The effectiveness of N2O in depleting stratospheric ozone

Recently, it was shown that of the ozone‐depleting substances currently emitted, N2O emissions (the primary source of stratospheric NOx) dominate, and are likely to do so throughout the 21st century. To investigate the links between N2O and NOx concentrations, and the effects of NOxon ozone in a cha...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 39; no. 15; pp. L15806 - n/a
Main Authors Revell, Laura E., Bodeker, Greg E., Smale, Dan, Lehmann, Ralph, Huck, Petra E., Williamson, Bryce E., Rozanov, Eugene, Struthers, Hamish
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 16.08.2012
American Geophysical Union
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, it was shown that of the ozone‐depleting substances currently emitted, N2O emissions (the primary source of stratospheric NOx) dominate, and are likely to do so throughout the 21st century. To investigate the links between N2O and NOx concentrations, and the effects of NOxon ozone in a changing climate, the evolution of stratospheric ozone from 1960 to 2100 was simulated using the NIWA‐SOCOL chemistry‐climate model. The yield of NOx from N2O is reduced due to stratospheric cooling and a strengthening of the Brewer‐Dobson circulation. After accounting for the reduced NOx yield, additional weakening of the primary NOxcycle is attributed to reduced availability of atomic oxygen, due to a) stratospheric cooling decreasing the atomic oxygen/ozone ratio, and b) enhanced rates of chlorine‐catalyzed ozone loss cycles around 2000 and enhanced rates of HOx‐induced ozone depletion. Our results suggest that the effects of N2O on ozone depend on both the radiative and chemical environment of the upper stratosphere, specifically CO2‐induced cooling of the stratosphere and elevated CH4 emissions which enhance HOx‐induced ozone loss and remove the availability of atomic oxygen to participate in NOx ozone loss cycles. Key Points NOx‐induced ozone destruction slows through the 21st century Due to chemical, radiative and dynamical changes in the stratosphere The effectiveness of N2O as an ODS is weakened by elevated CH4 concentrations
AbstractList Recently, it was shown that of the ozone‐depleting substances currently emitted, N2O emissions (the primary source of stratospheric NOx) dominate, and are likely to do so throughout the 21st century. To investigate the links between N2O and NOx concentrations, and the effects of NOxon ozone in a changing climate, the evolution of stratospheric ozone from 1960 to 2100 was simulated using the NIWA‐SOCOL chemistry‐climate model. The yield of NOx from N2O is reduced due to stratospheric cooling and a strengthening of the Brewer‐Dobson circulation. After accounting for the reduced NOx yield, additional weakening of the primary NOxcycle is attributed to reduced availability of atomic oxygen, due to a) stratospheric cooling decreasing the atomic oxygen/ozone ratio, and b) enhanced rates of chlorine‐catalyzed ozone loss cycles around 2000 and enhanced rates of HOx‐induced ozone depletion. Our results suggest that the effects of N2O on ozone depend on both the radiative and chemical environment of the upper stratosphere, specifically CO2‐induced cooling of the stratosphere and elevated CH4 emissions which enhance HOx‐induced ozone loss and remove the availability of atomic oxygen to participate in NOx ozone loss cycles. Key Points NOx‐induced ozone destruction slows through the 21st century Due to chemical, radiative and dynamical changes in the stratosphere The effectiveness of N2O as an ODS is weakened by elevated CH4 concentrations
Recently, it was shown that of the ozone-depleting substances currently emitted, N2O emissions (the primary source of stratospheric NOx) dominate, and are likely to do so throughout the 21st century. To investigate the links between N2O and NOx concentrations, and the effects of NOx on ozone in a changing climate, the evolution of stratospheric ozone from 1960 to 2100 was simulated using the NIWA-SOCOL chemistry-climate model. The yield of NOx from N2O is reduced due to stratospheric cooling and a strengthening of the Brewer-Dobson circulation. After accounting for the reduced NOx yield, additional weakening of the primary NOx cycle is attributed to reduced availability of atomic oxygen, due to a) stratospheric cooling decreasing the atomic oxygen/ozone ratio, and b) enhanced rates of chlorine-catalyzed ozone loss cycles around 2000 and enhanced rates of HOx-induced ozone depletion. Our results suggest that the effects of N2O on ozone depend on both the radiative and chemical environment of the upper stratosphere, specifically CO2-induced cooling of the stratosphere and elevated CH4 emissions which enhance HOx-induced ozone loss and remove the availability of atomic oxygen to participate in NOx ozone loss cycles. Citation: Revell, L. E., G. E. Bodeker, D. Smale, R. Lehmann, P. E. Huck, B. E. Williamson, E. Rozanov, and H. Struthers (2012), The effectiveness of N2O in depleting stratospheric ozone, Geophys. Res. Lett., 39, L15806, doi:10.1029/2012GL052143.
Recently, it was shown that of the ozone-depleting substances currently emitted, N2O emissions (the primary source of stratospheric NOx) dominate, and are likely to do so throughout the 21st century. To investigate the links between N2O and NOx concentrations, and the effects of NOx on ozone in a changing climate, the evolution of stratospheric ozone from 1960 to 2100 was simulated using the NIWA-SOCOL chemistry-climate model. The yield of NOx from N2O is reduced due to stratospheric cooling and a strengthening of the Brewer-Dobson circulation. After accounting for the reduced NOx yield, additional weakening of the primary NOx cycle is attributed to reduced availability of atomic oxygen, due to a) stratospheric cooling decreasing the atomic oxygen/ozone ratio, and b) enhanced rates of chlorine-catalyzed ozone loss cycles around 2000 and enhanced rates of HOx-induced ozone depletion. Our results suggest that the effects of N2O on ozone depend on both the radiative and chemical environment of the upper stratosphere, specifically CO2-induced cooling of the stratosphere and elevated CH4 emissions which enhance HOx-induced ozone loss and remove the availability of atomic oxygen to participate in NOx ozone loss cycles.
Author Revell, Laura E.
Williamson, Bryce E.
Bodeker, Greg E.
Smale, Dan
Huck, Petra E.
Struthers, Hamish
Lehmann, Ralph
Rozanov, Eugene
Author_xml – sequence: 1
  givenname: Laura E.
  surname: Revell
  fullname: Revell, Laura E.
  email: laura.revell@niwa.co.nz, laura.revell@niwa.co.nz
  organization: National Institute of Water and Atmospheric Research, Christchurch, New Zealand
– sequence: 2
  givenname: Greg E.
  surname: Bodeker
  fullname: Bodeker, Greg E.
  organization: Bodeker Scientific, Alexandra, New Zealand
– sequence: 3
  givenname: Dan
  surname: Smale
  fullname: Smale, Dan
  organization: National Institute of Water and Atmospheric Research, Lauder, New Zealand
– sequence: 4
  givenname: Ralph
  surname: Lehmann
  fullname: Lehmann, Ralph
  organization: Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany
– sequence: 5
  givenname: Petra E.
  surname: Huck
  fullname: Huck, Petra E.
  organization: Bodeker Scientific, Alexandra, New Zealand
– sequence: 6
  givenname: Bryce E.
  surname: Williamson
  fullname: Williamson, Bryce E.
  organization: Department of Chemistry, University of Canterbury, Christchurch, New Zealand
– sequence: 7
  givenname: Eugene
  surname: Rozanov
  fullname: Rozanov, Eugene
  organization: Physical-Meteorological Observatory Davos and World Radiation Center, Davos, Switzerland
– sequence: 8
  givenname: Hamish
  surname: Struthers
  fullname: Struthers, Hamish
  organization: Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26362848$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-81566$$DView record from Swedish Publication Index
BookMark eNpNkElPwzAQhS0EEmW58QMiIU4oMB4vsY9QoAVVILEeLcd1wFCSYKdsv56goorTjDTfe_P0Nshq3dSekB0KBxRQHyJQHE1AIOVshQyo5jxXAMUqGQDofsdCrpONlJ4BgAGjA6Jvn3zmq8q7Lrz72qeUNVV2iVdZqLOpb2e-C_Vjlrpouya1Tz4GlzXf_d8tslbZWfLbf3OT3J2d3g7H-eRqdD48muSBMy5zx6aqlFrJSgsopBO88tShU6J0WmkhnJPV1KKgJS25KjTaUlLHS1SlsiDYJtlf-KYP385L08bwauOXaWwwJ-H-yDTx0aS5UVRI2dO7C7qNzdvcp848N_NY9wENpQyQoabQU3t_lE3OzqpoaxfS0holk6i46jlccB9h5r-Wdwrmt2_zv28zup6gZvQ3Qr4QhdT5z6XIxhcjC1YI83A5MsPxzTVe8GMzZj-18YMX
CODEN GPRLAJ
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
IQODW
3V.
7TG
7TN
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
ADTPV
AOWAS
DG7
DOI 10.1029/2012GL052143
DatabaseName Istex
Pascal-Francis
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest_Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_DiVA_org_su_81566
2807277651
26362848
GRL29316
ark_67375_WNG_CHSR2J4B_H
Genre article
Feature
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
3V.
50Y
5GY
5VS
6TJ
702
7XC
8-1
88I
8FE
8FG
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAJUZ
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABJCF
ABPPZ
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALXUD
AMYDB
ARAPS
ASPBG
ATCPS
AVUZU
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D1K
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HVGLF
HZ~
K6-
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
P62
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WXSBR
WYJ
XSW
ZCG
ZZTAW
~02
~OA
~~A
ALUQN
WIN
08R
31~
AAPBV
AI.
DDYGU
IQODW
MVM
OHT
PALCI
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
7TG
7TN
7XB
8FD
8FK
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
MBDVC
PQEST
PQUKI
Q9U
ABJNI
ADTPV
AOWAS
DG7
GROUPED_DOAJ
ID FETCH-LOGICAL-i4346-c3d8b6986f95076c54fe1c2c85bc98955cc6fda251b1b48792ab61c4b28b8a053
IEDL.DBID BENPR
ISSN 0094-8276
1944-8007
IngestDate Sat Aug 24 00:49:22 EDT 2024
Sat Oct 05 16:15:18 EDT 2024
Sun Oct 29 17:09:09 EDT 2023
Sat Aug 24 00:41:29 EDT 2024
Wed Jan 17 05:04:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords depletion
Carbon dioxide
concentration
cycles
Climate models
climate
ozone
chlorine
greenhouse gas
cooling
atmospheric circulation
Nitrogen dioxide
Nitrogen protoxide
oxygen
stratosphere
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4346-c3d8b6986f95076c54fe1c2c85bc98955cc6fda251b1b48792ab61c4b28b8a053
Notes istex:E000ECF6C34631CB513699F6A69A830F3D635EAA
ArticleID:2012GL052143
ark:/67375/WNG-CHSR2J4B-H
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012GL052143
PQID 1130232910
PQPubID 54723
PageCount 6
ParticipantIDs swepub_primary_oai_DiVA_org_su_81566
proquest_journals_1130232910
pascalfrancis_primary_26362848
wiley_primary_10_1029_2012GL052143_GRL29316
istex_primary_ark_67375_WNG_CHSR2J4B_H
PublicationCentury 2000
PublicationDate 16 August 2012
PublicationDateYYYYMMDD 2012-08-16
PublicationDate_xml – month: 08
  year: 2012
  text: 16 August 2012
  day: 16
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
– name: John Wiley & Sons, Inc
References Egorova, T. A., E. V. Rozanov, V. A. Zubov, and I. L. Karol (2003), Model for investigating ozone trends (MEZON), Izv. Russ. Acad. Sci. Atmos. Oceanic Phys., Engl. Transl., 39(3), 277-292.
Jonsson, A. I., J. deGrandpré, V. I. Fomichev, J. C. McConnell, and S. R. Beagley (2004), Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback, J. Geophys. Res., 109, D24103, doi:10.1029/2004JD005093.
Morgenstern, O., et al. (2010), Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings, J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728.
Ravishankara, A. R., J. S. Daniel, and R. W. Portmann (2009), Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century, Science, 326, 123-125, doi:10.1126/science.1176985.
Schraner, M., et al. (2008), Chemistry-climate model SOCOL: Version 2.0 with improved transport and chemistry/microphysics schemes, Atmos. Chem. Phys., 8, 5957-5974, doi:10.5194/acp-8-5957-2008.
Zubov, V., E. Rozanov, and M. Schlesinger (1999), Hybrid scheme for three-dimensional advective transport, Mon. Weather Rev., 127, 1335-1346, doi:10.1175/1520-0493(1999)127<1335:HSFTDA>2.0.CO;2.
Brasseur, G. P., X. X. Tie, P. J. Rasch, and F. Lefévre (1997), A three-dimensional simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere, J. Geophys. Res., 102, 8909-8930, doi:10.1029/96JD03398.
Damian, V., A. Sandu, M. Damian, F. Potra, and G. R. Carmichael (2002), The kinetic preprocessor KPP-A software environment for solving chemical kinetics, Comput. Chem. Eng., 26, 1567-1579, doi:10.1016/S0098-1354(02)00128-X.
Oman, L. D., D. W. Waugh, S. R. Kawa, R. S. Stolarski, A. R. Douglass, and P. A. Newman (2010), Mechanisms and feedback causing changes in upper stratospheric ozone in the 21st century, J. Geophys. Res., 115, D05303, doi:10.1029/2009JD012397.
Fomichev, V. I., A. I. Jonsson, J. deGrandpré, S. R. Beagley, C. McLandress, K. Semeniuk, and T. G. Shepherd (2007), Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model, J. Clim., 20, 1121-1144, doi:10.1175/JCLI4030.1.
Nakicenovic, N., and R. Swart (Eds.) (2000), IPCC Special Report on Emissions Scenarios, Cambridge Univ. Press, Cambridge, U. K.
Chipperfield, M. P., and W. Feng (2003), Comment on "Stratospheric ozone depletion at northern mid-latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane," Geophys. Res. Lett., 30(7), 1389, doi:10.1029/2002GL016353.
Fleming, E. L., C. H. Jackman, R. S. Stolarski, and A. R. Douglass (2011), A model study of the impact of source gas changes on the stratosphere for 1850-2100, Atmos. Chem. Phys., 11, 8515-8541, doi:10.5194/acp-11-8515-2011.
Wuebbles, D. J., and K. H. Hayhoe (2002), Atmospheric methane and global change, Earth Sci. Rev., 57, 177-210, doi:10.1016/S0012-8252(01)00062-9.
Manzini, E., N. A. McFarlane, and C. McLandress (1997), Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model, J. Geophys. Res., 102, 25,751-25,762, doi:10.1029/97JD01096.
Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister (1995), Stratosphere-troposphere exchange, Rev. Geophys., 33(4), 403-439, doi:10.1029/95RG02097.
Cook, P. A., and H. K. Roscoe (2009), Variability and trends in stratospheric NO2 in Antarctic summer, and implications for stratospheric NOy, Atmos. Chem. Phys., 9, 3601-3612, doi:10.5194/acp-9-3601-2009.
Lehmann, R. (2004), An algorithm for the determination of all significant pathways in chemical reaction systems, J. Atmos. Chem., 47, 45-78, doi:10.1023/B:JOCH.0000012284.28801.b1.
Randeniya, L. K., P. F. Vohralik, and I. C. Plumb (2002), Stratospheric ozone depletion at northern mid latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane, Geophys. Res. Lett., 29(4), 1051, doi:10.1029/2001GL014295.
Rosenfield, J. E., and A. R. Douglass (1998), Doubled CO2 effects on NOy in a coupled 2D model, Geophys. Res. Lett., 25, 4381-4384, doi:10.1029/1998GL900147.
Crutzen, P. J. (1970), The influence of nitrogen oxides on the atmospheric ozone content, Q. J. R. Meteorol. Soc., 96, 320-325, doi:10.1002/qj.49709640815.
Sander, S. P., et al. (2009), Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 16, supplement to evaluation 15: Update of key reactions, JPL Publ., 09-31, 17 pp.
Rosenfield, J. E., A. R. Douglass and D. B. Considine (2002), The impact of increasing carbon dioxide on ozone recovery, J. Geophys. Res., 107(D6), 4049, doi:10.1029/2001JD000824.
Sander, S. P., et al. (2006), Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 15, JPL Publ., 06-2, 523 pp.
McElroy, M. B., and J. C. McConnell (1971), Nitrous oxide: A natural source of stratospheric NO, J. Atmos. Sci., 28, 1095-1098, doi:10.1175/1520-0469(1971)028<1095:NOANSO>2.0.CO;2.
Plummer, D. A., J. F. Scinocca, T. G. Shepherd, M. C. Reader, and A. I. Jonsson (2010), Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases, Atmos. Chem. Phys., 10, 8803-8820, doi:10.5194/acp-10-8803-2010.
Lee, A. M., R. L. Jones, I. Kilbane-Dawe, and J. A. Pyle (2002), Diagnosing ozone loss in the extratropical lower stratosphere, J. Geophys. Res., 107(D11), 4110, doi:10.1029/2001JD000538.
Brasseur, G. P., and S. Solomon (2005), Aeronomy of the Middle Atmosphere, Springer, Dordrecht, Netherlands.
Carslaw, K. S., B. Luo, and T. Peter (1995), An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett., 22, 1877-1880, doi:10.1029/95GL01668.
2010; 10
1971; 28
2011
2010
2004; 47
2002; 57
1995; 33
2007
2011; 11
2008; 8
2005
1970; 96
2003; 39
2004; 109
2003; 30
1999; 127
1998; 25
1999
1997; 102
2002; 26
2002; 29
2000
2010; 115
1995; 22
2006; 06‐2
2009; 09‐31
2002; 107
2009; 9
2007; 20
2009; 326
References_xml – volume: 47
  start-page: 45
  year: 2004
  end-page: 78
  article-title: An algorithm for the determination of all significant pathways in chemical reaction systems
  publication-title: J. Atmos. Chem.
– volume: 09‐31
  year: 2009
  article-title: Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 16, supplement to evaluation 15: Update of key reactions
  publication-title: JPL Publ.
– year: 2005
– start-page: 15
  year: 2007
  end-page: 27
– volume: 115
  year: 2010
  article-title: Mechanisms and feedback causing changes in upper stratospheric ozone in the 21st century
  publication-title: J. Geophys. Res.
– volume: 06‐2
  year: 2006
  article-title: Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 15
  publication-title: JPL Publ.
– volume: 10
  start-page: 8803
  year: 2010
  end-page: 8820
  article-title: Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases
  publication-title: Atmos. Chem. Phys.
– volume: 29
  issue: 4
  year: 2002
  article-title: Stratospheric ozone depletion at northern mid latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane
  publication-title: Geophys. Res. Lett.
– volume: 33
  start-page: 403
  issue: 4
  year: 1995
  end-page: 439
  article-title: Stratosphere‐troposphere exchange
  publication-title: Rev. Geophys.
– year: 2000
– volume: 30
  issue: 7
  year: 2003
  article-title: Comment on “Stratospheric ozone depletion at northern mid‐latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane,”
  publication-title: Geophys. Res. Lett.
– volume: 57
  start-page: 177
  year: 2002
  end-page: 210
  article-title: Atmospheric methane and global change
  publication-title: Earth Sci. Rev.
– volume: 39
  start-page: 277
  issue: 3
  year: 2003
  end-page: 292
  article-title: Model for investigating ozone trends (MEZON)
  publication-title: Izv. Russ. Acad. Sci. Atmos. Oceanic Phys., Engl. Transl.
– year: 2010
– volume: 107
  issue: D11
  year: 2002
  article-title: Diagnosing ozone loss in the extratropical lower stratosphere
  publication-title: J. Geophys. Res.
– start-page: 23
  year: 2011
– volume: 8
  start-page: 5957
  year: 2008
  end-page: 5974
  article-title: Chemistry‐climate model SOCOL: Version 2.0 with improved transport and chemistry/microphysics schemes
  publication-title: Atmos. Chem. Phys.
– volume: 102
  start-page: 8909
  year: 1997
  end-page: 8930
  article-title: A three‐dimensional simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 1567
  year: 2002
  end-page: 1579
  article-title: The kinetic preprocessor KPP—A software environment for solving chemical kinetics
  publication-title: Comput. Chem. Eng.
– start-page: 1
  year: 1999
  end-page: 26
– volume: 25
  start-page: 4381
  year: 1998
  end-page: 4384
  article-title: Doubled CO effects on NO in a coupled 2D model
  publication-title: Geophys. Res. Lett.
– volume: 326
  start-page: 123
  year: 2009
  end-page: 125
  article-title: Nitrous oxide (N O): The dominant ozone‐depleting substance emitted in the 21st century
  publication-title: Science
– volume: 9
  start-page: 3601
  year: 2009
  end-page: 3612
  article-title: Variability and trends in stratospheric NO in Antarctic summer, and implications for stratospheric NO
  publication-title: Atmos. Chem. Phys.
– volume: 107
  issue: D6
  year: 2002
  article-title: The impact of increasing carbon dioxide on ozone recovery
  publication-title: J. Geophys. Res.
– volume: 109
  year: 2004
  article-title: Doubled CO ‐induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback
  publication-title: J. Geophys. Res.
– volume: 127
  start-page: 1335
  year: 1999
  end-page: 1346
  article-title: Hybrid scheme for three‐dimensional advective transport
  publication-title: Mon. Weather Rev.
– volume: 11
  start-page: 8515
  year: 2011
  end-page: 8541
  article-title: A model study of the impact of source gas changes on the stratosphere for 1850–2100
  publication-title: Atmos. Chem. Phys.
– volume: 102
  start-page: 25,751
  year: 1997
  end-page: 25,762
  article-title: Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model
  publication-title: J. Geophys. Res.
– volume: 96
  start-page: 320
  year: 1970
  end-page: 325
  article-title: The influence of nitrogen oxides on the atmospheric ozone content
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 22
  start-page: 1877
  year: 1995
  end-page: 1880
  article-title: An analytic expression for the composition of aqueous HNO ‐H SO stratospheric aerosols including gas phase removal of HNO
  publication-title: Geophys. Res. Lett.
– volume: 115
  year: 2010
  article-title: Review of the formulation of present‐generation stratospheric chemistry‐climate models and associated external forcings
  publication-title: J. Geophys. Res.
– volume: 20
  start-page: 1121
  year: 2007
  end-page: 1144
  article-title: Response of the middle atmosphere to CO doubling: Results from the Canadian Middle Atmosphere Model
  publication-title: J. Clim.
– volume: 28
  start-page: 1095
  year: 1971
  end-page: 1098
  article-title: Nitrous oxide: A natural source of stratospheric NO
  publication-title: J. Atmos. Sci.
SSID ssj0003031
Score 2.2837706
Snippet Recently, it was shown that of the ozone‐depleting substances currently emitted, N2O emissions (the primary source of stratospheric NOx) dominate, and are...
Recently, it was shown that of the ozone-depleting substances currently emitted, N2O emissions (the primary source of stratospheric NOx) dominate, and are...
SourceID swepub
proquest
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage L15806
SubjectTerms Atmosphere
Atmospheric chemistry
Atmospheric sciences
Carbon dioxide
CCM
Chlorine
Climate change
Climate models
Earth
Earth sciences
Earth, ocean, space
Emissions
Exact sciences and technology
Nitrous oxide
NOx
Oxygen
Ozone
Ozone depletion
Stratosphere
Title The effectiveness of N2O in depleting stratospheric ozone
URI https://api.istex.fr/ark:/67375/WNG-CHSR2J4B-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012GL052143
https://www.proquest.com/docview/1130232910/abstract/
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-81566
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH7aViFxQfwUgVHlMHFBURvHduwT6saaaJoKKnRMXCzbiacKqSlNJwF_PX5OWuiFWw5xIn3Pfu_Z7_P3AM5MXvm4WrNEU80SakydGL_rSKSra20ERUEQZFvMeLmgV7fs9gjK3V0YpFXufGJw1FVj8Yx8lGKFLSM-uo20wVMAux29X_9IsH8U1ln7ZhrHMCApxYLt4Pxy9mm-98reVXfd8yRNBMl5T4IfE-n3_ykprvEWK97dGSC8P5EjqVsPk-v6WxwmoJ2o6GE-GwLS9DE86jPJeNKZ_gkc1aun8KAInXp_-afA7bTtM5B-KsQdb6N3bXHj4hn5GC9XcVWvg_z2XRwEdJsWZQaWNm5-N6v6OSyml18uyqTvmJAsaeYRtlklDJeCO-nzPG4ZdXVqiRXMWCkkY9ZyV2mf05jU-K2KJNrw1FJDhBHar8cXcLLyn38JcZ47kllhjPZBnlGqc6u5dGPmXJ5V4yqCtwEote5UMZTefEeSWM7U11mhLsrPc3JFz1UZwfAAyf0Awn3wFFREcLqDVvULqFV_zR3BWQf3fiAqYn9Y3kxUs7lT7b1CwRsewbtgjP1bobpOpPrXuqqYX_v8JuWv_v_P1_AQh-HZccpP4WS7ua_f-ORja4ZwLKbFEAaTm8W3xbCfZX8A_ITYLA
link.rule.ids 230,315,786,790,891,12792,21416,27957,27958,33408,33779,43635,43840,50849,50958,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3BrhBcEJ9qoJQcKi4oYuPYjn1CbWk3lCWgpYXeLNuJqxXSZtm0EvDrGTvuwl645ZA40ow988Z-fgOwb8oG82rLMk01y6gxbWaw6sika1ttBPWCIJ5tUfPqnJ5esIu44dZHWuVNTAyBuums3yN_k_sTtoJgdnu7-pH5rlH-dDW20LgNY1pgqTKC8eFx_Xm-icUYoIeeeZJmgpQ8Ut8nRGLVn5PpzN9d9Td2xt6oPz0zUvdoHDd0tdiGnYOU6DaKDWno5AHcj_gxPRgc_hButctHcGca-vP-wqfA6LT9Y5A4AdKBrREDWtq5tCaf0sUybdpVEN2-TINsbtd7cYGFTbvf3bJ9Aucnx2dHVRb7JGQLWqBdbdEIw6XgTiK645ZR1-aWWMGMlUIyZi13jUYkY3KDBYok2vDcUkOEERpX4VMYLXH4HUjL0pHCCmM0pnZGqS6t5tJNmHNl0UyaBF4FQ6nVoIWh9Pq7p4aVTH2rp-qo-jInp_RQVQnsbVly8wHhmDIFFQns3phWxWXTq79OTmB_MPfmQ6-D_W7x9UB160vVXysvc8MTeB2csXkrnKkTqf71rprOZ4hqcv7s__98CXers48zNXtff3gO9_wQfvc457swulpfty8QflyZvTjH_gDS7tS7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgFYgL4lNNKcWHiguKunFsxz6h0rJZympBhUJvlu3Y1Qpps920EvDrmXHShb1wyyG2pRl75tl-fkPIgasayKtB5JZbkXPnQu5g15HrGIJ1iqMgCLItZnJyzk8vxMXAf-oGWuVtTEyBumk9npEfFnjDVjLIbodxoEV8Phm_XV7lWEEKb1qHchp3yTaCbKxmoMb1OipDqO6r52meK1bJgQQ_Yhr2_wWrp_iKFd_ubKN5fyJH0nZgptjXt9gEoL2o6CaeTQlp_Ig8HJAkPepd_5jcCYsn5F6dKvX-gq_E7fTdU6JhKtCetzGENtpGOmOf6HxBm7BM8tuXNAnoth3KDMw9bX-3i_CMnI_ffz2e5EPFhHzOS7CwLxvlpFYyasB50gseQ-GZV8J5rbQQ3svYWMA0rnCwVdHMOll47phyysJ6fE62FtD9DqFVFVnplXMWkrzg3FbeSh1HIsaqbEZNRl4nQ5llr4ph7OoHksQqYb7PanM8-XLGTvk7M8nI_oYl1w2YhOSpuMrI3q1pzbCAOvPX3Rk56M29boiK2Cfzb0emXV2a7sag4I3MyJvkjPVf6XadafOvd019NgV8U8jd_4_5ityHyWWmH2YfX5AH2AMeIxdyj2xdr27CS8Ah124_TbA_PbLXig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effectiveness+of+N2O+in+depleting+stratospheric+ozone&rft.jtitle=Geophysical+research+letters&rft.au=Revell%2C+Laura+E.&rft.au=Bodeker%2C+Greg+E.&rft.au=Smale%2C+Dan&rft.au=Lehmann%2C+Ralph&rft.date=2012-08-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=39&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012GL052143&rft.externalDBID=10.1029%252F2012GL052143&rft.externalDocID=GRL29316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon