Protostellar collapse and fragmentation using an MHD gadget

Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 412; no. 1; pp. 171 - 186
Main Authors Bürzle, Florian, Clark, Paul C., Stasyszyn, Federico, Greif, Thomas, Dolag, Klaus, Klessen, Ralf S., Nielaba, Peter
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2011
Wiley-Blackwell
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss and Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected.
AbstractList Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss and Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected.
ABSTRACT Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss and Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected. [PUBLICATION ABSTRACT]
ABSTRACT Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non‐vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the ‘Boss and Bodenheimer standard isothermal test case’, to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the ‘magnetic cushioning effect’, where the magnetic field is wound up to form a ‘cushion’ between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected.
Author Clark, Paul C.
Nielaba, Peter
Stasyszyn, Federico
Bürzle, Florian
Greif, Thomas
Dolag, Klaus
Klessen, Ralf S.
Author_xml – sequence: 1
  givenname: Florian
  surname: Bürzle
  fullname: Bürzle, Florian
  email: florian.buerzle@uni-konstanz.de
  organization: Universität Konstanz, Fachbereich Physik, Universitätsstr. 10, 78464 Konstanz, Germany
– sequence: 2
  givenname: Paul C.
  surname: Clark
  fullname: Clark, Paul C.
  organization: Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
– sequence: 3
  givenname: Federico
  surname: Stasyszyn
  fullname: Stasyszyn, Federico
  organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
– sequence: 4
  givenname: Thomas
  surname: Greif
  fullname: Greif, Thomas
  organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
– sequence: 5
  givenname: Klaus
  surname: Dolag
  fullname: Dolag, Klaus
  organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
– sequence: 6
  givenname: Ralf S.
  surname: Klessen
  fullname: Klessen, Ralf S.
  organization: Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
– sequence: 7
  givenname: Peter
  surname: Nielaba
  fullname: Nielaba, Peter
  organization: Universität Konstanz, Fachbereich Physik, Universitätsstr. 10, 78464 Konstanz, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23931782$$DView record in Pascal Francis
BookMark eNp1kVtr3DAQhUVIoZu0_8EESp-81cXWhUKhJN0k7eZWGvI4aOXx4q1X2lo23fz7yNmwDy3Ry4iZ7xxGR0fk0AePhGSMTlk6n1ZTJmSZcyPllNOxq7SR0-0BmewHh2RCqShzrRh7S45iXFFKC8HlhHy-7UIfYo9ta7vMhVQ2ETPrq6zu7HKNvrd9E3w2xMYvUz-7ujjLlrZaYv-OvKltG_H9Sz0m97Nvv04v8vnN-eXp13neFILJXCPjwmnUitdY2xIrI3FRa8bLgjJlUDCBlV0USha8wqp2yiqhF86YhaucFsfk485304U_A8Ye1k1048YewxBBS6WEoGWZyJN_yFUYOp-WA11KzQtjTII-vEA2OtumZ3rXRNh0zdp2j8CFESlDnrgvO-5v0-Ljfs4ojMHDCsZ8YcwXxuDhOXjYwtX1z-drMhA7gzBsXpHn_8mTKt-pmvQr273Odr9BKqFKeLg-h-_zH3R2O7-DO_EEkpKYdA
CODEN MNRAA4
ContentType Journal Article
Copyright 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS 2010
2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS
2015 INIST-CNRS
Copyright_xml – notice: 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS 2010
– notice: 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
8FD
H8D
L7M
7TG
KL.
DOI 10.1111/j.1365-2966.2010.17896.x
DatabaseName Istex
Pascal-Francis
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 186
ExternalDocumentID 2291526591
23931782
MNR17896
10.1111/j.1365-2966.2010.17896.x
ark_67375_WNG_JLK0FPLQ_Q
Genre article
Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABXVV
ABZBJ
ACBWZ
ACCFJ
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
2WC
AASNB
ABSAR
ABSMQ
ABTAH
ACBNA
ACFRR
ACUTJ
AETEA
AFFNX
AGMDO
ASAOO
ATDFG
CXTWN
DFGAJ
GROUPED_DOAJ
MBTAY
O0~
OHT
PB-
RNP
UQL
VOH
ZY4
AANHP
ABAZT
ABNGD
ACRPL
ACYXJ
ADNMO
AAMMB
ABGNP
ABVLG
ACUKT
ACUXJ
AEFGJ
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
ALXQX
AMNDL
ANAKG
APJGH
IQODW
JXSIZ
8FD
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-i4316-8e123c8e872fefa5ed96ebf812540179e313edab47642dedfc7a738bc99bcdc83
IEDL.DBID DR2
ISSN 0035-8711
IngestDate Fri Jul 11 09:42:20 EDT 2025
Sun Jul 13 04:50:57 EDT 2025
Mon Jul 21 09:13:28 EDT 2025
Wed Jan 22 16:52:24 EST 2025
Wed Aug 28 03:23:37 EDT 2024
Wed Oct 30 10:01:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords MHD
stars: formation
ISM: clouds
magnetic fields
ISM: magnetic fields
Collapse
Induction equation
Magnetohydrodynamics
Digital simulation
Smoothed particle hydrodynamics method
Rotation axis
Fragmentation
Protostars
Case study
Regularization method
Divergences
MHD model
Star formation
Particle code
High field
Magnetic fields
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4316-8e123c8e872fefa5ed96ebf812540179e313edab47642dedfc7a738bc99bcdc83
Notes istex:0B92DAC784AD57AD6A058E21E8BFCBCAB53270FA
ark:/67375/WNG-JLK0FPLQ-Q
ArticleID:MNR17896
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/412/1/171/3073554/mnras0412-0171.pdf
PQID 856824999
PQPubID 42411
PageCount 16
ParticipantIDs proquest_miscellaneous_867733055
proquest_journals_856824999
pascalfrancis_primary_23931782
wiley_primary_10_1111_j_1365_2966_2010_17896_x_MNR17896
oup_primary_10_1111_j_1365-2966_2010_17896_x
istex_primary_ark_67375_WNG_JLK0FPLQ_Q
PublicationCentury 2000
PublicationDate March 2011
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: March 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Malden, MA
– name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Monthly Notices of the Royal Astronomical Society
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Oxford University Press
References Desch S., Mouschovias T., 2001, ApJ, 550, 314
Rosswog S., 2009, New Astron. Rev., 53, 78
Fromang S., Hennebelle P., Teyssier R., 2006, A&A, 457, 371
Stern D., 1970, Am. J. Phys., 38, 494
Hennebelle P., Teyssier R., 2008, A&A, 477, 25
Mestel L., Paris R., 1984, A&A, 136, 98
Jappsen A., Klessen R., Larson R., Li Y., Mac Low M., 2005, A&A, 435, 611
Cartwright A., Stamatellos D., Whitworth A. P., 2009, MNRAS, 395, 2373
Boss A., Bodenheimer P., 1979, ApJ, 234, 289
Price D., Monaghan J., 2005, MNRAS, 364, 384
Federrath C., Banerjee R., Clark P. C., Klessen R. S., 2010, ApJ, 713, 269
Price D., Monaghan J., 2004b, MNRAS, 348, 139
Springel V., Yoshida N., White S., 2001, New Astron., 6, 79
Mouschovias T., 1976, ApJ, 207, 141
Phillips G., 1986b, MNRAS, 222, 111
Mouschovias T., Paleologou E., 1979, ApJ, 230, 204
Machida M. N., Matsumoto T., Hanawa T., Tomisaka K., 2005b, MNRAS, 362, 382
Børve S., Omang M., Trulsen J., 2001, ApJ, 561, 82
Bate M., Bonnell I., Price N., 1995, MNRAS, 277, 362
Monaghan J., Lattanzio J., 1985, A&A, 149, 135
Hosking J., Whitworth A., 2004, MNRAS, 347, 1001
Mouschovias T., Spitzer L., 1976, ApJ, 210, 326
Price D. J., Bate M. R., 2009, MNRAS, 398, 33
Machida M. N., Matsumoto T., Tomisaka K., Hanawa T., 2005a, MNRAS, 362, 369
Phillips G., Monaghan J., 1985, MNRAS, 216, 883
Attwood R. E., Goodwin S. P., Whitworth A. P., 2007, A&A, 464, 447
Banerjee R., 2009, Lecture Notes Physics, Vol. 791, Jets From Young Stars V. Springer, Berlin , p. 201
Mouschovias T., Paleologou E., 1980, ApJ, 237, 877
Commerçon B., Hennebelle P., Audit E., Chabrier G., Teyssier R., 2008, A&A, 482, 371
Monaghan J., 1997, J. Comput. Phys., 136, 298
Kotarba H., Karl S. J., Naab T., Johansson P. H., Dolag K., Lesch H., Stasyszyn F. A., 2010, ApJ, 716, 1438
Springel V., 2005, MNRAS, 364, 1105
McKee C. F., Zweibel e.g. Goodman A. A., Heiles C., 1993, in Levy E. H., Lunine J. I., eds, Protostars & Planets III. University of Arizona Press, Tucson , AZ , p. 327
Commerçon B., Hennebelle P., Audit E., Chabrier G., Teyssier R., 2010, A&A, 510, L3
Crutcher R., 1999, ApJ, 520, 706
Arreaga-Garcia G., Klapp J., Sigalotti L. D. G., Gabbasov R., 2007, ApJ, 666, 290
Krumholz M., McKee C., Klein R., 2004, ApJ, 611, 399
Heiles C., Crutcher R., 2005, in Wielebinski R., Beck R., eds, Lecture Notes Phys., Vol. 664, Cosmic Magnetic Fields. Springer, Berlin , p. 137
Price D. J., 2007, Publ. Astron. Soc. Australia, 24, 159
Rosswog S., Price D., 2007, MNRAS, 379, 915
Berger M., Colella P., 1989, J. Comput. Phys., 82, 64
Morris J., Monaghan J., 1997, J. Comput. Phys., 136, 41
Hennebelle P., Fromang S., 2008, A&A, 477, 9
Balsara D., 1998, ApJS, 116, 133
Price D. J., Bate M. R., 2008, MNRAS, 385, 1820
Ziegler U., 2005, A&A, 435, 385
Agertz O. et al., 2007, MNRAS, 380, 963
Offner S. S. R., Klein R. I., McKee C. F., Krumholz M. R., 2009, ApJ, 703, 131
Phillips G., 1986a, MNRAS, 221, 571
Peters T., Banerjee R., Klessen R. S., Mac Low M.-M., Galvan-Madrid R., Keto E. R., 2010, ApJ, 711, 1017
Peters T., Mac Low M.-M., Banerjee R., Klessen R. S., Dullemond C. P., 2010a, ApJ, 719, 831
Li P., Norman M., Mac Low M., Heitsch F., 2004, ApJ, 605, 800
Price D. J., 2010, MNRAS, 401, 1475
Ryu D., Jones T., 1995, ApJ, 442, 228
Springel V., 2010, ARA&A, 48, 391
McKee C. F., Ostriker E. C., 2007, ARA&A, 45, 565
Fryxell B. et al., 2000, ApJS, 131, 273
Price D., Monaghan J., 2004a, MNRAS, 348, 123
Orszag S., Tang C., 1979, J. Fluid Mech., 90, 129
Kotarba H., Lesch H., Dolag K., Naab T., Johansson P. H., Stasyszyn F. A., 2009, MNRAS, 397, 733
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Price D. J., Bate M. R., 2007, MNRAS, 377, 77
Bate M., Burkert A., 1997, MNRAS, 288, 1060
Brandenburg A., 2010, MNRAS, 401, 347
Machida M. N., Matsumoto T., Inutsuka S.-I., 2008, ApJ, 685, 690
Arreaga-Garcia G., Klapp-Escribano J., Gomez-Ramirez F., 2010, A&A, 509, A96
Balsara D., Spicer D., 1999, J. Comput. Phys., 149, 270
Teyssier R., 2002, A&A, 385, 337
Hennebelle P., Ciardi A., 2009, A&A, 506, L29
Mestel L., Spitzer L., 1956, MNRAS, 116, 503
Peters T., Mac Low M.-M., Banerjee R., Klessen R. S., Dullemond C. P., 2010b, ApJ, 720, 1782
Dolag K., Stasyszyn F., 2009, MNRAS, 398, 1678
Fiedler R., Mouschovias T., 1993, ApJ, 415, 680
Mac Low M., Klessen R., 2004, Rev. Mod. Phys., 76, 125
Banerjee R., Pudritz R., 2006, ApJ, 641, 949
Machida M., Tomisaka K., Matsumoto T., 2004, MNRAS, 348, L1
Mouschovias T., 1991, ApJ, 373, 169
2004b; 348
2010; 509
2007; 464
1989; 82
1986a; 221
2007; 666
1976; 207
2007; 380
2009; 397
2009; 398
1999; 520
2000; 131
1998; 116
2009; 395
2006; 457
2008; 385
1970; 38
2004; 605
2004; 76
1979; 234
2007; 379
2007; 377
1993; 415
2010; 716
2004; 611
1979; 230
2009; 53
2010; 713
2002; 385
2010; 711
2010; 510
2010b; 720
2005b; 362
1985; 216
2008; 477
1986b; 222
1995; 442
2007; 24
2006; 641
2001; 561
1997; 136
1991; 373
1980; 237
2004; 347
2002; 333
2010; 401
2005; 435
2009
2010a; 719
1956; 116
1979; 90
2005
1985; 149
1993
1995; 277
2008; 685
1999; 149
2004; 348
2008; 482
2001; 550
1976; 210
2010; 48
2005a; 362
1984; 136
2005; 364
2001; 6
2004a; 348
1997; 288
2009; 703
2009; 506
2007; 45
References_xml – reference: Mouschovias T., Spitzer L., 1976, ApJ, 210, 326
– reference: Cartwright A., Stamatellos D., Whitworth A. P., 2009, MNRAS, 395, 2373
– reference: Banerjee R., Pudritz R., 2006, ApJ, 641, 949
– reference: Peters T., Mac Low M.-M., Banerjee R., Klessen R. S., Dullemond C. P., 2010a, ApJ, 719, 831
– reference: Arreaga-Garcia G., Klapp J., Sigalotti L. D. G., Gabbasov R., 2007, ApJ, 666, 290
– reference: Peters T., Banerjee R., Klessen R. S., Mac Low M.-M., Galvan-Madrid R., Keto E. R., 2010, ApJ, 711, 1017
– reference: McKee C. F., Ostriker E. C., 2007, ARA&A, 45, 565
– reference: Balsara D., 1998, ApJS, 116, 133
– reference: Machida M. N., Matsumoto T., Inutsuka S.-I., 2008, ApJ, 685, 690
– reference: Springel V., Yoshida N., White S., 2001, New Astron., 6, 79
– reference: Mouschovias T., 1976, ApJ, 207, 141
– reference: Machida M., Tomisaka K., Matsumoto T., 2004, MNRAS, 348, L1
– reference: Mestel L., Spitzer L., 1956, MNRAS, 116, 503
– reference: Agertz O. et al., 2007, MNRAS, 380, 963
– reference: Ziegler U., 2005, A&A, 435, 385
– reference: Federrath C., Banerjee R., Clark P. C., Klessen R. S., 2010, ApJ, 713, 269
– reference: Attwood R. E., Goodwin S. P., Whitworth A. P., 2007, A&A, 464, 447
– reference: Fiedler R., Mouschovias T., 1993, ApJ, 415, 680
– reference: Monaghan J., Lattanzio J., 1985, A&A, 149, 135
– reference: Price D. J., 2007, Publ. Astron. Soc. Australia, 24, 159
– reference: Price D., Monaghan J., 2004b, MNRAS, 348, 139
– reference: Price D., Monaghan J., 2004a, MNRAS, 348, 123
– reference: Brandenburg A., 2010, MNRAS, 401, 347
– reference: Balsara D., Spicer D., 1999, J. Comput. Phys., 149, 270
– reference: Heiles C., Crutcher R., 2005, in Wielebinski R., Beck R., eds, Lecture Notes Phys., Vol. 664, Cosmic Magnetic Fields. Springer, Berlin , p. 137
– reference: Kotarba H., Lesch H., Dolag K., Naab T., Johansson P. H., Stasyszyn F. A., 2009, MNRAS, 397, 733
– reference: Jappsen A., Klessen R., Larson R., Li Y., Mac Low M., 2005, A&A, 435, 611
– reference: Hennebelle P., Teyssier R., 2008, A&A, 477, 25
– reference: Rosswog S., 2009, New Astron. Rev., 53, 78
– reference: Morris J., Monaghan J., 1997, J. Comput. Phys., 136, 41
– reference: Fromang S., Hennebelle P., Teyssier R., 2006, A&A, 457, 371
– reference: Commerçon B., Hennebelle P., Audit E., Chabrier G., Teyssier R., 2010, A&A, 510, L3
– reference: Børve S., Omang M., Trulsen J., 2001, ApJ, 561, 82
– reference: Phillips G., 1986a, MNRAS, 221, 571
– reference: Price D. J., Bate M. R., 2008, MNRAS, 385, 1820
– reference: Fryxell B. et al., 2000, ApJS, 131, 273
– reference: Rosswog S., Price D., 2007, MNRAS, 379, 915
– reference: Peters T., Mac Low M.-M., Banerjee R., Klessen R. S., Dullemond C. P., 2010b, ApJ, 720, 1782
– reference: Price D. J., Bate M. R., 2009, MNRAS, 398, 33
– reference: Hennebelle P., Ciardi A., 2009, A&A, 506, L29
– reference: Desch S., Mouschovias T., 2001, ApJ, 550, 314
– reference: Price D. J., 2010, MNRAS, 401, 1475
– reference: Monaghan J., 1997, J. Comput. Phys., 136, 298
– reference: Hosking J., Whitworth A., 2004, MNRAS, 347, 1001
– reference: Phillips G., 1986b, MNRAS, 222, 111
– reference: Mac Low M., Klessen R., 2004, Rev. Mod. Phys., 76, 125
– reference: Springel V., Hernquist L., 2002, MNRAS, 333, 649
– reference: Berger M., Colella P., 1989, J. Comput. Phys., 82, 64
– reference: Commerçon B., Hennebelle P., Audit E., Chabrier G., Teyssier R., 2008, A&A, 482, 371
– reference: Hennebelle P., Fromang S., 2008, A&A, 477, 9
– reference: Li P., Norman M., Mac Low M., Heitsch F., 2004, ApJ, 605, 800
– reference: Orszag S., Tang C., 1979, J. Fluid Mech., 90, 129
– reference: Offner S. S. R., Klein R. I., McKee C. F., Krumholz M. R., 2009, ApJ, 703, 131
– reference: Phillips G., Monaghan J., 1985, MNRAS, 216, 883
– reference: Dolag K., Stasyszyn F., 2009, MNRAS, 398, 1678
– reference: Kotarba H., Karl S. J., Naab T., Johansson P. H., Dolag K., Lesch H., Stasyszyn F. A., 2010, ApJ, 716, 1438
– reference: Stern D., 1970, Am. J. Phys., 38, 494
– reference: Ryu D., Jones T., 1995, ApJ, 442, 228
– reference: Bate M., Bonnell I., Price N., 1995, MNRAS, 277, 362
– reference: Boss A., Bodenheimer P., 1979, ApJ, 234, 289
– reference: McKee C. F., Zweibel e.g. Goodman A. A., Heiles C., 1993, in Levy E. H., Lunine J. I., eds, Protostars & Planets III. University of Arizona Press, Tucson , AZ , p. 327
– reference: Springel V., 2005, MNRAS, 364, 1105
– reference: Crutcher R., 1999, ApJ, 520, 706
– reference: Price D., Monaghan J., 2005, MNRAS, 364, 384
– reference: Arreaga-Garcia G., Klapp-Escribano J., Gomez-Ramirez F., 2010, A&A, 509, A96
– reference: Banerjee R., 2009, Lecture Notes Physics, Vol. 791, Jets From Young Stars V. Springer, Berlin , p. 201
– reference: Teyssier R., 2002, A&A, 385, 337
– reference: Price D. J., Bate M. R., 2007, MNRAS, 377, 77
– reference: Krumholz M., McKee C., Klein R., 2004, ApJ, 611, 399
– reference: Bate M., Burkert A., 1997, MNRAS, 288, 1060
– reference: Mouschovias T., 1991, ApJ, 373, 169
– reference: Mouschovias T., Paleologou E., 1980, ApJ, 237, 877
– reference: Machida M. N., Matsumoto T., Tomisaka K., Hanawa T., 2005a, MNRAS, 362, 369
– reference: Machida M. N., Matsumoto T., Hanawa T., Tomisaka K., 2005b, MNRAS, 362, 382
– reference: Mestel L., Paris R., 1984, A&A, 136, 98
– reference: Springel V., 2010, ARA&A, 48, 391
– reference: Mouschovias T., Paleologou E., 1979, ApJ, 230, 204
– volume: 362
  start-page: 369
  year: 2005a
  publication-title: MNRAS
– volume: 216
  start-page: 883
  year: 1985
  publication-title: MNRAS
– volume: 277
  start-page: 362
  year: 1995
  publication-title: MNRAS
– volume: 24
  start-page: 159
  year: 2007
  publication-title: Publ. Astron. Soc. Australia
– volume: 364
  start-page: 1105
  year: 2005
  publication-title: MNRAS
– volume: 401
  start-page: 1475
  year: 2010
  publication-title: MNRAS
– volume: 380
  start-page: 963
  year: 2007
  publication-title: MNRAS
– start-page: 137
  year: 2005
– volume: 435
  start-page: 385
  year: 2005
  publication-title: A&A
– volume: 38
  start-page: 494
  year: 1970
  publication-title: Am. J. Phys.
– volume: 506
  start-page: L29
  year: 2009
  publication-title: A&A
– volume: 685
  start-page: 690
  year: 2008
  publication-title: ApJ
– volume: 385
  start-page: 337
  year: 2002
  publication-title: A&A
– volume: 131
  start-page: 273
  year: 2000
  publication-title: ApJS
– volume: 415
  start-page: 680
  year: 1993
  publication-title: ApJ
– volume: 362
  start-page: 382
  year: 2005b
  publication-title: MNRAS
– volume: 713
  start-page: 269
  year: 2010
  publication-title: ApJ
– volume: 210
  start-page: 326
  year: 1976
  publication-title: ApJ
– volume: 48
  start-page: 391
  year: 2010
  publication-title: ARA&A
– start-page: 201
  year: 2009
– volume: 720
  start-page: 1782
  year: 2010b
  publication-title: ApJ
– volume: 364
  start-page: 384
  year: 2005
  publication-title: MNRAS
– volume: 482
  start-page: 371
  year: 2008
  publication-title: A&A
– volume: 116
  start-page: 503
  year: 1956
  publication-title: MNRAS
– volume: 116
  start-page: 133
  year: 1998
  publication-title: ApJS
– volume: 373
  start-page: 169
  year: 1991
  publication-title: ApJ
– volume: 237
  start-page: 877
  year: 1980
  publication-title: ApJ
– volume: 398
  start-page: 33
  year: 2009
  publication-title: MNRAS
– volume: 379
  start-page: 915
  year: 2007
  publication-title: MNRAS
– volume: 6
  start-page: 79
  year: 2001
  publication-title: New Astron.
– volume: 45
  start-page: 565
  year: 2007
  publication-title: ARA&A
– volume: 520
  start-page: 706
  year: 1999
  publication-title: ApJ
– start-page: 327
  year: 1993
– volume: 464
  start-page: 447
  year: 2007
  publication-title: A&A
– volume: 288
  start-page: 1060
  year: 1997
  publication-title: MNRAS
– volume: 716
  start-page: 1438
  year: 2010
  publication-title: ApJ
– volume: 561
  start-page: 82
  year: 2001
  publication-title: ApJ
– volume: 348
  start-page: 123
  year: 2004a
  publication-title: MNRAS
– volume: 457
  start-page: 371
  year: 2006
  publication-title: A&A
– volume: 477
  start-page: 25
  year: 2008
  publication-title: A&A
– volume: 136
  start-page: 98
  year: 1984
  publication-title: A&A
– volume: 136
  start-page: 298
  year: 1997
  publication-title: J. Comput. Phys.
– volume: 395
  start-page: 2373
  year: 2009
  publication-title: MNRAS
– volume: 230
  start-page: 204
  year: 1979
  publication-title: ApJ
– volume: 149
  start-page: 270
  year: 1999
  publication-title: J. Comput. Phys.
– volume: 234
  start-page: 289
  year: 1979
  publication-title: ApJ
– volume: 510
  start-page: L3
  year: 2010
  publication-title: A&A
– volume: 333
  start-page: 649
  year: 2002
  publication-title: MNRAS
– volume: 550
  start-page: 314
  year: 2001
  publication-title: ApJ
– volume: 136
  start-page: 41
  year: 1997
  publication-title: J. Comput. Phys.
– volume: 611
  start-page: 399
  year: 2004
  publication-title: ApJ
– volume: 605
  start-page: 800
  year: 2004
  publication-title: ApJ
– volume: 719
  start-page: 831
  year: 2010a
  publication-title: ApJ
– volume: 398
  start-page: 1678
  year: 2009
  publication-title: MNRAS
– volume: 207
  start-page: 141
  year: 1976
  publication-title: ApJ
– volume: 385
  start-page: 1820
  year: 2008
  publication-title: MNRAS
– volume: 53
  start-page: 78
  year: 2009
  publication-title: New Astron. Rev.
– volume: 82
  start-page: 64
  year: 1989
  publication-title: J. Comput. Phys.
– volume: 76
  start-page: 125
  year: 2004
  publication-title: Rev. Mod. Phys.
– volume: 641
  start-page: 949
  year: 2006
  publication-title: ApJ
– volume: 397
  start-page: 733
  year: 2009
  publication-title: MNRAS
– volume: 347
  start-page: 1001
  year: 2004
  publication-title: MNRAS
– volume: 703
  start-page: 131
  year: 2009
  publication-title: ApJ
– volume: 221
  start-page: 571
  year: 1986a
  publication-title: MNRAS
– volume: 435
  start-page: 611
  year: 2005
  publication-title: A&A
– volume: 348
  start-page: 139
  year: 2004b
  publication-title: MNRAS
– volume: 90
  start-page: 129
  year: 1979
  publication-title: J. Fluid Mech.
– volume: 666
  start-page: 290
  year: 2007
  publication-title: ApJ
– volume: 477
  start-page: 9
  year: 2008
  publication-title: A&A
– volume: 348
  start-page: L1
  year: 2004
  publication-title: MNRAS
– volume: 149
  start-page: 135
  year: 1985
  publication-title: A&A
– volume: 377
  start-page: 77
  year: 2007
  publication-title: MNRAS
– volume: 509
  start-page: A96
  year: 2010
  publication-title: A&A
– volume: 442
  start-page: 228
  year: 1995
  publication-title: ApJ
– volume: 222
  start-page: 111
  year: 1986b
  publication-title: MNRAS
– volume: 711
  start-page: 1017
  year: 2010
  publication-title: ApJ
– volume: 401
  start-page: 347
  year: 2010
  publication-title: MNRAS
SSID ssj0004326
Score 2.2040057
Snippet Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been...
ABSTRACT Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have...
ABSTRACT Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have...
SourceID proquest
pascalfrancis
wiley
oup
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 171
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
ISM: clouds
ISM: magnetic fields
Magnetic fields
MHD
Star & galaxy formation
Stars & galaxies
stars: formation
Title Protostellar collapse and fragmentation using an MHD gadget
URI https://api.istex.fr/ark:/67375/WNG-JLK0FPLQ-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2010.17896.x
https://www.proquest.com/docview/856824999
https://www.proquest.com/docview/867733055
Volume 412
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hPSEhPgZo2WDyA9oTqdoktR3xNA1KNdayTZvom-U4djWVJVWSSoO_njsnLSsfL4gXy4ntKD7fOb-73J0B3ghhzCAe6DCyWCQ5d6HmWENlSKNOpF0_o9jhyZSPr5PT2XDW-T9RLEybH2JjcCPJ8Ps1CbjO6m0h9x5aiNdbD62BkCnvEZ6kBsJHlz8zSSWxP3nNZ2hEHWGw7dTzxwchXCVK361D3x4tdY10c-2BF1uI9D6u9R-m0RNYrKfU-qMseqsm65nvv2R7_D9zfgqPO_zKjluGewYPbLELe8c1WdTL22_siPl6azCpdyGYICovK2-8x8aTrzcIkf3Vc3h3XpUNBZkgK1bMc-SytkwXOcPpz2-7sKiCkXP-HO-zyfg9m-t8bpsXcD36cHUyDrvDHMIbirYPpcVvpJFWishZp4c2T7nNHOILxIy4K9h4ENtcZ4lAjSi3uTNCi1hmJk0zkxsZv4SdoizsHjCXCSN5HzvncRJFJuWOOyed0E7HUiQBHPmFU8s2YYfS1YL818RQfZl-VKdnn_qj87MLdRHAW1zZTbd7-tCayoqorDyV1V0Ah1sssBlIaeSwTxTAwZonVLcV1EoOuYxIrwyAbVpRhunHjC5sucIuXIiYUq8FIPzy_-WV1G-vpCbTS1_d_-eRB_CwtZOTX90r2GmqlX2NQKvJDr0IYXn1efYDUIEbCA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFTKASTEo4AaCsUH6ImsNo-NHSEOVZdl292s2qoVvRknsVdVabJKsmLLr_ErfAxjJ1m6PC5IPXCJnHgSOZ4Ze8bzAnhFaZI4niNsV-LFTwNliwBbqAwJ1ImE6sY6djiaBMNT_-Csd7YG39pYmDo_xPLATXOGWa81g-sD6VUuNy5aKLDXLloOZWHQWTQeliN59QX1t_Ldfh-R_dp1B-9P9oZ2U2LAPtcx4DaTuHInTDLqKqlET6ZhIGOFux5KMkir0nM8mYrYpyinpzJVCRXUY3EShnGSJszD796C27qguE7c3z_-mbvK90ytN5MTErUSZ9WN6I8jRwFZ43bRBtvdm4kSMaXqEhsrMvB1SdpshYMH8L2dxNoD5qIzr-JO8vWX_JL_6Sw_hPuNiE52a556BGsy24DN3VIbDfLLK7JDTLs-Eyo3wIpQ8cgLY5_Azr3P56gFmLvH8PawyCsdR4PcVhDDdLNSEpGlBOd7etlEfmVExx9M8TmJhn0yFelUVk_g9EZ-8ymsZ3kmN4GomCYs6CJw6vmum4SBCpRiigolPEZ9C3YMpfBZnZOEi-JCu-jRHv84-cAPxqPu4HB8xI8seIOktAS7pvK1WOUaq9xglS8s2F6hueWLOlMewrgWbLVEyJvVruSsFzBXq84WkGUvLlPa9iQymc8RJKDU09nlLKCG3v4yJP7bkHg0OTbNZ__85ku4MzyJxny8Pxltwd3aLKDdCJ_DelXM5QuUK6t42_AvgU83Tco_AEtyelM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1db9Mw8DSGhJDQgAFaGAw_wJ5I1XzUdoR4mFZKt36om5jYm-ckdjWNpVXSah0_jb_Cn-HsJGXl4wVpD7xETnyJHN-dfef7AnjNWJJ4gSddX-ElTKl2JcUWKkMSdSKpm7GJHR4MafckPDxtna7BtzoWpswPsTxwM5xh12vD4NNUrzK59dBCeb300PIYj2hjUTlY9tT1FapvxfuDNuL6je93Pnza77pVhQH33ISAu1zhwp1wxZmvlZYtlUZUxRo3PRRkkFRV4AUqlXHIUExPVaoTJlnA4ySK4iRNeIDfvQN3Q9qMTNmI9vHP1FVhYEu92ZSQqJR4q15Efxw5yscGtYs61u7BVBaIKF1W2FgRgW8K0nYn7DyE7_Uclg4wF435LG4kX39JL_l_TvIj2KgEdLJXctRjWFPZJmztFcZkMLm8JrvEtssToWITnAGqHZPcWiewc__LOeoA9u4JvBvlk5mJokFey4lluWmhiMxSgtM9vqzivjJiog_G-JwMum0ylulYzZ7Cya385jNYzyaZ2gKiY5Zw2kTgNAh9P4moplpzzaSWAWehA7uWUMS0zEgiZH5hHPRYS3wefhSH_V6zM-ofiSMH3iIlLcFuKHw1VoXBqrBYFQsHdlZIbvmiyZOHML4D2zUNimqtKwRvUe4bxdkBsuzFRcpYnmSmJnMEoYwFJrecA8yS21-GJH4bkhgMj23z-T-_-Qrujdod0T8Y9rbhfmkTMD6EL2B9ls_VSxQqZ_GO5V4CZ7dNyT8AQ-N5Ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protostellar+collapse+and+fragmentation+using+an+MHD+gadget&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Buerzle%2C+Florian&rft.au=Clark%2C+Paul+C&rft.au=Stasyszyn%2C+Federico&rft.au=Greif%2C+Thomas&rft.date=2011-03-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=412&rft.issue=1&rft.spage=171&rft.epage=186&rft_id=info:doi/10.1111%2Fj.1365-2966.2010.17896.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon