Effect of Additive Oxygen on the Reactive Species Profile and Microbicidal Property of a Helium Atmospheric Pressure Plasma Jet

Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric‐pressure plasma jet ignited...

Full description

Saved in:
Bibliographic Details
Published inPlasma processes and polymers Vol. 13; no. 11; pp. 1089 - 1105
Main Authors Arjunan, Krishna Priya, Obrusník, Adam, Jones, Brendan T., Zajíčková, Lenka, Ptasinska, Sylwia
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.11.2016
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric‐pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air. A combination of inactivation experiments, test strip measurements, and a 2D model of afterglow chemistry is employed to identify the key active species and reaction pathways leading to Escherichia coli inactivation by an atmospheric‐pressure plasma jet. The jet operates either in helium or in a helium/oxygen mixture, and it is shown that the inactivation mechanisms are different in the two cases.
AbstractList Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric-pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air.
Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This article investigated the efficacy of an atmospheric-pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air.
Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric-pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air. A combination of inactivation experiments, test strip measurements, and a 2D model of afterglow chemistry is employed to identify the key active species and reaction pathways leading to Escherichia coli inactivation by an atmospheric-pressure plasma jet. The jet operates either in helium or in a helium/oxygen mixture, and it is shown that the inactivation mechanisms are different in the two cases.
Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning the plasma factors responsible for bacterial inactivation. This work investigated the efficacy of an atmospheric‐pressure plasma jet ignited in either helium or helium/oxygen mixtures in inactivating Escherichia coli on agar. The correlation of data obtained from inactivation experiments and a 2D model describing the gas dynamics and afterglow chemistry showed that the inactivation mechanisms differed qualitatively between the two gas compositions. This work also provides insight into the reaction pathways that lead to the production and destruction of the key active species and illustrates the importance in these processes of admixing ambient air. A combination of inactivation experiments, test strip measurements, and a 2D model of afterglow chemistry is employed to identify the key active species and reaction pathways leading to Escherichia coli inactivation by an atmospheric‐pressure plasma jet. The jet operates either in helium or in a helium/oxygen mixture, and it is shown that the inactivation mechanisms are different in the two cases.
Author Ptasinska, Sylwia
Jones, Brendan T.
Zajíčková, Lenka
Obrusník, Adam
Arjunan, Krishna Priya
Author_xml – sequence: 1
  givenname: Krishna Priya
  surname: Arjunan
  fullname: Arjunan, Krishna Priya
  email: krishnapriya@gmail.com
  organization: Radiation Laboratory, University of Notre Dame, Indiana, 46556, Notre Dame
– sequence: 2
  givenname: Adam
  surname: Obrusník
  fullname: Obrusník, Adam
  organization: Department of Physical Electronics, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic
– sequence: 3
  givenname: Brendan T.
  surname: Jones
  fullname: Jones, Brendan T.
  organization: Radiation Laboratory, University of Notre Dame, 46556, Notre Dame, Indiana
– sequence: 4
  givenname: Lenka
  surname: Zajíčková
  fullname: Zajíčková, Lenka
  organization: Department of Physical Electronics, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic
– sequence: 5
  givenname: Sylwia
  surname: Ptasinska
  fullname: Ptasinska, Sylwia
  organization: Radiation Laboratory, University of Notre Dame, 46556, Notre Dame, Indiana
BackLink https://www.osti.gov/servlets/purl/1533212$$D View this record in Osti.gov
BookMark eNpdkUtv1DAUhSNUJNrClrUFGzYpfsSOsxxVfYBKG15CYmM59jXjksTBdqCz4q-TMGgWrGxff-dI556T4mgMIxTFc4LPCMb09TTp6YxiIjDGXD4qjokgtJRSNEeHO8dPipOU7jFmC4OPi98XzoHJKDi0sdZn_xPQ3cPuG4wojChvAX0Abf6OP05gPCTUxuB8D0iPFr3zJobOG291v35MEPNuNdPoGno_D2iTh5CmLURvFgBSmiOgttdp0Ogt5KfFY6f7BM_-nafF58uLT-fX5c3d1ZvzzU3pK1bLspNWYmexwaZiVHLiOgOSVdqKqnHguJSVBWpw09BGWOEM1l3HgDvmGmwtOy1e7H1Dyl4l4zOYrQnjuIRXhDNGCV2gV3toiuHHDCmrwScDfa9HCHNSRIqK13VDyYK-_A-9D3MclwgLVfGKM0xXw2ZP_VoWtlNT9IOOO0WwWhtTa2Pq0Jhq2017eC3acq_1KcPDQavjdyVqVnP15fZKvRd1-1VIoW7ZHwJNnc8
ContentType Journal Article
Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Univ. of Notre Dame, IN (United States)
CorporateAuthor_xml – name: Univ. of Notre Dame, IN (United States)
DBID BSCLL
7SR
8FD
JG9
OIOZB
OTOTI
DOI 10.1002/ppap.201600058
DatabaseName Istex
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1612-8869
EndPage 1105
ExternalDocumentID 1533212
4268629001
PPAP201600058
ark_67375_WNG_Q67PZ686_N
Genre article
GrantInformation_xml – fundername: National Sustainability Programme II
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
7SR
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-i4378-b8d80fd0c0c432851fbce834ad649fef5884de2c099296d6fc0abb3e5f3f90dd3
IEDL.DBID DR2
ISSN 1612-8850
IngestDate Fri May 19 00:59:31 EDT 2023
Fri Jul 11 02:51:14 EDT 2025
Sun Jul 13 03:36:30 EDT 2025
Wed Jan 22 16:26:45 EST 2025
Wed Oct 30 09:51:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4378-b8d80fd0c0c432851fbce834ad649fef5884de2c099296d6fc0abb3e5f3f90dd3
Notes National Sustainability Programme II
ark:/67375/WNG-Q67PZ686-N
ArticleID:PPAP201600058
istex:75976A0B741C33D154546BDD4F18DFDD032082C9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Ministry of Education, Youth and Sports of the Czech Republic
FC02-04ER15533
OpenAccessLink https://www.osti.gov/servlets/purl/1533212
PQID 1845453022
PQPubID 1036335
PageCount 17
ParticipantIDs osti_scitechconnect_1533212
proquest_miscellaneous_1864577921
proquest_journals_1845453022
wiley_primary_10_1002_ppap_201600058_PPAP201600058
istex_primary_ark_67375_WNG_Q67PZ686_N
PublicationCentury 2000
PublicationDate November 2016
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Plasma processes and polymers
PublicationTitleAlternate Plasma Process. Polym
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References T. Maisch, T. Shimizu, G. Isbary, J. Heinlin, S. Karrer, T. G. Klämpfl, Y.-F. Li, G. Morfill, J. L. Zimmermann, Appl. Environ. Microbiol. 2012, 78, 4242.
K. Arjunan, V. Sharma, S. Ptasinska, Int. J. Mol. Sci. 2015, 16, 2971.
N. Y. Babaeva, M. J. Kushner, Plasma Sources Sci. Technol. 2014, 23, 015007.
M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 2004, 233, 81.
E. Adhikari, S. Ptasinska., Eur. Phys. J. D 2016, in press, DOI: 10.1140/epjd/e2016-70274-6.
M. J. Pavlovich, T. Ono, C. Galleher, B. Curtis, D. S. Clark, Z. Machala, D. B. Graves, J. Phys. D Appl. Phys. 2014, 47, 505202.
P. Synek, A. Obrusník, S. Hübner, S. Nijdam, L. Zajíčková, Plasma Sources Sci. Technol. 2015, 24, 025030.
Y. Sakiyama, D. B. Graves, Plasma Sources Sci. Technol. 2009, 18, 025022.
R. Bryk, P. Griffin, C. Nathan, Nature 2000, 407, 211.
J. S. Sousa, K. Niemi, L. J. Cox, Q. T. Algwari, T. Gans, D. O'Connell, J. Appl. Phys. 2011, 109, 123302.
X. Zhang, J. Huang, X. Liu, L. Peng, L. Guo, G. Lv, W. Chen, K. Feng, S.-z. Yang, J. Appl. Phys. 2009, 105, 063302.
T. G. Klämpfl, G. Isbary, T. Shimizu, Y.-F. Li, J. L. Zimmermann, W. Stolz, J. Schlegel, G. E. Morfill, H.-U. Schmidt, Appl. Environ. Microbiol. 2012, 78, 5077.
B. Bahnev, M. Bowden, A. Stypczyńska, S. Ptasińska, N. Mason, N. J. Braithwaite, Eur. Phys. J. D 2014, 68, 1.
C.-H. Kim, S. Kwon, J. H. Bahn, K. Lee, S. I. Jun, P. D. Rack, S. J. Baek, Appl. Phys. Lett. 2010, 96, 243701.
E. Stoffels, A. J. Flikweert, W. W. Stoffels, G. M. W. Kroesen, Plasma Sources Sci. Technol. 2002, 11, 383.
S. Pfeiffer, A. C. F. Gorren, K. Schmidt, E. R. Werner, B. Hansert, D. S. Bohle, B. Mayer, J. Biol. Chem. 1997, 272, 3465.
R. M. Walk, J. A. Snyder, P. Srinivasan, J. Kirsch, S. O. Diaz, F. C. Blanco, A. Shashurin, M. Keidar, A. D. Sandler, J. Pediatr. Surg. 2013, 48, 67.
H. C. Baxter, G. A. Campbell, P. R. Richardson, A. C. Jones, I. R. Whittle, M. Casey, A. G. Whittaker, R. L. Baxter, IEEE Trans. Plasma Sci. 2006, 34, 1337.
M. Leduc, D. Guay, R. L. Leask, S. Coulombe, New J. Phys. 2009, 11, 115021.
S. P. Kuo, C. Cheng-Yen, L. Chuan-Shun, C. Shu-Hsing, IEEE Trans. Plasma Sci. 2012, 40, 1117.
S. P. Kuo, J. Biomed. Sci. Eng. 2012, 5, 481.
G. Y. Gerasimov, O. P. Shatalov, J. Eng. Phys. Thermophys. 2013, 86, 987.
E. D. Yildirim, H. Ayan, V. N. Vasilets, A. Fridman, S. Guceri, W. Sun, Plasma Process. Polym. 2008, 5, 58.
S. Schneider, J. W. Lackmann, F. Narberhaus, J. E. Bandow, B. Denis, J. Benedikt, J. Phys. D Appl. Phys. 2011, 44, 295201.
S. P. Kuo, O. Tarasenko, J. Chang, S. Popovic, C. Y. Chen, H. W. Fan, A. Scott, M. Lahiani, P. Alusta, J. D. Drake, M. Nikolic, New J. Phys. 2009, 11, 115016.
T. Murakami, K. Niemi, T. Gans, D. O'Connell, W. G. Graham, Plasma Sources Sci. Technol. 2014, 23, 025005.
J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, B. A. Freeman, Proc. Nat. Acad. Sci. USA 1990, 87, 1620.
W. V. Gaens, A. Bogaerts, J. Phys. D Appl. Phys. 2013, 46, 275201.
D. Ellerweg, J. Benedikt, A. v. Keudell, N. Knake, V.S. -v. d. Gathen, New J. Phys. 2010, 12, 013021.
L. F. Gaunt, C. B. Beggs, G. E. Georghiou, IEEE Trans. Plasma Sci. 2006, 34, 1257.
S. J. Kim, T. H. Chung, S. H. Bae, S. H. Leem, Appl. Phys. Lett. 2010, 97, 023702.
G. E. Morfill, T. Shimizu, B. Steffes, H. U. Schmidt, New J. Phys. 2009, 11, 115019.
M. R. Pervez, A. Begum, M. Laroussi, Int. J. Eng. Technol. 2014, 14, 7.
R. I. Komanapalli, S. B. H. Lau, Appl. Microbiol. Biotechnol. 1996, 46, 610.
X. Y. Liu, X. K. Pei, X. P. Lu, D. W. Liu, Plasma Sources Sci. Technol. 2014, 23, 035007.
M. Hähnel, T. von Woedtke, K.-D. Weltmann, Plasma Process. Polym. 2010, 7, 244.
K. Oehmigen, M. Hähnel, R. Brandenburg, C. Wilke, K. D. Weltmann, T. von Woedtke, Plasma Process. Polym. 2010, 7, 250.
J. Goree, B. Liu, D. Drake, E. Stoffels, IEEE Trans. Plasma Sci. 2006, 34, 1317.
G. Isbary, J. Heinlin, T. Shimizu, J. L. Zimmermann, G. Morfill, H. U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler, W. Stolz, Br. J. Dermatol. 2012, 167, 404.
N. Barekzi, M. Laroussi, J. Phys. D Appl. Phys. 2012, 45, 422002.
M. Thiyagarajan, L. Waldbeser, A. Whitmill, Stud. Health Technol. Inform. 2012, 173, 515.
J. Goree, L. Bin, D. David, J. Phys. D Appl. Phys. 2006, 39, 3479.
G. Fridman, A. Shereshevsky, M. Jost, A. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Plasma Chem. Plasma Process. 2007, 27, 163.
X. Han, W. A. Cantrell, E. E. Escobar, S. Ptasinska, Eur. Phys. J. D 2014, 68, 1.
E. Robert, E. Barbosa, S. Dozias, M. Vandamme, C. Cachoncinlle, R. Viladrosa, J. M. Pouvesle, Plasma Process. Polym. 2009, 6, 795.
E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 3rd edition, Cambridge University Press, New York 2009.
X. Han, M. Klas, Y. Liu, M. Sharon Stack, S. Ptasinska, Appl. Phys. Lett. 2013, 102, 233703.
N. K. Kaushik, Y. H. Kim, Y. G. Han, E. H. Choi, Curr. Appl. Phys. 2013, 13, 176.
J. Voráč, A. Obrusník, V. Procházka, P. Dvořák, M. Talába, Plasma Sources Sci. Technol. 2014, 23, 025011.
X. Lu, C. Yinguang, P. Yang, X. Qing, X. Zilan, Y. Xian, Y. Pan, IEEE Trans. Plasma Sci. 2009, 37, 668.
M. T. Madigan, J. M. Martinko, Brock biology of microorganisms, 11th edition, Pearson Prentice Hall, Upper Saddle River, NJ 2006.
S. Kelly, M. M. Turner, Plasma Sources Sci. Technol. 2014, 23, 065013.
M. Boselli, V. Colombo, E. Ghedini, M. Gherardi, R. Laurita, A. Liguori, P. Sanibondi, A. Stancampiano, Plasma Chem. Plasma Process. 2014, 34, 853.
L. Partecke, K. Evert, J. Haugk, F. Doering, L. Normann, S. Diedrich, F.-U. Weiss, M. Evert, N. Huebner, C. Guenther, C. Heidecke, A. Kramer, R. Bussiahn, K.-D. Weltmann, O. Pati, C. Bender, W. von Bernstorff, BMC Cancer, 2012, 12, 1.
J. H. Choi, I. Han, H. K. Baik, M. H. Lee, D.-W. Han, J.-C. Park, I.-S. Lee, K. M. Song, Y. S. Lim, J. Electrostat. 2006, 64, 17.
C. A. J. v. Gils, S. Hofmann, B. K. H. L. Boekema, R. Brandenburg, P. J. Bruggeman, J. Phys. D Appl. Phys. 2013, 46, 175203.
M. Vandamme, E. Robert, S. Dozias, J. Sobilo, S. Lerondel, A. Le Pape, J.-M. Pouvesle, Plasma Medicine 2011, 1, 27.
Y.-T. Chang, G. Chen, J. Dent. Sci. 2014, 11, 65.
G. Isbary, G. Morfill, H. U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J. L. Zimmermann, R. Pompl, W. Stolz, Br. J. Dermatol. 2010, 163, 78.
N. N. Misra, B. K. Tiwari, K. S. M. S. Raghavarao, P. J. Cullen, Food Eng. Rev. 2011, 3, 159.
Y. Sakai, V. Khajoee, Y. Ogawa, K. Kusuhara, Y. Katayama, T. Hara, J. Biotechnol. 2006, 121, 299.
J. L. Zimmermann, K. Dumler, T. Shimizu, G. E. Morfill, A. Wolf, V. Boxhammer, J. Schlegel, B. Gansbacher, M. Anton, J. Phys. D Appl. Phys. 2011, 44, 505201.
H. C. Baxter, G. A. Campbell, A. G. Whittaker, A. C. Jones, A. Aitken, A. H. Simpson, M. Casey, L. Bountiff, L. Gibbard, R. L. Baxter, J. Gen. Virol. 2005, 86, 2393.
G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, Plasma Chem. Plasma Process. 2006, 26, 425.
Y. Sakiyama, N. Knake, D. Schröder, J. Winter, V. Schulz-von der Gathen, D. B. Graves, Appl. Phys. Lett. 2010, 97, 151501.
G. Ferrer-Sueta, R. Radi, ACS Chem. Biol. 2009, 4, 161.
P. P. Sun, H. L. Chen, S. J. Park, J. G. Eden, D. X. Liu, M. G. Kong, J. Phys. D Appl. Phys. 2015, 48, 425203.
K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, D. O'Connell, Plasma Sources Sci. Technol. 2011, 20, 055005.
T. Murakami, Q. T. Algwari, K. Niemi, T. Gans, D. O'Connell, W. D. Graham, Reaction kinetics of a kHz-driven atmospheric pressure plasma jet operated in ambient humid air, ICPIG 2013. Instituto de Astrofísica de Andalucía, Granada, Spain 2013.
2010; 12
2010; 97
2012; 167
2006; 34
1997; 272
2006; 39
2002; 11
2014; 68
2008; 5
2012; 12
2014; 23
2000; 407
2009; 11
2012; 173
2015; 48
1990; 87
2006; 64
2013; 13
2006; 26
2011; 20
2006; 121
2014; 14
2010; 7
2014; 11
2009; 18
2007; 27
2013; 48
2015; 16
2011; 1
2013; 46
2013; 86
2009
2010; 163
2005; 86
2014; 47
2013; 102
2006
2011; 3
2012; 78
2004; 233
2015; 24
2011; 109
2011; 44
2016
2009; 6
2013
2009; 4
1996; 46
2012; 45
2012; 5
2010; 96
2014; 34
2009; 37
2009; 105
2012; 40
References_xml – reference: S. P. Kuo, C. Cheng-Yen, L. Chuan-Shun, C. Shu-Hsing, IEEE Trans. Plasma Sci. 2012, 40, 1117.
– reference: Y.-T. Chang, G. Chen, J. Dent. Sci. 2014, 11, 65.
– reference: J. H. Choi, I. Han, H. K. Baik, M. H. Lee, D.-W. Han, J.-C. Park, I.-S. Lee, K. M. Song, Y. S. Lim, J. Electrostat. 2006, 64, 17.
– reference: N. Y. Babaeva, M. J. Kushner, Plasma Sources Sci. Technol. 2014, 23, 015007.
– reference: R. I. Komanapalli, S. B. H. Lau, Appl. Microbiol. Biotechnol. 1996, 46, 610.
– reference: X. Han, W. A. Cantrell, E. E. Escobar, S. Ptasinska, Eur. Phys. J. D 2014, 68, 1.
– reference: E. Stoffels, A. J. Flikweert, W. W. Stoffels, G. M. W. Kroesen, Plasma Sources Sci. Technol. 2002, 11, 383.
– reference: G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, A. Brooks, Plasma Chem. Plasma Process. 2006, 26, 425.
– reference: M. Vandamme, E. Robert, S. Dozias, J. Sobilo, S. Lerondel, A. Le Pape, J.-M. Pouvesle, Plasma Medicine 2011, 1, 27.
– reference: J. L. Zimmermann, K. Dumler, T. Shimizu, G. E. Morfill, A. Wolf, V. Boxhammer, J. Schlegel, B. Gansbacher, M. Anton, J. Phys. D Appl. Phys. 2011, 44, 505201.
– reference: H. C. Baxter, G. A. Campbell, A. G. Whittaker, A. C. Jones, A. Aitken, A. H. Simpson, M. Casey, L. Bountiff, L. Gibbard, R. L. Baxter, J. Gen. Virol. 2005, 86, 2393.
– reference: M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 2004, 233, 81.
– reference: M. J. Pavlovich, T. Ono, C. Galleher, B. Curtis, D. S. Clark, Z. Machala, D. B. Graves, J. Phys. D Appl. Phys. 2014, 47, 505202.
– reference: N. K. Kaushik, Y. H. Kim, Y. G. Han, E. H. Choi, Curr. Appl. Phys. 2013, 13, 176.
– reference: S. P. Kuo, O. Tarasenko, J. Chang, S. Popovic, C. Y. Chen, H. W. Fan, A. Scott, M. Lahiani, P. Alusta, J. D. Drake, M. Nikolic, New J. Phys. 2009, 11, 115016.
– reference: L. F. Gaunt, C. B. Beggs, G. E. Georghiou, IEEE Trans. Plasma Sci. 2006, 34, 1257.
– reference: W. V. Gaens, A. Bogaerts, J. Phys. D Appl. Phys. 2013, 46, 275201.
– reference: S. Schneider, J. W. Lackmann, F. Narberhaus, J. E. Bandow, B. Denis, J. Benedikt, J. Phys. D Appl. Phys. 2011, 44, 295201.
– reference: M. T. Madigan, J. M. Martinko, Brock biology of microorganisms, 11th edition, Pearson Prentice Hall, Upper Saddle River, NJ 2006.
– reference: R. M. Walk, J. A. Snyder, P. Srinivasan, J. Kirsch, S. O. Diaz, F. C. Blanco, A. Shashurin, M. Keidar, A. D. Sandler, J. Pediatr. Surg. 2013, 48, 67.
– reference: X. Lu, C. Yinguang, P. Yang, X. Qing, X. Zilan, Y. Xian, Y. Pan, IEEE Trans. Plasma Sci. 2009, 37, 668.
– reference: D. Ellerweg, J. Benedikt, A. v. Keudell, N. Knake, V.S. -v. d. Gathen, New J. Phys. 2010, 12, 013021.
– reference: S. P. Kuo, J. Biomed. Sci. Eng. 2012, 5, 481.
– reference: T. Murakami, K. Niemi, T. Gans, D. O'Connell, W. G. Graham, Plasma Sources Sci. Technol. 2014, 23, 025005.
– reference: X. Han, M. Klas, Y. Liu, M. Sharon Stack, S. Ptasinska, Appl. Phys. Lett. 2013, 102, 233703.
– reference: E. Adhikari, S. Ptasinska., Eur. Phys. J. D 2016, in press, DOI: 10.1140/epjd/e2016-70274-6.
– reference: G. Y. Gerasimov, O. P. Shatalov, J. Eng. Phys. Thermophys. 2013, 86, 987.
– reference: C.-H. Kim, S. Kwon, J. H. Bahn, K. Lee, S. I. Jun, P. D. Rack, S. J. Baek, Appl. Phys. Lett. 2010, 96, 243701.
– reference: S. J. Kim, T. H. Chung, S. H. Bae, S. H. Leem, Appl. Phys. Lett. 2010, 97, 023702.
– reference: G. Ferrer-Sueta, R. Radi, ACS Chem. Biol. 2009, 4, 161.
– reference: G. Fridman, A. Shereshevsky, M. Jost, A. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Plasma Chem. Plasma Process. 2007, 27, 163.
– reference: J. Goree, B. Liu, D. Drake, E. Stoffels, IEEE Trans. Plasma Sci. 2006, 34, 1317.
– reference: S. Pfeiffer, A. C. F. Gorren, K. Schmidt, E. R. Werner, B. Hansert, D. S. Bohle, B. Mayer, J. Biol. Chem. 1997, 272, 3465.
– reference: M. Hähnel, T. von Woedtke, K.-D. Weltmann, Plasma Process. Polym. 2010, 7, 244.
– reference: P. Synek, A. Obrusník, S. Hübner, S. Nijdam, L. Zajíčková, Plasma Sources Sci. Technol. 2015, 24, 025030.
– reference: E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 3rd edition, Cambridge University Press, New York 2009.
– reference: E. D. Yildirim, H. Ayan, V. N. Vasilets, A. Fridman, S. Guceri, W. Sun, Plasma Process. Polym. 2008, 5, 58.
– reference: T. Murakami, Q. T. Algwari, K. Niemi, T. Gans, D. O'Connell, W. D. Graham, Reaction kinetics of a kHz-driven atmospheric pressure plasma jet operated in ambient humid air, ICPIG 2013. Instituto de Astrofísica de Andalucía, Granada, Spain 2013.
– reference: Y. Sakiyama, N. Knake, D. Schröder, J. Winter, V. Schulz-von der Gathen, D. B. Graves, Appl. Phys. Lett. 2010, 97, 151501.
– reference: M. Leduc, D. Guay, R. L. Leask, S. Coulombe, New J. Phys. 2009, 11, 115021.
– reference: M. R. Pervez, A. Begum, M. Laroussi, Int. J. Eng. Technol. 2014, 14, 7.
– reference: J. S. Sousa, K. Niemi, L. J. Cox, Q. T. Algwari, T. Gans, D. O'Connell, J. Appl. Phys. 2011, 109, 123302.
– reference: M. Thiyagarajan, L. Waldbeser, A. Whitmill, Stud. Health Technol. Inform. 2012, 173, 515.
– reference: X. Zhang, J. Huang, X. Liu, L. Peng, L. Guo, G. Lv, W. Chen, K. Feng, S.-z. Yang, J. Appl. Phys. 2009, 105, 063302.
– reference: J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, B. A. Freeman, Proc. Nat. Acad. Sci. USA 1990, 87, 1620.
– reference: B. Bahnev, M. Bowden, A. Stypczyńska, S. Ptasińska, N. Mason, N. J. Braithwaite, Eur. Phys. J. D 2014, 68, 1.
– reference: N. N. Misra, B. K. Tiwari, K. S. M. S. Raghavarao, P. J. Cullen, Food Eng. Rev. 2011, 3, 159.
– reference: T. G. Klämpfl, G. Isbary, T. Shimizu, Y.-F. Li, J. L. Zimmermann, W. Stolz, J. Schlegel, G. E. Morfill, H.-U. Schmidt, Appl. Environ. Microbiol. 2012, 78, 5077.
– reference: H. C. Baxter, G. A. Campbell, P. R. Richardson, A. C. Jones, I. R. Whittle, M. Casey, A. G. Whittaker, R. L. Baxter, IEEE Trans. Plasma Sci. 2006, 34, 1337.
– reference: C. A. J. v. Gils, S. Hofmann, B. K. H. L. Boekema, R. Brandenburg, P. J. Bruggeman, J. Phys. D Appl. Phys. 2013, 46, 175203.
– reference: M. Boselli, V. Colombo, E. Ghedini, M. Gherardi, R. Laurita, A. Liguori, P. Sanibondi, A. Stancampiano, Plasma Chem. Plasma Process. 2014, 34, 853.
– reference: P. P. Sun, H. L. Chen, S. J. Park, J. G. Eden, D. X. Liu, M. G. Kong, J. Phys. D Appl. Phys. 2015, 48, 425203.
– reference: G. E. Morfill, T. Shimizu, B. Steffes, H. U. Schmidt, New J. Phys. 2009, 11, 115019.
– reference: Y. Sakai, V. Khajoee, Y. Ogawa, K. Kusuhara, Y. Katayama, T. Hara, J. Biotechnol. 2006, 121, 299.
– reference: K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, D. O'Connell, Plasma Sources Sci. Technol. 2011, 20, 055005.
– reference: K. Oehmigen, M. Hähnel, R. Brandenburg, C. Wilke, K. D. Weltmann, T. von Woedtke, Plasma Process. Polym. 2010, 7, 250.
– reference: Y. Sakiyama, D. B. Graves, Plasma Sources Sci. Technol. 2009, 18, 025022.
– reference: X. Y. Liu, X. K. Pei, X. P. Lu, D. W. Liu, Plasma Sources Sci. Technol. 2014, 23, 035007.
– reference: L. Partecke, K. Evert, J. Haugk, F. Doering, L. Normann, S. Diedrich, F.-U. Weiss, M. Evert, N. Huebner, C. Guenther, C. Heidecke, A. Kramer, R. Bussiahn, K.-D. Weltmann, O. Pati, C. Bender, W. von Bernstorff, BMC Cancer, 2012, 12, 1.
– reference: T. Maisch, T. Shimizu, G. Isbary, J. Heinlin, S. Karrer, T. G. Klämpfl, Y.-F. Li, G. Morfill, J. L. Zimmermann, Appl. Environ. Microbiol. 2012, 78, 4242.
– reference: E. Robert, E. Barbosa, S. Dozias, M. Vandamme, C. Cachoncinlle, R. Viladrosa, J. M. Pouvesle, Plasma Process. Polym. 2009, 6, 795.
– reference: G. Isbary, G. Morfill, H. U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J. L. Zimmermann, R. Pompl, W. Stolz, Br. J. Dermatol. 2010, 163, 78.
– reference: S. Kelly, M. M. Turner, Plasma Sources Sci. Technol. 2014, 23, 065013.
– reference: G. Isbary, J. Heinlin, T. Shimizu, J. L. Zimmermann, G. Morfill, H. U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler, W. Stolz, Br. J. Dermatol. 2012, 167, 404.
– reference: J. Voráč, A. Obrusník, V. Procházka, P. Dvořák, M. Talába, Plasma Sources Sci. Technol. 2014, 23, 025011.
– reference: R. Bryk, P. Griffin, C. Nathan, Nature 2000, 407, 211.
– reference: N. Barekzi, M. Laroussi, J. Phys. D Appl. Phys. 2012, 45, 422002.
– reference: J. Goree, L. Bin, D. David, J. Phys. D Appl. Phys. 2006, 39, 3479.
– reference: K. Arjunan, V. Sharma, S. Ptasinska, Int. J. Mol. Sci. 2015, 16, 2971.
– volume: 23
  start-page: 035007
  year: 2014
  publication-title: Plasma Sources Sci. Technol
– volume: 12
  start-page: 013021
  year: 2010
  publication-title: New J. Phys
– year: 2016
  publication-title: Eur. Phys. J. D
– year: 2009
– volume: 4
  start-page: 161
  year: 2009
  publication-title: ACS Chem. Biol
– volume: 23
  start-page: 015007
  year: 2014
  publication-title: Plasma Sources Sci. Technol
– volume: 5
  start-page: 58
  year: 2008
  publication-title: Plasma Process. Polym
– volume: 407
  start-page: 211
  year: 2000
  publication-title: Nature
– volume: 96
  start-page: 243701
  year: 2010
  publication-title: Appl. Phys. Lett
– volume: 45
  start-page: 422002
  year: 2012
  publication-title: J. Phys. D Appl. Phys
– volume: 48
  start-page: 67
  year: 2013
  publication-title: J. Pediatr. Surg
– volume: 44
  start-page: 295201
  year: 2011
  publication-title: J. Phys. D Appl. Phys
– volume: 272
  start-page: 3465
  year: 1997
  publication-title: J. Biol. Chem
– volume: 16
  start-page: 2971
  year: 2015
  publication-title: Int. J. Mol. Sci
– volume: 11
  start-page: 115021
  year: 2009
  publication-title: New J. Phys
– volume: 26
  start-page: 425
  year: 2006
  publication-title: Plasma Chem. Plasma Process
– volume: 23
  start-page: 065013
  year: 2014
  publication-title: Plasma Sources Sci. Technol
– volume: 11
  start-page: 115016
  year: 2009
  publication-title: New J. Phys
– volume: 34
  start-page: 853
  year: 2014
  publication-title: Plasma Chem. Plasma Process
– volume: 3
  start-page: 159
  year: 2011
  publication-title: Food Eng. Rev
– volume: 109
  start-page: 123302
  year: 2011
  publication-title: J. Appl. Phys
– volume: 163
  start-page: 78
  year: 2010
  publication-title: Br. J. Dermatol
– volume: 11
  start-page: 383
  year: 2002
  publication-title: Plasma Sources Sci. Technol
– volume: 86
  start-page: 987
  year: 2013
  publication-title: J. Eng. Phys. Thermophys
– volume: 13
  start-page: 176
  year: 2013
  publication-title: Curr. Appl. Phys
– volume: 5
  start-page: 481
  year: 2012
  publication-title: J. Biomed. Sci. Eng
– volume: 102
  start-page: 233703
  year: 2013
  publication-title: Appl. Phys. Lett
– volume: 78
  start-page: 5077
  year: 2012
  publication-title: Appl. Environ. Microbiol
– volume: 64
  start-page: 17
  year: 2006
  publication-title: J. Electrostat
– volume: 18
  start-page: 025022
  year: 2009
  publication-title: Plasma Sources Sci. Technol
– volume: 44
  start-page: 505201
  year: 2011
  publication-title: J. Phys. D Appl. Phys
– volume: 34
  start-page: 1257
  year: 2006
  publication-title: IEEE Trans. Plasma Sci
– volume: 78
  start-page: 4242
  year: 2012
  publication-title: Appl. Environ. Microbiol
– volume: 11
  start-page: 115019
  year: 2009
  publication-title: New J. Phys
– volume: 20
  start-page: 055005
  year: 2011
  publication-title: Plasma Sources Sci. Technol
– volume: 11
  start-page: 65
  year: 2014
  publication-title: J. Dent. Sci
– volume: 37
  start-page: 668
  year: 2009
  publication-title: IEEE Trans. Plasma Sci
– volume: 23
  start-page: 025011
  year: 2014
  publication-title: Plasma Sources Sci. Technol
– volume: 23
  start-page: 025005
  year: 2014
  publication-title: Plasma Sources Sci. Technol
– volume: 233
  start-page: 81
  year: 2004
  publication-title: Int. J. Mass Spectrom
– volume: 47
  start-page: 505202
  year: 2014
  publication-title: J. Phys. D Appl. Phys
– volume: 97
  start-page: 151501
  year: 2010
  publication-title: Appl. Phys. Lett
– volume: 24
  start-page: 025030
  year: 2015
  publication-title: Plasma Sources Sci. Technol
– volume: 46
  start-page: 610
  year: 1996
  publication-title: Appl. Microbiol. Biotechnol
– volume: 1
  start-page: 27
  year: 2011
  publication-title: Plasma Medicine
– volume: 34
  start-page: 1317
  year: 2006
  publication-title: IEEE Trans. Plasma Sci
– volume: 167
  start-page: 404
  year: 2012
  publication-title: Br. J. Dermatol
– volume: 40
  start-page: 1117
  year: 2012
  publication-title: IEEE Trans. Plasma Sci
– volume: 12
  start-page: 1
  year: 2012
  publication-title: BMC Cancer
– volume: 86
  start-page: 2393
  year: 2005
  publication-title: J. Gen. Virol
– volume: 7
  start-page: 244
  year: 2010
  publication-title: Plasma Process. Polym
– volume: 105
  start-page: 063302
  year: 2009
  publication-title: J. Appl. Phys
– volume: 27
  start-page: 163
  year: 2007
  publication-title: Plasma Chem. Plasma Process
– volume: 87
  start-page: 1620
  year: 1990
  publication-title: Proc. Nat. Acad. Sci. USA
– volume: 46
  start-page: 275201
  year: 2013
  publication-title: J. Phys. D Appl. Phys
– volume: 121
  start-page: 299
  year: 2006
  publication-title: J. Biotechnol
– year: 2006
– volume: 48
  start-page: 425203
  year: 2015
  publication-title: J. Phys. D Appl. Phys
– volume: 173
  start-page: 515
  year: 2012
  publication-title: Stud. Health Technol. Inform
– volume: 6
  start-page: 795
  year: 2009
  publication-title: Plasma Process. Polym
– volume: 39
  start-page: 3479
  year: 2006
  publication-title: J. Phys. D Appl. Phys
– volume: 34
  start-page: 1337
  year: 2006
  publication-title: IEEE Trans. Plasma Sci
– volume: 68
  start-page: 1
  year: 2014
  publication-title: Eur. Phys. J. D
– volume: 46
  start-page: 175203
  year: 2013
  publication-title: J. Phys. D Appl. Phys
– volume: 7
  start-page: 250
  year: 2010
  publication-title: Plasma Process. Polym
– volume: 97
  start-page: 023702
  year: 2010
  publication-title: Appl. Phys. Lett
– volume: 14
  start-page: 7
  year: 2014
  publication-title: Int. J. Eng. Technol
– year: 2013
SSID ssj0030580
Score 2.3130825
Snippet Microbial inactivation by cold atmospheric plasmas has been a subject of tremendous research interest in recent years, in part, due to the ambiguity concerning...
SourceID osti
proquest
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1089
SubjectTerms 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
afterglow chemistry
Afterglows
Bacteria
Helium
Inactivation
Mathematical models
microbial inactivation
numerical model
Oxygen
Pathways
physics
Plasma
plasma jet
polymer science
RONS production
Two dimensional models
Title Effect of Additive Oxygen on the Reactive Species Profile and Microbicidal Property of a Helium Atmospheric Pressure Plasma Jet
URI https://api.istex.fr/ark:/67375/WNG-Q67PZ686-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fppap.201600058
https://www.proquest.com/docview/1845453022
https://www.proquest.com/docview/1864577921
https://www.osti.gov/servlets/purl/1533212
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Lb9QwEIct1AtceCNCCzIS4pY2azt29riqKFWlLqGiouJi-SlF1Sar3azUcuFfZ8bZDS1HuG20eTgZj_05mfkNIR8EY0axIubBRpmLOGH51HOXqzL60rKguMFE4fO5PL0UZ1fl1Z0s_kEfYnzhhp6Rxmt0cGPXR39EQ5dLg3qTE4nYgdm-GLCFVHQx6kdBX06l04BqwO2rstipNhbs6P7hgKb4VG9gYO7Ate7h5l1oTbPOyRNidu0dgk2uDze9PXQ__5Jy_J8bekoeb5GUzoY-9Iw8CO1z8vB4VwnuBfk1SBzTLtKZ9ynYiH65uYWuR7uWAkHSi2DSuElTOfuwpvVQCpya1tPzJok9ucbDVWp8-b_qb_FkhsKk12wWdNYvujXqGzSODvmKq0Br4PqFoWehf0kuTz59Oz7Nt4Ub8kZwWJXayldF9IUrnOAMmC5aFyoujJdiGkPE5FgfmAM6ZVPpZXSFsZaHMvI4Lbznr8he27XhNaEKeMmIKI2ChaKTEXmWqxhkFJUrAsvIx2Q4vRzEObRZXWOsmir19_ln_VWq-oespJ5nZB8tqwEsUB3XYRiR6zXiLszeGTnYGVxvnXitYfELfMmBcjLyfvwbnj1-UzFt6Da4jxSlgsZNMsKSdceWDILQTKNd9WhXXdezetx68y8H7ZNH-HvIiDwge_1qE94CGvX2Xer-vwECkgdM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMctGIdx4Tda2AAjIW7ZUttx0mM1McpYS5g2gbhYjn9I0dSkalNp48K_zntOExhHOKZpWifPz_7Yee_7CHkrGNMZS3zsSi9j4UcsHltu4iz1Ni2Zy7jGROHZXE4vxem3tI8mxFyYTh9i2HBDzwjjNTo4bkgf_VYNXS41Ck6OJHJHfpfcw7LeYVV1PihIQW8OxdOAa8Dx8zTpdRsTdnT7eoBTfK7XMDQ34Fy3gPNPbA3zzslDUvYt7sJNrg43bXlofvwl5vhft_SIPNhSKZ103egxuePqJ2T3uC8G95T87FSOaePpxNoQb0Q_X99A76NNTQEi6bnTYeikoaK9W9OiqwZOdW3prAp6T6ay8C8F7v-v2hv8MU1h3qs2CzppF80aJQ4qQ7uUxZWjBaD9QtNT1z4jlyfvL46n8bZ2Q1wJDgvTMrd54m1iEiM4A6zzpXE5F9pKMfbOY36sdcwAoLKxtNKbRJcld6nnfpxYy5-Tnbqp3R6hGSCTFl7qDNaKRnpEWp55J73ITeJYRN4Fy6llp8-h9OoKw9WyVH2df1BfZFZ8l7lU84jso2kVsAUK5BqMJDKtQuKFCTwiB73F1daP1wrWv4CYHEAnIm-G0_Ds8bWKrl2zwe9IkWbQuFFEWDDv0JJOE5optKsa7KqKYlIMRy_-5aLXZHd6MTtTZx_nn_bJffy8S5A8IDvtauNeAim15avgC78AcV8LZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMctGBJw4fdE2QAjIW7ZXNtx0mO1UcZgJUxMTFwsxz-kaGpStam0ceFf5z2nDRtHOOa3k-dnf-z4fR8hbyXnJuMsJL4MKpFhyJOREzbJ0uDSkvtMGAwUPpmqozN5fJ6eX4vi7_Qh-gk39IzYXqODz13Y_yMaOp8b1JscKsSO_Da5IxXLsV4fnvYCUlCZY-40wBrw-zxlG9lGxvdvXg9sip_1ElrmBnzrBm9ep9bY7UweErMpcLfa5GJv1ZZ79udfWo7_80aPyIM1k9JxV4kek1u-fkLuHWxSwT0lvzqNY9oEOnYurjaiXy6voO7RpqaAkPTUm9hw0pjP3i9p0eUCp6Z29KSKak-2cvCUAmf_F-0V3sxQ6PWq1YyO21mzRIGDytIuYHHhaQFgPzP02LfPyNnk_beDo2SduSGppIBhaZm7nAXHLLNScIC6UFqfC2mckqPgA0bHOs8t4CkfKaeCZaYshU-DCCPmnNgmW3VT--eEZgBMRgZlMhgpWhUQaEUWvAoyt8zzAXkXDafnnTqHNosLXKyWpfr79IP-qrLih8qVng7IDlpWA1mgPK7FdUS21ci70H0PyO7G4HrtxUsNo18ATAGYMyBv-sPw7fGniql9s8JzlEwzKNxwQHi0bl-SThGaa7Sr7u2qi2Jc9Fsv_uWi1-RucTjRnz9OP-2Q-7i7i47cJVvtYuVfAia15avoCb8BYIkKHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Additive+Oxygen+on+the+Reactive+Species+Profile+and+Microbicidal+Property+of+a+Helium+Atmospheric+Pressure+Plasma+Jet&rft.jtitle=Plasma+processes+and+polymers&rft.au=Arjunan%2C+Krishna+Priya&rft.au=Obrusn%C3%ADk%2C+Adam&rft.au=Jones%2C+Brendan+T.&rft.au=Zaj%C3%AD%C4%8Dkov%C3%A1%2C+Lenka&rft.date=2016-11-01&rft.pub=Wiley&rft.issn=1612-8850&rft.eissn=1612-8869&rft.volume=13&rft.issue=11&rft_id=info:doi/10.1002%2Fppap.201600058&rft.externalDocID=1533212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-8850&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-8850&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-8850&client=summon