Protostellar collapse and fragmentation using an MHD gadget
Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 412; no. 1; pp. 171 - 186 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2011
Wiley-Blackwell Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss and Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected. |
---|---|
AbstractList | Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss and Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected. ABSTRACT Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the 'Boss and Bodenheimer standard isothermal test case', to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the 'magnetic cushioning effect', where the magnetic field is wound up to form a 'cushion' between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected. [PUBLICATION ABSTRACT] ABSTRACT Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics method. This is largely due to the unsatisfactory treatment of non‐vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsic difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation of the ‘Boss and Bodenheimer standard isothermal test case’, to study the impact of the magnetic fields on collapse and fragmentation. In our simulations, we concentrate on setups, where the initial magnetic field is parallel to the rotation axis. We examine different field strengths and compare our results to other findings reported in the literature. We are able to confirm specific results found elsewhere, namely the delayed onset of star formation for strong fields, accompanied by the tendency to form only single stars. We also find that the ‘magnetic cushioning effect’, where the magnetic field is wound up to form a ‘cushion’ between the binary, aids binary fragmentation in a case where previously only formation of a single protostar was expected. |
Author | Clark, Paul C. Nielaba, Peter Stasyszyn, Federico Bürzle, Florian Greif, Thomas Dolag, Klaus Klessen, Ralf S. |
Author_xml | – sequence: 1 givenname: Florian surname: Bürzle fullname: Bürzle, Florian email: florian.buerzle@uni-konstanz.de organization: Universität Konstanz, Fachbereich Physik, Universitätsstr. 10, 78464 Konstanz, Germany – sequence: 2 givenname: Paul C. surname: Clark fullname: Clark, Paul C. organization: Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany – sequence: 3 givenname: Federico surname: Stasyszyn fullname: Stasyszyn, Federico organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany – sequence: 4 givenname: Thomas surname: Greif fullname: Greif, Thomas organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany – sequence: 5 givenname: Klaus surname: Dolag fullname: Dolag, Klaus organization: Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany – sequence: 6 givenname: Ralf S. surname: Klessen fullname: Klessen, Ralf S. organization: Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany – sequence: 7 givenname: Peter surname: Nielaba fullname: Nielaba, Peter organization: Universität Konstanz, Fachbereich Physik, Universitätsstr. 10, 78464 Konstanz, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23931782$$DView record in Pascal Francis |
BookMark | eNp1kVtr3DAQhUVIoZu0_8EESp-81cXWhUKhJN0k7eZWGvI4aOXx4q1X2lo23fz7yNmwDy3Ry4iZ7xxGR0fk0AePhGSMTlk6n1ZTJmSZcyPllNOxq7SR0-0BmewHh2RCqShzrRh7S45iXFFKC8HlhHy-7UIfYo9ta7vMhVQ2ETPrq6zu7HKNvrd9E3w2xMYvUz-7ujjLlrZaYv-OvKltG_H9Sz0m97Nvv04v8vnN-eXp13neFILJXCPjwmnUitdY2xIrI3FRa8bLgjJlUDCBlV0USha8wqp2yiqhF86YhaucFsfk485304U_A8Ye1k1048YewxBBS6WEoGWZyJN_yFUYOp-WA11KzQtjTII-vEA2OtumZ3rXRNh0zdp2j8CFESlDnrgvO-5v0-Ljfs4ojMHDCsZ8YcwXxuDhOXjYwtX1z-drMhA7gzBsXpHn_8mTKt-pmvQr273Odr9BKqFKeLg-h-_zH3R2O7-DO_EEkpKYdA |
CODEN | MNRAA4 |
ContentType | Journal Article |
Copyright | 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS 2010 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS 2010 – notice: 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW 8FD H8D L7M 7TG KL. |
DOI | 10.1111/j.1365-2966.2010.17896.x |
DatabaseName | Istex Pascal-Francis Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 186 |
ExternalDocumentID | 2291526591 23931782 MNR17896 10.1111/j.1365-2966.2010.17896.x ark_67375_WNG_JLK0FPLQ_Q |
Genre | article Feature |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABXVV ABZBJ ACBWZ ACCFJ ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASPBG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE CO8 COF D-E D-F DAKXR DCZOG DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 V8K W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX 2WC AASNB ABSAR ABSMQ ABTAH ACBNA ACFRR ACUTJ AETEA AFFNX AGMDO ASAOO ATDFG CXTWN DFGAJ GROUPED_DOAJ MBTAY O0~ OHT PB- RNP UQL VOH ZY4 AANHP ABAZT ABNGD ACRPL ACYXJ ADNMO AAMMB ABGNP ABVLG ACUKT ACUXJ AEFGJ AGQPQ AGXDD AHGBF AIDQK AIDYY ALXQX AMNDL ANAKG APJGH IQODW JXSIZ 8FD H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-i4316-8e123c8e872fefa5ed96ebf812540179e313edab47642dedfc7a738bc99bcdc83 |
IEDL.DBID | DR2 |
ISSN | 0035-8711 |
IngestDate | Fri Jul 11 09:42:20 EDT 2025 Sun Jul 13 04:50:57 EDT 2025 Mon Jul 21 09:13:28 EDT 2025 Wed Jan 22 16:52:24 EST 2025 Wed Aug 28 03:23:37 EDT 2024 Wed Oct 30 10:01:22 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | MHD stars: formation ISM: clouds magnetic fields ISM: magnetic fields Collapse Induction equation Magnetohydrodynamics Digital simulation Smoothed particle hydrodynamics method Rotation axis Fragmentation Protostars Case study Regularization method Divergences MHD model Star formation Particle code High field Magnetic fields |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i4316-8e123c8e872fefa5ed96ebf812540179e313edab47642dedfc7a738bc99bcdc83 |
Notes | istex:0B92DAC784AD57AD6A058E21E8BFCBCAB53270FA ark:/67375/WNG-JLK0FPLQ-Q ArticleID:MNR17896 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/412/1/171/3073554/mnras0412-0171.pdf |
PQID | 856824999 |
PQPubID | 42411 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_867733055 proquest_journals_856824999 pascalfrancis_primary_23931782 wiley_primary_10_1111_j_1365_2966_2010_17896_x_MNR17896 oup_primary_10_1111_j_1365-2966_2010_17896_x istex_primary_ark_67375_WNG_JLK0FPLQ_Q |
PublicationCentury | 2000 |
PublicationDate | March 2011 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: March 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Malden, MA – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAbbrev | Monthly Notices of the Royal Astronomical Society |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Oxford University Press |
References | Desch S., Mouschovias T., 2001, ApJ, 550, 314 Rosswog S., 2009, New Astron. Rev., 53, 78 Fromang S., Hennebelle P., Teyssier R., 2006, A&A, 457, 371 Stern D., 1970, Am. J. Phys., 38, 494 Hennebelle P., Teyssier R., 2008, A&A, 477, 25 Mestel L., Paris R., 1984, A&A, 136, 98 Jappsen A., Klessen R., Larson R., Li Y., Mac Low M., 2005, A&A, 435, 611 Cartwright A., Stamatellos D., Whitworth A. P., 2009, MNRAS, 395, 2373 Boss A., Bodenheimer P., 1979, ApJ, 234, 289 Price D., Monaghan J., 2005, MNRAS, 364, 384 Federrath C., Banerjee R., Clark P. C., Klessen R. S., 2010, ApJ, 713, 269 Price D., Monaghan J., 2004b, MNRAS, 348, 139 Springel V., Yoshida N., White S., 2001, New Astron., 6, 79 Mouschovias T., 1976, ApJ, 207, 141 Phillips G., 1986b, MNRAS, 222, 111 Mouschovias T., Paleologou E., 1979, ApJ, 230, 204 Machida M. N., Matsumoto T., Hanawa T., Tomisaka K., 2005b, MNRAS, 362, 382 Børve S., Omang M., Trulsen J., 2001, ApJ, 561, 82 Bate M., Bonnell I., Price N., 1995, MNRAS, 277, 362 Monaghan J., Lattanzio J., 1985, A&A, 149, 135 Hosking J., Whitworth A., 2004, MNRAS, 347, 1001 Mouschovias T., Spitzer L., 1976, ApJ, 210, 326 Price D. J., Bate M. R., 2009, MNRAS, 398, 33 Machida M. N., Matsumoto T., Tomisaka K., Hanawa T., 2005a, MNRAS, 362, 369 Phillips G., Monaghan J., 1985, MNRAS, 216, 883 Attwood R. E., Goodwin S. P., Whitworth A. P., 2007, A&A, 464, 447 Banerjee R., 2009, Lecture Notes Physics, Vol. 791, Jets From Young Stars V. Springer, Berlin , p. 201 Mouschovias T., Paleologou E., 1980, ApJ, 237, 877 Commerçon B., Hennebelle P., Audit E., Chabrier G., Teyssier R., 2008, A&A, 482, 371 Monaghan J., 1997, J. Comput. Phys., 136, 298 Kotarba H., Karl S. J., Naab T., Johansson P. H., Dolag K., Lesch H., Stasyszyn F. A., 2010, ApJ, 716, 1438 Springel V., 2005, MNRAS, 364, 1105 McKee C. F., Zweibel e.g. Goodman A. A., Heiles C., 1993, in Levy E. H., Lunine J. I., eds, Protostars & Planets III. University of Arizona Press, Tucson , AZ , p. 327 Commerçon B., Hennebelle P., Audit E., Chabrier G., Teyssier R., 2010, A&A, 510, L3 Crutcher R., 1999, ApJ, 520, 706 Arreaga-Garcia G., Klapp J., Sigalotti L. D. G., Gabbasov R., 2007, ApJ, 666, 290 Krumholz M., McKee C., Klein R., 2004, ApJ, 611, 399 Heiles C., Crutcher R., 2005, in Wielebinski R., Beck R., eds, Lecture Notes Phys., Vol. 664, Cosmic Magnetic Fields. Springer, Berlin , p. 137 Price D. J., 2007, Publ. Astron. Soc. Australia, 24, 159 Rosswog S., Price D., 2007, MNRAS, 379, 915 Berger M., Colella P., 1989, J. Comput. Phys., 82, 64 Morris J., Monaghan J., 1997, J. Comput. Phys., 136, 41 Hennebelle P., Fromang S., 2008, A&A, 477, 9 Balsara D., 1998, ApJS, 116, 133 Price D. J., Bate M. R., 2008, MNRAS, 385, 1820 Ziegler U., 2005, A&A, 435, 385 Agertz O. et al., 2007, MNRAS, 380, 963 Offner S. S. R., Klein R. I., McKee C. F., Krumholz M. R., 2009, ApJ, 703, 131 Phillips G., 1986a, MNRAS, 221, 571 Peters T., Banerjee R., Klessen R. S., Mac Low M.-M., Galvan-Madrid R., Keto E. R., 2010, ApJ, 711, 1017 Peters T., Mac Low M.-M., Banerjee R., Klessen R. S., Dullemond C. P., 2010a, ApJ, 719, 831 Li P., Norman M., Mac Low M., Heitsch F., 2004, ApJ, 605, 800 Price D. J., 2010, MNRAS, 401, 1475 Ryu D., Jones T., 1995, ApJ, 442, 228 Springel V., 2010, ARA&A, 48, 391 McKee C. F., Ostriker E. C., 2007, ARA&A, 45, 565 Fryxell B. et al., 2000, ApJS, 131, 273 Price D., Monaghan J., 2004a, MNRAS, 348, 123 Orszag S., Tang C., 1979, J. Fluid Mech., 90, 129 Kotarba H., Lesch H., Dolag K., Naab T., Johansson P. H., Stasyszyn F. A., 2009, MNRAS, 397, 733 Springel V., Hernquist L., 2002, MNRAS, 333, 649 Price D. J., Bate M. R., 2007, MNRAS, 377, 77 Bate M., Burkert A., 1997, MNRAS, 288, 1060 Brandenburg A., 2010, MNRAS, 401, 347 Machida M. N., Matsumoto T., Inutsuka S.-I., 2008, ApJ, 685, 690 Arreaga-Garcia G., Klapp-Escribano J., Gomez-Ramirez F., 2010, A&A, 509, A96 Balsara D., Spicer D., 1999, J. Comput. Phys., 149, 270 Teyssier R., 2002, A&A, 385, 337 Hennebelle P., Ciardi A., 2009, A&A, 506, L29 Mestel L., Spitzer L., 1956, MNRAS, 116, 503 Peters T., Mac Low M.-M., Banerjee R., Klessen R. S., Dullemond C. P., 2010b, ApJ, 720, 1782 Dolag K., Stasyszyn F., 2009, MNRAS, 398, 1678 Fiedler R., Mouschovias T., 1993, ApJ, 415, 680 Mac Low M., Klessen R., 2004, Rev. Mod. Phys., 76, 125 Banerjee R., Pudritz R., 2006, ApJ, 641, 949 Machida M., Tomisaka K., Matsumoto T., 2004, MNRAS, 348, L1 Mouschovias T., 1991, ApJ, 373, 169 2004b; 348 2010; 509 2007; 464 1989; 82 1986a; 221 2007; 666 1976; 207 2007; 380 2009; 397 2009; 398 1999; 520 2000; 131 1998; 116 2009; 395 2006; 457 2008; 385 1970; 38 2004; 605 2004; 76 1979; 234 2007; 379 2007; 377 1993; 415 2010; 716 2004; 611 1979; 230 2009; 53 2010; 713 2002; 385 2010; 711 2010; 510 2010b; 720 2005b; 362 1985; 216 2008; 477 1986b; 222 1995; 442 2007; 24 2006; 641 2001; 561 1997; 136 1991; 373 1980; 237 2004; 347 2002; 333 2010; 401 2005; 435 2009 2010a; 719 1956; 116 1979; 90 2005 1985; 149 1993 1995; 277 2008; 685 1999; 149 2004; 348 2008; 482 2001; 550 1976; 210 2010; 48 2005a; 362 1984; 136 2005; 364 2001; 6 2004a; 348 1997; 288 2009; 703 2009; 506 2007; 45 |
References_xml | – reference: Mouschovias T., Spitzer L., 1976, ApJ, 210, 326 – reference: Cartwright A., Stamatellos D., Whitworth A. P., 2009, MNRAS, 395, 2373 – reference: Banerjee R., Pudritz R., 2006, ApJ, 641, 949 – reference: Peters T., Mac Low M.-M., Banerjee R., Klessen R. S., Dullemond C. P., 2010a, ApJ, 719, 831 – reference: Arreaga-Garcia G., Klapp J., Sigalotti L. D. G., Gabbasov R., 2007, ApJ, 666, 290 – reference: Peters T., Banerjee R., Klessen R. S., Mac Low M.-M., Galvan-Madrid R., Keto E. R., 2010, ApJ, 711, 1017 – reference: McKee C. F., Ostriker E. C., 2007, ARA&A, 45, 565 – reference: Balsara D., 1998, ApJS, 116, 133 – reference: Machida M. N., Matsumoto T., Inutsuka S.-I., 2008, ApJ, 685, 690 – reference: Springel V., Yoshida N., White S., 2001, New Astron., 6, 79 – reference: Mouschovias T., 1976, ApJ, 207, 141 – reference: Machida M., Tomisaka K., Matsumoto T., 2004, MNRAS, 348, L1 – reference: Mestel L., Spitzer L., 1956, MNRAS, 116, 503 – reference: Agertz O. et al., 2007, MNRAS, 380, 963 – reference: Ziegler U., 2005, A&A, 435, 385 – reference: Federrath C., Banerjee R., Clark P. C., Klessen R. S., 2010, ApJ, 713, 269 – reference: Attwood R. E., Goodwin S. P., Whitworth A. P., 2007, A&A, 464, 447 – reference: Fiedler R., Mouschovias T., 1993, ApJ, 415, 680 – reference: Monaghan J., Lattanzio J., 1985, A&A, 149, 135 – reference: Price D. J., 2007, Publ. Astron. Soc. Australia, 24, 159 – reference: Price D., Monaghan J., 2004b, MNRAS, 348, 139 – reference: Price D., Monaghan J., 2004a, MNRAS, 348, 123 – reference: Brandenburg A., 2010, MNRAS, 401, 347 – reference: Balsara D., Spicer D., 1999, J. Comput. Phys., 149, 270 – reference: Heiles C., Crutcher R., 2005, in Wielebinski R., Beck R., eds, Lecture Notes Phys., Vol. 664, Cosmic Magnetic Fields. Springer, Berlin , p. 137 – reference: Kotarba H., Lesch H., Dolag K., Naab T., Johansson P. H., Stasyszyn F. A., 2009, MNRAS, 397, 733 – reference: Jappsen A., Klessen R., Larson R., Li Y., Mac Low M., 2005, A&A, 435, 611 – reference: Hennebelle P., Teyssier R., 2008, A&A, 477, 25 – reference: Rosswog S., 2009, New Astron. Rev., 53, 78 – reference: Morris J., Monaghan J., 1997, J. Comput. Phys., 136, 41 – reference: Fromang S., Hennebelle P., Teyssier R., 2006, A&A, 457, 371 – reference: Commerçon B., Hennebelle P., Audit E., Chabrier G., Teyssier R., 2010, A&A, 510, L3 – reference: Børve S., Omang M., Trulsen J., 2001, ApJ, 561, 82 – reference: Phillips G., 1986a, MNRAS, 221, 571 – reference: Price D. J., Bate M. R., 2008, MNRAS, 385, 1820 – reference: Fryxell B. et al., 2000, ApJS, 131, 273 – reference: Rosswog S., Price D., 2007, MNRAS, 379, 915 – reference: Peters T., Mac Low M.-M., Banerjee R., Klessen R. S., Dullemond C. P., 2010b, ApJ, 720, 1782 – reference: Price D. J., Bate M. R., 2009, MNRAS, 398, 33 – reference: Hennebelle P., Ciardi A., 2009, A&A, 506, L29 – reference: Desch S., Mouschovias T., 2001, ApJ, 550, 314 – reference: Price D. J., 2010, MNRAS, 401, 1475 – reference: Monaghan J., 1997, J. Comput. Phys., 136, 298 – reference: Hosking J., Whitworth A., 2004, MNRAS, 347, 1001 – reference: Phillips G., 1986b, MNRAS, 222, 111 – reference: Mac Low M., Klessen R., 2004, Rev. Mod. Phys., 76, 125 – reference: Springel V., Hernquist L., 2002, MNRAS, 333, 649 – reference: Berger M., Colella P., 1989, J. Comput. Phys., 82, 64 – reference: Commerçon B., Hennebelle P., Audit E., Chabrier G., Teyssier R., 2008, A&A, 482, 371 – reference: Hennebelle P., Fromang S., 2008, A&A, 477, 9 – reference: Li P., Norman M., Mac Low M., Heitsch F., 2004, ApJ, 605, 800 – reference: Orszag S., Tang C., 1979, J. Fluid Mech., 90, 129 – reference: Offner S. S. R., Klein R. I., McKee C. F., Krumholz M. R., 2009, ApJ, 703, 131 – reference: Phillips G., Monaghan J., 1985, MNRAS, 216, 883 – reference: Dolag K., Stasyszyn F., 2009, MNRAS, 398, 1678 – reference: Kotarba H., Karl S. J., Naab T., Johansson P. H., Dolag K., Lesch H., Stasyszyn F. A., 2010, ApJ, 716, 1438 – reference: Stern D., 1970, Am. J. Phys., 38, 494 – reference: Ryu D., Jones T., 1995, ApJ, 442, 228 – reference: Bate M., Bonnell I., Price N., 1995, MNRAS, 277, 362 – reference: Boss A., Bodenheimer P., 1979, ApJ, 234, 289 – reference: McKee C. F., Zweibel e.g. Goodman A. A., Heiles C., 1993, in Levy E. H., Lunine J. I., eds, Protostars & Planets III. University of Arizona Press, Tucson , AZ , p. 327 – reference: Springel V., 2005, MNRAS, 364, 1105 – reference: Crutcher R., 1999, ApJ, 520, 706 – reference: Price D., Monaghan J., 2005, MNRAS, 364, 384 – reference: Arreaga-Garcia G., Klapp-Escribano J., Gomez-Ramirez F., 2010, A&A, 509, A96 – reference: Banerjee R., 2009, Lecture Notes Physics, Vol. 791, Jets From Young Stars V. Springer, Berlin , p. 201 – reference: Teyssier R., 2002, A&A, 385, 337 – reference: Price D. J., Bate M. R., 2007, MNRAS, 377, 77 – reference: Krumholz M., McKee C., Klein R., 2004, ApJ, 611, 399 – reference: Bate M., Burkert A., 1997, MNRAS, 288, 1060 – reference: Mouschovias T., 1991, ApJ, 373, 169 – reference: Mouschovias T., Paleologou E., 1980, ApJ, 237, 877 – reference: Machida M. N., Matsumoto T., Tomisaka K., Hanawa T., 2005a, MNRAS, 362, 369 – reference: Machida M. N., Matsumoto T., Hanawa T., Tomisaka K., 2005b, MNRAS, 362, 382 – reference: Mestel L., Paris R., 1984, A&A, 136, 98 – reference: Springel V., 2010, ARA&A, 48, 391 – reference: Mouschovias T., Paleologou E., 1979, ApJ, 230, 204 – volume: 362 start-page: 369 year: 2005a publication-title: MNRAS – volume: 216 start-page: 883 year: 1985 publication-title: MNRAS – volume: 277 start-page: 362 year: 1995 publication-title: MNRAS – volume: 24 start-page: 159 year: 2007 publication-title: Publ. Astron. Soc. Australia – volume: 364 start-page: 1105 year: 2005 publication-title: MNRAS – volume: 401 start-page: 1475 year: 2010 publication-title: MNRAS – volume: 380 start-page: 963 year: 2007 publication-title: MNRAS – start-page: 137 year: 2005 – volume: 435 start-page: 385 year: 2005 publication-title: A&A – volume: 38 start-page: 494 year: 1970 publication-title: Am. J. Phys. – volume: 506 start-page: L29 year: 2009 publication-title: A&A – volume: 685 start-page: 690 year: 2008 publication-title: ApJ – volume: 385 start-page: 337 year: 2002 publication-title: A&A – volume: 131 start-page: 273 year: 2000 publication-title: ApJS – volume: 415 start-page: 680 year: 1993 publication-title: ApJ – volume: 362 start-page: 382 year: 2005b publication-title: MNRAS – volume: 713 start-page: 269 year: 2010 publication-title: ApJ – volume: 210 start-page: 326 year: 1976 publication-title: ApJ – volume: 48 start-page: 391 year: 2010 publication-title: ARA&A – start-page: 201 year: 2009 – volume: 720 start-page: 1782 year: 2010b publication-title: ApJ – volume: 364 start-page: 384 year: 2005 publication-title: MNRAS – volume: 482 start-page: 371 year: 2008 publication-title: A&A – volume: 116 start-page: 503 year: 1956 publication-title: MNRAS – volume: 116 start-page: 133 year: 1998 publication-title: ApJS – volume: 373 start-page: 169 year: 1991 publication-title: ApJ – volume: 237 start-page: 877 year: 1980 publication-title: ApJ – volume: 398 start-page: 33 year: 2009 publication-title: MNRAS – volume: 379 start-page: 915 year: 2007 publication-title: MNRAS – volume: 6 start-page: 79 year: 2001 publication-title: New Astron. – volume: 45 start-page: 565 year: 2007 publication-title: ARA&A – volume: 520 start-page: 706 year: 1999 publication-title: ApJ – start-page: 327 year: 1993 – volume: 464 start-page: 447 year: 2007 publication-title: A&A – volume: 288 start-page: 1060 year: 1997 publication-title: MNRAS – volume: 716 start-page: 1438 year: 2010 publication-title: ApJ – volume: 561 start-page: 82 year: 2001 publication-title: ApJ – volume: 348 start-page: 123 year: 2004a publication-title: MNRAS – volume: 457 start-page: 371 year: 2006 publication-title: A&A – volume: 477 start-page: 25 year: 2008 publication-title: A&A – volume: 136 start-page: 98 year: 1984 publication-title: A&A – volume: 136 start-page: 298 year: 1997 publication-title: J. Comput. Phys. – volume: 395 start-page: 2373 year: 2009 publication-title: MNRAS – volume: 230 start-page: 204 year: 1979 publication-title: ApJ – volume: 149 start-page: 270 year: 1999 publication-title: J. Comput. Phys. – volume: 234 start-page: 289 year: 1979 publication-title: ApJ – volume: 510 start-page: L3 year: 2010 publication-title: A&A – volume: 333 start-page: 649 year: 2002 publication-title: MNRAS – volume: 550 start-page: 314 year: 2001 publication-title: ApJ – volume: 136 start-page: 41 year: 1997 publication-title: J. Comput. Phys. – volume: 611 start-page: 399 year: 2004 publication-title: ApJ – volume: 605 start-page: 800 year: 2004 publication-title: ApJ – volume: 719 start-page: 831 year: 2010a publication-title: ApJ – volume: 398 start-page: 1678 year: 2009 publication-title: MNRAS – volume: 207 start-page: 141 year: 1976 publication-title: ApJ – volume: 385 start-page: 1820 year: 2008 publication-title: MNRAS – volume: 53 start-page: 78 year: 2009 publication-title: New Astron. Rev. – volume: 82 start-page: 64 year: 1989 publication-title: J. Comput. Phys. – volume: 76 start-page: 125 year: 2004 publication-title: Rev. Mod. Phys. – volume: 641 start-page: 949 year: 2006 publication-title: ApJ – volume: 397 start-page: 733 year: 2009 publication-title: MNRAS – volume: 347 start-page: 1001 year: 2004 publication-title: MNRAS – volume: 703 start-page: 131 year: 2009 publication-title: ApJ – volume: 221 start-page: 571 year: 1986a publication-title: MNRAS – volume: 435 start-page: 611 year: 2005 publication-title: A&A – volume: 348 start-page: 139 year: 2004b publication-title: MNRAS – volume: 90 start-page: 129 year: 1979 publication-title: J. Fluid Mech. – volume: 666 start-page: 290 year: 2007 publication-title: ApJ – volume: 477 start-page: 9 year: 2008 publication-title: A&A – volume: 348 start-page: L1 year: 2004 publication-title: MNRAS – volume: 149 start-page: 135 year: 1985 publication-title: A&A – volume: 377 start-page: 77 year: 2007 publication-title: MNRAS – volume: 509 start-page: A96 year: 2010 publication-title: A&A – volume: 442 start-page: 228 year: 1995 publication-title: ApJ – volume: 222 start-page: 111 year: 1986b publication-title: MNRAS – volume: 711 start-page: 1017 year: 2010 publication-title: ApJ – volume: 401 start-page: 347 year: 2010 publication-title: MNRAS |
SSID | ssj0004326 |
Score | 2.2040057 |
Snippet | Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been... ABSTRACT Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have... ABSTRACT Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have... |
SourceID | proquest pascalfrancis wiley oup istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 171 |
SubjectTerms | Astronomy Earth, ocean, space Exact sciences and technology ISM: clouds ISM: magnetic fields Magnetic fields MHD Star & galaxy formation Stars & galaxies stars: formation |
Title | Protostellar collapse and fragmentation using an MHD gadget |
URI | https://api.istex.fr/ark:/67375/WNG-JLK0FPLQ-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2966.2010.17896.x https://www.proquest.com/docview/856824999 https://www.proquest.com/docview/867733055 |
Volume | 412 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hPSEhPgZo2WDyA9oTqdoktR3xNA1KNdayTZvom-U4djWVJVWSSoO_njsnLSsfL4gXy4ntKD7fOb-73J0B3ghhzCAe6DCyWCQ5d6HmWENlSKNOpF0_o9jhyZSPr5PT2XDW-T9RLEybH2JjcCPJ8Ps1CbjO6m0h9x5aiNdbD62BkCnvEZ6kBsJHlz8zSSWxP3nNZ2hEHWGw7dTzxwchXCVK361D3x4tdY10c-2BF1uI9D6u9R-m0RNYrKfU-qMseqsm65nvv2R7_D9zfgqPO_zKjluGewYPbLELe8c1WdTL22_siPl6azCpdyGYICovK2-8x8aTrzcIkf3Vc3h3XpUNBZkgK1bMc-SytkwXOcPpz2-7sKiCkXP-HO-zyfg9m-t8bpsXcD36cHUyDrvDHMIbirYPpcVvpJFWishZp4c2T7nNHOILxIy4K9h4ENtcZ4lAjSi3uTNCi1hmJk0zkxsZv4SdoizsHjCXCSN5HzvncRJFJuWOOyed0E7HUiQBHPmFU8s2YYfS1YL818RQfZl-VKdnn_qj87MLdRHAW1zZTbd7-tCayoqorDyV1V0Ah1sssBlIaeSwTxTAwZonVLcV1EoOuYxIrwyAbVpRhunHjC5sucIuXIiYUq8FIPzy_-WV1G-vpCbTS1_d_-eRB_CwtZOTX90r2GmqlX2NQKvJDr0IYXn1efYDUIEbCA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFTKASTEo4AaCsUH6ImsNo-NHSEOVZdl292s2qoVvRknsVdVabJKsmLLr_ErfAxjJ1m6PC5IPXCJnHgSOZ4Ze8bzAnhFaZI4niNsV-LFTwNliwBbqAwJ1ImE6sY6djiaBMNT_-Csd7YG39pYmDo_xPLATXOGWa81g-sD6VUuNy5aKLDXLloOZWHQWTQeliN59QX1t_Ldfh-R_dp1B-9P9oZ2U2LAPtcx4DaTuHInTDLqKqlET6ZhIGOFux5KMkir0nM8mYrYpyinpzJVCRXUY3EShnGSJszD796C27qguE7c3z_-mbvK90ytN5MTErUSZ9WN6I8jRwFZ43bRBtvdm4kSMaXqEhsrMvB1SdpshYMH8L2dxNoD5qIzr-JO8vWX_JL_6Sw_hPuNiE52a556BGsy24DN3VIbDfLLK7JDTLs-Eyo3wIpQ8cgLY5_Azr3P56gFmLvH8PawyCsdR4PcVhDDdLNSEpGlBOd7etlEfmVExx9M8TmJhn0yFelUVk_g9EZ-8ymsZ3kmN4GomCYs6CJw6vmum4SBCpRiigolPEZ9C3YMpfBZnZOEi-JCu-jRHv84-cAPxqPu4HB8xI8seIOktAS7pvK1WOUaq9xglS8s2F6hueWLOlMewrgWbLVEyJvVruSsFzBXq84WkGUvLlPa9iQymc8RJKDU09nlLKCG3v4yJP7bkHg0OTbNZ__85ku4MzyJxny8Pxltwd3aLKDdCJ_DelXM5QuUK6t42_AvgU83Tco_AEtyelM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1db9Mw8DSGhJDQgAFaGAw_wJ5I1XzUdoR4mFZKt36om5jYm-ckdjWNpVXSah0_jb_Cn-HsJGXl4wVpD7xETnyJHN-dfef7AnjNWJJ4gSddX-ElTKl2JcUWKkMSdSKpm7GJHR4MafckPDxtna7BtzoWpswPsTxwM5xh12vD4NNUrzK59dBCeb300PIYj2hjUTlY9tT1FapvxfuDNuL6je93Pnza77pVhQH33ISAu1zhwp1wxZmvlZYtlUZUxRo3PRRkkFRV4AUqlXHIUExPVaoTJlnA4ySK4iRNeIDfvQN3Q9qMTNmI9vHP1FVhYEu92ZSQqJR4q15Efxw5yscGtYs61u7BVBaIKF1W2FgRgW8K0nYn7DyE7_Uclg4wF435LG4kX39JL_l_TvIj2KgEdLJXctRjWFPZJmztFcZkMLm8JrvEtssToWITnAGqHZPcWiewc__LOeoA9u4JvBvlk5mJokFey4lluWmhiMxSgtM9vqzivjJiog_G-JwMum0ylulYzZ7Cya385jNYzyaZ2gKiY5Zw2kTgNAh9P4moplpzzaSWAWehA7uWUMS0zEgiZH5hHPRYS3wefhSH_V6zM-ofiSMH3iIlLcFuKHw1VoXBqrBYFQsHdlZIbvmiyZOHML4D2zUNimqtKwRvUe4bxdkBsuzFRcpYnmSmJnMEoYwFJrecA8yS21-GJH4bkhgMj23z-T-_-Qrujdod0T8Y9rbhfmkTMD6EL2B9ls_VSxQqZ_GO5V4CZ7dNyT8AQ-N5Ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protostellar+collapse+and+fragmentation+using+an+MHD+gadget&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Buerzle%2C+Florian&rft.au=Clark%2C+Paul+C&rft.au=Stasyszyn%2C+Federico&rft.au=Greif%2C+Thomas&rft.date=2011-03-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=412&rft.issue=1&rft.spage=171&rft.epage=186&rft_id=info:doi/10.1111%2Fj.1365-2966.2010.17896.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |