plasma Sources Sci. Technol. 2014, 23, 065013. M. Boselli, V. Colombo, E. Ghedini, M. Gherardi, R. Laurita, A. Liguori, P. Sanibondi, A. Stancampiano, Plasma Chem. Plasma Process. 2014, 34, 853. L. Partecke, K. Evert, J. Haugk, F. Doering, L. Normann, S. Diedrich, F.-U. Weiss, M. Evert, N. Huebner, C. Guenther, C. Heidecke, A. Kramer, R. Bussiahn, K.-D. Weltmann, O. Pati, C. Bender, W. von Bernstorff, BMC Cancer, 2012, 12, 1. J. H. Choi, I. Han, H. K. Baik, M. H. Lee, D.-W. Han, J.-C. Park, I.-S. Lee, K. M. Song, Y. S. Lim, J. Electrostat. 2006, 64, 17. C. A. J. v. Gils, S. Hofmann, B. K. H. L. Boekema, R. Brandenburg, P. J. Bruggeman, J. Phys. D Appl. Phys. 2013, 46, 175203. M. Vandamme, E. Robert, S. Dozias, J. Sobilo, S. Lerondel, A. Le Pape, J.-M. Pouvesle, Plasma Medicine 2011, 1, 27. Y.-T. Chang, G. Chen, J. Dent. Sci. 2014, 11, 65. G. Isbary, G. Morfill, H. U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J. L. Zimmermann, R. Pompl, W. Stolz, Br. J. Dermatol. 2010, 163, 78. N. N. Misra, B. K. Tiwari, K. S. M. S. Raghavarao, P. J. Cullen, Food Eng. Rev. 2011, 3, 159. Y. Sakai, V. Khajoee, Y. Ogawa, K. Kusuhara, Y. Katayama, T. Hara, J. Biotechnol. 2006, 121, 299. J. L. Zimmermann, K. Dumler, T. Shimizu, G. E. Morfill, A. Wolf, V. Boxhammer, J. Schlegel, B. Gansbacher, M. Anton, J. Phys. D Appl. Phys. 2011, 44, 505201. H. C. Baxter, G. A. Campbell, A. G. Whittaker, A. C. Jones, A. Aitken, A. H. Simpson, M. Casey, L. Bountiff, L. Gibbard, R. L. Baxter, J. Gen. Virol. 2005, 86, 2393. G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, Plasma Chem. Plasma Process. 2006, 26, 425. Y. Sakiyama, N. Knake, D. Schröder, J. Winter, V. Schulz-von der Gathen, D. B. Graves, Appl. Phys. Lett. 2010, 97, 151501. G. Ferrer-Sueta, R. Radi, ACS Chem. Biol. 2009, 4, 161. P. P. Sun, H. L. Chen, S. J. Park, J. G. Eden, D. X. Liu, M. G. Kong, J. Phys. D Appl. Phys. 2015, 48, 425203. K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, D. O'Connell, Plasma Sources Sci. Technol. 2011, 20, 055005. T. Murakami, Q. T. Algwari, K. Niemi, T. Gans, D. O'Connell, W. D. Graham, Reaction kinetics of a kHz-driven atmospheric pressure plasma jet operated in ambient humid air, ICPIG 2013. Instituto de Astrofísica de Andalucía, Granada, Spain 2013. 2010; 12 2010; 97 2012; 167 2006; 34 1997; 272 2006; 39 2002; 11 2014; 68 2008; 5 2012; 12 2014; 23 2000; 407 2009; 11 2012; 173 2015; 48 1990; 87 2006; 64 2013; 13 2006; 26 2011; 20 2006; 121 2014; 14 2010; 7 2014; 11 2009; 18 2007; 27 2013; 48 2015; 16 2011; 1 2013; 46 2013; 86 2009 2010; 163 2005; 86 2014; 47 2013; 102 2006 2011; 3 2012; 78 2004; 233 2015; 24 2011; 109 2011; 44 2016 2009; 6 2013 2009; 4 1996; 46 2012; 45 2012; 5 2010; 96 2014; 34 2009; 37 2009; 105 2012; 40 |
References_xml | – reference: S. P. Kuo, C. Cheng-Yen, L. Chuan-Shun, C. Shu-Hsing, IEEE Trans. Plasma Sci. 2012, 40, 1117. – reference: Y.-T. Chang, G. Chen, J. Dent. Sci. 2014, 11, 65. – reference: J. H. Choi, I. Han, H. K. Baik, M. H. Lee, D.-W. Han, J.-C. Park, I.-S. Lee, K. M. Song, Y. S. Lim, J. Electrostat. 2006, 64, 17. – reference: N. Y. Babaeva, M. J. Kushner, Plasma Sources Sci. Technol. 2014, 23, 015007. – reference: R. I. Komanapalli, S. B. H. Lau, Appl. Microbiol. Biotechnol. 1996, 46, 610. – reference: X. Han, W. A. Cantrell, E. E. Escobar, S. Ptasinska, Eur. Phys. J. D 2014, 68, 1. – reference: E. Stoffels, A. J. Flikweert, W. W. Stoffels, G. M. W. Kroesen, Plasma Sources Sci. Technol. 2002, 11, 383. – reference: G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, Plasma Chem. Plasma Process. 2006, 26, 425. – reference: M. Vandamme, E. Robert, S. Dozias, J. Sobilo, S. Lerondel, A. Le Pape, J.-M. Pouvesle, Plasma Medicine 2011, 1, 27. – reference: J. L. Zimmermann, K. Dumler, T. Shimizu, G. E. Morfill, A. Wolf, V. Boxhammer, J. Schlegel, B. Gansbacher, M. Anton, J. Phys. D Appl. Phys. 2011, 44, 505201. – reference: H. C. Baxter, G. A. Campbell, A. G. Whittaker, A. C. Jones, A. Aitken, A. H. Simpson, M. Casey, L. Bountiff, L. Gibbard, R. L. Baxter, J. Gen. Virol. 2005, 86, 2393. – reference: M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 2004, 233, 81. – reference: M. J. Pavlovich, T. Ono, C. Galleher, B. Curtis, D. S. Clark, Z. Machala, D. B. Graves, J. Phys. D Appl. Phys. 2014, 47, 505202. – reference: N. K. Kaushik, Y. H. Kim, Y. G. Han, E. H. Choi, Curr. Appl. Phys. 2013, 13, 176. – reference: S. P. Kuo, O. Tarasenko, J. Chang, S. Popovic, C. Y. Chen, H. W. Fan, A. Scott, M. Lahiani, P. Alusta, J. D. Drake, M. Nikolic, New J. Phys. 2009, 11, 115016. – reference: L. F. Gaunt, C. B. Beggs, G. E. Georghiou, IEEE Trans. Plasma Sci. 2006, 34, 1257. – reference: W. V. Gaens, A. Bogaerts, J. Phys. D Appl. Phys. 2013, 46, 275201. – reference: S. Schneider, J. W. Lackmann, F. Narberhaus, J. E. Bandow, B. Denis, J. Benedikt, J. Phys. D Appl. Phys. 2011, 44, 295201. – reference: M. T. Madigan, J. M. Martinko, Brock biology of microorganisms, 11th edition, Pearson Prentice Hall, Upper Saddle River, NJ 2006. – reference: R. M. Walk, J. A. Snyder, P. Srinivasan, J. Kirsch, S. O. Diaz, F. C. Blanco, A. Shashurin, M. Keidar, A. D. Sandler, J. Pediatr. Surg. 2013, 48, 67. – reference: X. Lu, C. Yinguang, P. Yang, X. Qing, X. Zilan, Y. Xian, Y. Pan, IEEE Trans. Plasma Sci. 2009, 37, 668. – reference: D. Ellerweg, J. Benedikt, A. v. Keudell, N. Knake, V.S. -v. d. Gathen, New J. Phys. 2010, 12, 013021. – reference: S. P. Kuo, J. Biomed. Sci. Eng. 2012, 5, 481. – reference: T. Murakami, K. Niemi, T. Gans, D. O'Connell, W. G. Graham, Plasma Sources Sci. Technol. 2014, 23, 025005. – reference: X. Han, M. Klas, Y. Liu, M. Sharon Stack, S. Ptasinska, Appl. Phys. Lett. 2013, 102, 233703. – reference: E. Adhikari, S. Ptasinska., Eur. Phys. J. D 2016, in press, DOI: 10.1140/epjd/e2016-70274-6. – reference: G. Y. Gerasimov, O. P. Shatalov, J. Eng. Phys. Thermophys. 2013, 86, 987. – reference: C.-H. Kim, S. Kwon, J. H. Bahn, K. Lee, S. I. Jun, P. D. Rack, S. J. Baek, Appl. Phys. Lett. 2010, 96, 243701. – reference: S. J. Kim, T. H. Chung, S. H. Bae, S. H. Leem, Appl. Phys. Lett. 2010, 97, 023702. – reference: G. Ferrer-Sueta, R. Radi, ACS Chem. Biol. 2009, 4, 161. – reference: G. Fridman, A. Shereshevsky, M. Jost, A. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Plasma Chem. Plasma Process. 2007, 27, 163. – reference: J. Goree, B. Liu, D. Drake, E. Stoffels, IEEE Trans. Plasma Sci. 2006, 34, 1317. – reference: S. Pfeiffer, A. C. F. Gorren, K. Schmidt, E. R. Werner, B. Hansert, D. S. Bohle, B. Mayer, J. Biol. Chem. 1997, 272, 3465. – reference: M. Hähnel, T. von Woedtke, K.-D. Weltmann, Plasma Process. Polym. 2010, 7, 244. – reference: P. Synek, A. Obrusník, S. Hübner, S. Nijdam, L. Zajíčková, Plasma Sources Sci. Technol. 2015, 24, 025030. – reference: E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 3rd edition, Cambridge University Press, New York 2009. – reference: E. D. Yildirim, H. Ayan, V. N. Vasilets, A. Fridman, S. Guceri, W. Sun, Plasma Process. Polym. 2008, 5, 58. – reference: T. Murakami, Q. T. Algwari, K. Niemi, T. Gans, D. O'Connell, W. D. Graham, Reaction kinetics of a kHz-driven atmospheric pressure plasma jet operated in ambient humid air, ICPIG 2013. Instituto de Astrofísica de Andalucía, Granada, Spain 2013. – reference: Y. Sakiyama, N. Knake, D. Schröder, J. Winter, V. Schulz-von der Gathen, D. B. Graves, Appl. Phys. Lett. 2010, 97, 151501. – reference: M. Leduc, D. Guay, R. L. Leask, S. Coulombe, New J. Phys. 2009, 11, 115021. – reference: M. R. Pervez, A. Begum, M. Laroussi, Int. J. Eng. Technol. 2014, 14, 7. – reference: J. S. Sousa, K. Niemi, L. J. Cox, Q. T. Algwari, T. Gans, D. O'Connell, J. Appl. Phys. 2011, 109, 123302. – reference: M. Thiyagarajan, L. Waldbeser, A. Whitmill, Stud. Health Technol. Inform. 2012, 173, 515. – reference: X. Zhang, J. Huang, X. Liu, L. Peng, L. Guo, G. Lv, W. Chen, K. Feng, S.-z. Yang, J. Appl. Phys. 2009, 105, 063302. – reference: J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, B. A. Freeman, Proc. Nat. Acad. Sci. USA 1990, 87, 1620. – reference: B. Bahnev, M. Bowden, A. Stypczyńska, S. Ptasińska, N. Mason, N. J. Braithwaite, Eur. Phys. J. D 2014, 68, 1. – reference: N. N. Misra, B. K. Tiwari, K. S. M. S. Raghavarao, P. J. Cullen, Food Eng. Rev. 2011, 3, 159. – reference: T. G. Klämpfl, G. Isbary, T. Shimizu, Y.-F. Li, J. L. Zimmermann, W. Stolz, J. Schlegel, G. E. Morfill, H.-U. Schmidt, Appl. Environ. Microbiol. 2012, 78, 5077. – reference: H. C. Baxter, G. A. Campbell, P. R. Richardson, A. C. Jones, I. R. Whittle, M. Casey, A. G. Whittaker, R. L. Baxter, IEEE Trans. Plasma Sci. 2006, 34, 1337. – reference: C. A. J. v. Gils, S. Hofmann, B. K. H. L. Boekema, R. Brandenburg, P. J. Bruggeman, J. Phys. D Appl. Phys. 2013, 46, 175203. – reference: M. Boselli, V. Colombo, E. Ghedini, M. Gherardi, R. Laurita, A. Liguori, P. Sanibondi, A. Stancampiano, Plasma Chem. Plasma Process. 2014, 34, 853. – reference: P. P. Sun, H. L. Chen, S. J. Park, J. G. Eden, D. X. Liu, M. G. Kong, J. Phys. D Appl. Phys. 2015, 48, 425203. – reference: G. E. Morfill, T. Shimizu, B. Steffes, H. U. Schmidt, New J. Phys. 2009, 11, 115019. – reference: Y. Sakai, V. Khajoee, Y. Ogawa, K. Kusuhara, Y. Katayama, T. Hara, J. Biotechnol. 2006, 121, 299. – reference: K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, D. O'Connell, Plasma Sources Sci. Technol. 2011, 20, 055005. – reference: K. Oehmigen, M. Hähnel, R. Brandenburg, C. Wilke, K. D. Weltmann, T. von Woedtke, Plasma Process. Polym. 2010, 7, 250. – reference: Y. Sakiyama, D. B. Graves, Plasma Sources Sci. Technol. 2009, 18, 025022. – reference: X. Y. Liu, X. K. Pei, X. P. Lu, D. W. Liu, Plasma Sources Sci. Technol. 2014, 23, 035007. – reference: L. Partecke, K. Evert, J. Haugk, F. Doering, L. Normann, S. Diedrich, F.-U. Weiss, M. Evert, N. Huebner, C. Guenther, C. Heidecke, A. Kramer, R. Bussiahn, K.-D. Weltmann, O. Pati, C. Bender, W. von Bernstorff, BMC Cancer, 2012, 12, 1. – reference: T. Maisch, T. Shimizu, G. Isbary, J. Heinlin, S. Karrer, T. G. Klämpfl, Y.-F. Li, G. Morfill, J. L. Zimmermann, Appl. Environ. Microbiol. 2012, 78, 4242. – reference: E. Robert, E. Barbosa, S. Dozias, M. Vandamme, C. Cachoncinlle, R. Viladrosa, J. M. Pouvesle, Plasma Process. Polym. 2009, 6, 795. – reference: G. Isbary, G. Morfill, H. U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J. L. Zimmermann, R. Pompl, W. Stolz, Br. J. Dermatol. 2010, 163, 78. – reference: S. Kelly, M. M. Turner, Plasma Sources Sci. Technol. 2014, 23, 065013. – reference: G. Isbary, J. Heinlin, T. Shimizu, J. L. Zimmermann, G. Morfill, H. U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler, W. Stolz, Br. J. Dermatol. 2012, 167, 404. – reference: J. Voráč, A. Obrusník, V. Procházka, P. Dvořák, M. Talába, Plasma Sources Sci. Technol. 2014, 23, 025011. – reference: R. Bryk, P. Griffin, C. Nathan, Nature 2000, 407, 211. – reference: N. Barekzi, M. Laroussi, J. Phys. D Appl. Phys. 2012, 45, 422002. – reference: J. Goree, L. Bin, D. David, J. Phys. D Appl. Phys. 2006, 39, 3479. – reference: K. Arjunan, V. Sharma, S. Ptasinska, Int. J. Mol. Sci. 2015, 16, 2971. – volume: 23 start-page: 035007 year: 2014 publication-title: Plasma Sources Sci. Technol – volume: 12 start-page: 013021 year: 2010 publication-title: New J. Phys – year: 2016 publication-title: Eur. Phys. J. D – year: 2009 – volume: 4 start-page: 161 year: 2009 publication-title: ACS Chem. Biol – volume: 23 start-page: 015007 year: 2014 publication-title: Plasma Sources Sci. Technol – volume: 5 start-page: 58 year: 2008 publication-title: Plasma Process. Polym – volume: 407 start-page: 211 year: 2000 publication-title: Nature – volume: 96 start-page: 243701 year: 2010 publication-title: Appl. Phys. Lett – volume: 45 start-page: 422002 year: 2012 publication-title: J. Phys. D Appl. Phys – volume: 48 start-page: 67 year: 2013 publication-title: J. Pediatr. Surg – volume: 44 start-page: 295201 year: 2011 publication-title: J. Phys. D Appl. Phys – volume: 272 start-page: 3465 year: 1997 publication-title: J. Biol. Chem – volume: 16 start-page: 2971 year: 2015 publication-title: Int. J. Mol. Sci – volume: 11 start-page: 115021 year: 2009 publication-title: New J. Phys – volume: 26 start-page: 425 year: 2006 publication-title: Plasma Chem. Plasma Process – volume: 23 start-page: 065013 year: 2014 publication-title: Plasma Sources Sci. Technol – volume: 11 start-page: 115016 year: 2009 publication-title: New J. Phys – volume: 34 start-page: 853 year: 2014 publication-title: Plasma Chem. Plasma Process – volume: 3 start-page: 159 year: 2011 publication-title: Food Eng. Rev – volume: 109 start-page: 123302 year: 2011 publication-title: J. Appl. Phys – volume: 163 start-page: 78 year: 2010 publication-title: Br. J. Dermatol – volume: 11 start-page: 383 year: 2002 publication-title: Plasma Sources Sci. Technol – volume: 86 start-page: 987 year: 2013 publication-title: J. Eng. Phys. Thermophys – volume: 13 start-page: 176 year: 2013 publication-title: Curr. Appl. Phys – volume: 5 start-page: 481 year: 2012 publication-title: J. Biomed. Sci. Eng – volume: 102 start-page: 233703 year: 2013 publication-title: Appl. Phys. Lett – volume: 78 start-page: 5077 year: 2012 publication-title: Appl. Environ. Microbiol – volume: 64 start-page: 17 year: 2006 publication-title: J. Electrostat – volume: 18 start-page: 025022 year: 2009 publication-title: Plasma Sources Sci. Technol – volume: 44 start-page: 505201 year: 2011 publication-title: J. Phys. D Appl. Phys – volume: 34 start-page: 1257 year: 2006 publication-title: IEEE Trans. Plasma Sci – volume: 78 start-page: 4242 year: 2012 publication-title: Appl. Environ. Microbiol – volume: 11 start-page: 115019 year: 2009 publication-title: New J. Phys – volume: 20 start-page: 055005 year: 2011 publication-title: Plasma Sources Sci. Technol – volume: 11 start-page: 65 year: 2014 publication-title: J. Dent. Sci – volume: 37 start-page: 668 year: 2009 publication-title: IEEE Trans. Plasma Sci – volume: 23 start-page: 025011 year: 2014 publication-title: Plasma Sources Sci. Technol – volume: 23 start-page: 025005 year: 2014 publication-title: Plasma Sources Sci. Technol – volume: 233 start-page: 81 year: 2004 publication-title: Int. J. Mass Spectrom – volume: 47 start-page: 505202 year: 2014 publication-title: J. Phys. D Appl. Phys – volume: 97 start-page: 151501 year: 2010 publication-title: Appl. Phys. Lett – volume: 24 start-page: 025030 year: 2015 publication-title: Plasma Sources Sci. Technol – volume: 46 start-page: 610 year: 1996 publication-title: Appl. Microbiol. Biotechnol – volume: 1 start-page: 27 year: 2011 publication-title: Plasma Medicine – volume: 34 start-page: 1317 year: 2006 publication-title: IEEE Trans. Plasma Sci – volume: 167 start-page: 404 year: 2012 publication-title: Br. J. Dermatol – volume: 40 start-page: 1117 year: 2012 publication-title: IEEE Trans. Plasma Sci – volume: 12 start-page: 1 year: 2012 publication-title: BMC Cancer – volume: 86 start-page: 2393 year: 2005 publication-title: J. Gen. Virol – volume: 7 start-page: 244 year: 2010 publication-title: Plasma Process. Polym – volume: 105 start-page: 063302 year: 2009 publication-title: J. Appl. Phys – volume: 27 start-page: 163 year: 2007 publication-title: Plasma Chem. Plasma Process – volume: 87 start-page: 1620 year: 1990 publication-title: Proc. Nat. Acad. Sci. USA – volume: 46 start-page: 275201 year: 2013 publication-title: J. Phys. D Appl. Phys – volume: 121 start-page: 299 year: 2006 publication-title: J. Biotechnol – year: 2006 – volume: 48 start-page: 425203 year: 2015 publication-title: J. Phys. D Appl. Phys – volume: 173 start-page: 515 year: 2012 publication-title: Stud. Health Technol. Inform – volume: 6 start-page: 795 year: 2009 publication-title: Plasma Process. Polym – volume: 39 start-page: 3479 year: 2006 publication-title: J. Phys. D Appl. Phys – volume: 34 start-page: 1337 year: 2006 publication-title: IEEE Trans. Plasma Sci – volume: 68 start-page: 1 year: 2014 publication-title: Eur. Phys. J. D – volume: 46 start-page: 175203 year: 2013 publication-title: J. Phys. D Appl. Phys – volume: 7 start-page: 250 year: 2010 publication-title: Plasma Process. Polym – volume: 97 start-page: 023702 year: 2010 publication-title: Appl. Phys. Lett – volume: 14 start-page: 7 year: 2014 publication-title: Int. J. Eng. Technol – year: 2013 |
SSID | ssj0030580 |
Score | 2.3130825 |
Snippet | Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning... |
SourceID | osti proquest wiley istex |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 1089 |
SubjectTerms | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY afterglow chemistry Afterglows Bacteria Helium Inactivation Mathematical models microbial inactivation numerical model Oxygen Pathways physics Plasma plasma jet polymer science RONS production Two dimensional models |
Title | Effect of Additive Oxygen on the Reactive Species Profile and Microbicidal Property of a Helium Atmospheric Pressure Plasma Jet |
URI | https://api.istex.fr/ark:/67375/WNG-Q67PZ686-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.201600058 https://www.proquest.com/docview/1845453022 https://www.proquest.com/docview/1864577921 https://www.osti.gov/servlets/purl/1533212 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9QwEIct1AtceCNCCzIS4pY2azt29riqKFWlLqGiouJi-SlF1Sar3azUcuFfZ8bZDS1HuG20eTgZj_05mfkNIR8EY0axIubBRpmLOGH51HOXqzL60rKguMFE4fO5PL0UZ1fl1Z0s_kEfYnzhhp6Rxmt0cGPXR39EQ5dLg3qTE4nYgdm-GLCFVHQx6kdBX06l04BqwO2rstipNhbs6P7hgKb4VG9gYO7Ate7h5l1oTbPOyRNidu0dgk2uDze9PXQ__5Jy_J8bekoeb5GUzoY-9Iw8CO1z8vB4VwnuBfk1SBzTLtKZ9ynYiH65uYWuR7uWAkHSi2DSuElTOfuwpvVQCpya1tPzJok9ucbDVWp8-b_qb_FkhsKk12wWdNYvujXqGzSODvmKq0Br4PqFoWehf0kuTz59Oz7Nt4Ub8kZwWJXayldF9IUrnOAMmC5aFyoujJdiGkPE5FgfmAM6ZVPpZXSFsZaHMvI4Lbznr8he27XhNaEKeMmIKI2ChaKTEXmWqxhkFJUrAsvIx2Q4vRzEObRZXWOsmir19_ln_VWq-oespJ5nZB8tqwEsUB3XYRiR6zXiLszeGTnYGVxvnXitYfELfMmBcjLyfvwbnj1-UzFt6Da4jxSlgsZNMsKSdceWDILQTKNd9WhXXdezetx68y8H7ZNH-HvIiDwge_1qE94CGvX2Xer-vwECkgdM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMctGIdx4Tda2AAjIW7ZUttx0mM1McpYS5g2gbhYjn9I0dSkalNp48K_zntOExhHOKZpWifPz_7Yee_7CHkrGNMZS3zsSi9j4UcsHltu4iz1Ni2Zy7jGROHZXE4vxem3tI8mxFyYTh9i2HBDzwjjNTo4bkgf_VYNXS41Ck6OJHJHfpfcw7LeYVV1PihIQW8OxdOAa8Dx8zTpdRsTdnT7eoBTfK7XMDQ34Fy3gPNPbA3zzslDUvYt7sJNrg43bXlofvwl5vhft_SIPNhSKZ103egxuePqJ2T3uC8G95T87FSOaePpxNoQb0Q_X99A76NNTQEi6bnTYeikoaK9W9OiqwZOdW3prAp6T6ay8C8F7v-v2hv8MU1h3qs2CzppF80aJQ4qQ7uUxZWjBaD9QtNT1z4jlyfvL46n8bZ2Q1wJDgvTMrd54m1iEiM4A6zzpXE5F9pKMfbOY36sdcwAoLKxtNKbRJcld6nnfpxYy5-Tnbqp3R6hGSCTFl7qDNaKRnpEWp55J73ITeJYRN4Fy6llp8-h9OoKw9WyVH2df1BfZFZ8l7lU84jso2kVsAUK5BqMJDKtQuKFCTwiB73F1daP1wrWv4CYHEAnIm-G0_Ds8bWKrl2zwe9IkWbQuFFEWDDv0JJOE5optKsa7KqKYlIMRy_-5aLXZHd6MTtTZx_nn_bJffy8S5A8IDvtauNeAim15avgC78AcV8LZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMctGBJw4fdE2QAjIW7ZXNtx0mO1UcZgJUxMTFwsxz-kaGpStam0ceFf5z2nDRtHOOa3k-dnf-z4fR8hbyXnJuMsJL4MKpFhyJOREzbJ0uDSkvtMGAwUPpmqozN5fJ6eX4vi7_Qh-gk39IzYXqODz13Y_yMaOp8b1JscKsSO_Da5IxXLsV4fnvYCUlCZY-40wBrw-zxlG9lGxvdvXg9sip_1ElrmBnzrBm9ep9bY7UweErMpcLfa5GJv1ZZ79udfWo7_80aPyIM1k9JxV4kek1u-fkLuHWxSwT0lvzqNY9oEOnYurjaiXy6voO7RpqaAkPTUm9hw0pjP3i9p0eUCp6Z29KSKak-2cvCUAmf_F-0V3sxQ6PWq1YyO21mzRIGDytIuYHHhaQFgPzP02LfPyNnk_beDo2SduSGppIBhaZm7nAXHLLNScIC6UFqfC2mckqPgA0bHOs8t4CkfKaeCZaYshU-DCCPmnNgmW3VT--eEZgBMRgZlMhgpWhUQaEUWvAoyt8zzAXkXDafnnTqHNosLXKyWpfr79IP-qrLih8qVng7IDlpWA1mgPK7FdUS21ci70H0PyO7G4HrtxUsNo18ATAGYMyBv-sPw7fGniql9s8JzlEwzKNxwQHi0bl-SThGaa7Sr7u2qi2Jc9Fsv_uWi1-RucTjRnz9OP-2Q-7i7i47cJVvtYuVfAia15avoCb8BYIkKHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Additive+Oxygen+on+the+Reactive+Species+Profile+and+Microbicidal+Property+of+a+Helium+Atmospheric+Pressure+Plasma+Jet&rft.jtitle=Plasma+processes+and+polymers&rft.au=Arjunan%2C+Krishna+Priya&rft.au=Obrusn%C3%ADk%2C+Adam&rft.au=Jones%2C+Brendan+T.&rft.au=Zaj%C3%AD%C4%8Dkov%C3%A1%2C+Lenka&rft.date=2016-11-01&rft.pub=Wiley&rft.issn=1612-8850&rft.eissn=1612-8869&rft.volume=13&rft.issue=11&rft_id=info:doi/10.1002%2Fppap.201600058&rft.externalDocID=1533212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-8850&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-8850&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-8850&client=summon |