Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy

PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK1 52, after being generated inside mitochondria, can exit these organelles and localize to the cytosol,...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 15; no. 1; pp. 86 - 93
Main Authors Fedorowicz, Maja A., de Vries-Schneider, Rosa L. A., Rüb, Cornelia, Becker, Dorothea, Huang, Yong, Zhou, Chun, Alessi Wolken, Dana M., Voos, Wolfgang, Liu, Yuhui, Przedborski, Serge
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.01.2014
Nature Publishing Group UK
Springer Nature B.V
BlackWell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK1 52, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy. Synopsis The kinase PINK1, mutants of which are associated with Parkinson disease development, is thought to function in mitochondria. Here, PINK1 is shown to participate in maintaining a healthy pool of mitochondria also by functioning in the cytosol, where it interacts with Parkin. Cleaved PINK152 is retrotranslocated from mitochondria into the cytosol. PINK152 directly interacts with Parkin in the cytosol and prevents Parkin mitochondrial translocation. Cytosolic PINK152 attenuates valinomycin‐induced mitophagy. Graphical Abstract PINK1, mutants of which are associated with Parkinson, is thought to function in mitochondria. Here, PINK1 is shown to be exported into the cytosol after cleavage, where it binds Parkin, inhibiting its mitochondrial recruitment and preventing mitophagy.
AbstractList PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK1 52, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy. Synopsis The kinase PINK1, mutants of which are associated with Parkinson disease development, is thought to function in mitochondria. Here, PINK1 is shown to participate in maintaining a healthy pool of mitochondria also by functioning in the cytosol, where it interacts with Parkin. Cleaved PINK152 is retrotranslocated from mitochondria into the cytosol. PINK152 directly interacts with Parkin in the cytosol and prevents Parkin mitochondrial translocation. Cytosolic PINK152 attenuates valinomycin‐induced mitophagy. Graphical Abstract PINK1, mutants of which are associated with Parkinson, is thought to function in mitochondria. Here, PINK1 is shown to be exported into the cytosol after cleavage, where it binds Parkin, inhibiting its mitochondrial recruitment and preventing mitophagy.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy. Synopsis The kinase PINK1, mutants of which are associated with Parkinson disease development, is thought to function in mitochondria. Here, PINK1 is shown to participate in maintaining a healthy pool of mitochondria also by functioning in the cytosol, where it interacts with Parkin. Cleaved PINK152 is retrotranslocated from mitochondria into the cytosol. PINK152 directly interacts with Parkin in the cytosol and prevents Parkin mitochondrial translocation. Cytosolic PINK152 attenuates valinomycin-induced mitophagy. [PUBLICATION ABSTRACT]
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy.PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK152, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy. Synopsis The kinase PINK1, mutants of which are associated with Parkinson disease development, is thought to function in mitochondria. Here, PINK1 is shown to participate in maintaining a healthy pool of mitochondria also by functioning in the cytosol, where it interacts with Parkin. Cleaved PINK152 is retrotranslocated from mitochondria into the cytosol. PINK152 directly interacts with Parkin in the cytosol and prevents Parkin mitochondrial translocation. Cytosolic PINK152 attenuates valinomycin‐induced mitophagy. PINK1, mutants of which are associated with Parkinson, is thought to function in mitochondria. Here, PINK1 is shown to be exported into the cytosol after cleavage, where it binds Parkin, inhibiting its mitochondrial recruitment and preventing mitophagy.
PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the PINK1 main cleavage product, PINK1 52, after being generated inside mitochondria, can exit these organelles and localize to the cytosol, where it is not only destined for degradation by the proteasome but binds to Parkin. The interaction of cytosolic PINK1 with Parkin represses Parkin translocation to the mitochondria and subsequent mitophagy. Our work therefore highlights the existence of two cellular pools of PINK1 that have different effects on Parkin translocation and mitophagy.
Author Alessi Wolken, Dana M.
de Vries-Schneider, Rosa L. A.
Voos, Wolfgang
Zhou, Chun
Huang, Yong
Liu, Yuhui
Rüb, Cornelia
Becker, Dorothea
Fedorowicz, Maja A.
Przedborski, Serge
Author_xml – sequence: 1
  givenname: Maja A.
  surname: Fedorowicz
  fullname: Fedorowicz, Maja A.
  organization: Center for Motor Neuron Biology and Disease and the Columbia Translational Neuroscience Initiative, Columbia University, New York, NY, USA
– sequence: 2
  givenname: Rosa L. A.
  surname: de Vries-Schneider
  fullname: de Vries-Schneider, Rosa L. A.
  organization: Center for Motor Neuron Biology and Disease and the Columbia Translational Neuroscience Initiative, Columbia University, New York, NY, USA
– sequence: 3
  givenname: Cornelia
  surname: Rüb
  fullname: Rüb, Cornelia
  organization: Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Bonn, Germany
– sequence: 4
  givenname: Dorothea
  surname: Becker
  fullname: Becker, Dorothea
  organization: Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Bonn, Germany
– sequence: 5
  givenname: Yong
  surname: Huang
  fullname: Huang, Yong
  organization: Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA
– sequence: 6
  givenname: Chun
  surname: Zhou
  fullname: Zhou, Chun
  organization: Department of Environmental Health Science, Mailman School of Public Health, Columbia University, NY, New York, USA
– sequence: 7
  givenname: Dana M.
  surname: Alessi Wolken
  fullname: Alessi Wolken, Dana M.
  organization: Department of Pathology and Cell Biology, Columbia University, NY, New York, USA
– sequence: 8
  givenname: Wolfgang
  surname: Voos
  fullname: Voos, Wolfgang
  organization: Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Bonn, Germany
– sequence: 9
  givenname: Yuhui
  surname: Liu
  fullname: Liu, Yuhui
  organization: Center for Motor Neuron Biology and Disease and the Columbia Translational Neuroscience Initiative, Columbia University, New York, NY, USA
– sequence: 10
  givenname: Serge
  surname: Przedborski
  fullname: Przedborski, Serge
  email: sp30@columbia.edu
  organization: Center for Motor Neuron Biology and Disease and the Columbia Translational Neuroscience Initiative, Columbia University, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24357652$$D View this record in MEDLINE/PubMed
BookMark eNptUU1PGzEUtCqq8lGuHKuVeullwZ-76wtSiShFTSlCkYi4WF7vS2K6a6f2hjb_vqZJV4A42c9vZt74zT7acd4BQkcEHxOM6Ql0dTimmDBWUsnfoD3CC5kzUlY72zulZLqL9mO8xxgLWVbv0C7lTJSFoHtoMlr3PvrWmsy0oB-gya4vr76RLMAyQIwQs2sdflqX9UG72Hqje-tT5bPO9t4svGuC1Zl2zb-H5ULP1-_R25luIxxuzwM0-XI-GX3Nxz8uLkefx7nllPLczIBgTqtaNoZigwFkXZOGamyY4JwQIw2fFaKQJuEM01CZGeNQUUGgAHaATjeyy1XdQWPAJY-tWgbb6bBWXlv1vOPsQs39g-IMMy5oEvi0FQj-1wpirzobDbStduBXUREucUkqKnGCfnwBvfer4NLvFBEFpYVIu02oD08dDVb-7zsB5Abw27awHvoEq8c01WOaakhTnX8_uxmqxD3ZcGOiuTmEJxZe5SdGvmHY2MOfYVrKUxUlK4W6vbpQ42oqydn0Vt2xv1j_tQA
CODEN ERMEAX
ContentType Journal Article
Copyright The Author(s) 2013
2013 The Authors
2014 EMBO
2013 The Authors 2013
Copyright_xml – notice: The Author(s) 2013
– notice: 2013 The Authors
– notice: 2014 EMBO
– notice: 2013 The Authors 2013
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1002/embr.201337294
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList MEDLINE

Virology and AIDS Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 93
ExternalDocumentID PMC4303452
3433442651
24357652
EMBR201337294
10_1002_embr_201337294
ark_67375_WNG_L8X91BXW_Z
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: US Department of Defense
  grantid: W81WXWH‐08‐1‐0465; W81XWH‐10‐1‐053
– fundername: National Institutes of Health
  grantid: NS38370‐12; ES017384; NS070276; 2 TL1 RR 24158‐6
– fundername: Parkinson's Disease Foundation
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 805231
– fundername: Thomas Hartman Foundation
– fundername: US Department of Defense
  funderid: W81WXWH‐08‐1‐0465; W81XWH‐10‐1‐053
– fundername: National Institutes of Health
  funderid: NS38370‐12; ES017384; NS070276; 2 TL1 RR 24158‐6
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 805231
– fundername: NINDS NIH HHS
  grantid: NS070276
– fundername: NIEHS NIH HHS
  grantid: ES017384
– fundername: NINDS NIH HHS
  grantid: P50 NS038370
– fundername: NCRR NIH HHS
  grantid: 2 TL1 RR 24158-6
– fundername: NIEHS NIH HHS
  grantid: R01 ES017384
– fundername: NCRR NIH HHS
  grantid: TL1 RR024158
– fundername: NINDS NIH HHS
  grantid: NS38370-12
– fundername: NINDS NIH HHS
  grantid: RC2 NS070276
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
24P
29G
2WC
33P
36B
39C
3O-
3V.
53G
5GY
5VS
70F
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0L
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
PQQKQ
PROAC
PSQYO
Q2X
R.K
RHF
RHI
RIG
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
WYJ
X7M
ZGI
ZZTAW
AAJSJ
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AEUYN
AAMMB
AASML
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NAO
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-i4224-cfe10428b9dc20c0ee9bb1d2a0c354411c9c4f6569c104c3ae8cf34e8251e6e3
ISSN 1469-221X
1469-3178
IngestDate Thu Aug 21 18:02:29 EDT 2025
Fri Jul 11 02:51:56 EDT 2025
Sat Aug 16 22:52:07 EDT 2025
Mon Jul 21 05:52:41 EDT 2025
Wed Jan 22 16:50:18 EST 2025
Fri Feb 21 02:37:24 EST 2025
Wed Oct 30 09:56:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords mitophagy
PINK1
Parkinson's disease
mitochondria
Parkin
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i4224-cfe10428b9dc20c0ee9bb1d2a0c354411c9c4f6569c104c3ae8cf34e8251e6e3
Notes National Institutes of Health - No. NS38370-12; No. ES017384; No. NS070276; No. 2 TL1 RR 24158-6
Thomas Hartman Foundation
US Department of Defense - No. W81WXWH-08-1-0465; No. W81XWH-10-1-053
ArticleID:EMBR201337294
Parkinson's Disease Foundation
ark:/67375/WNG-L8X91BXW-Z
istex:5DCBEB1DBA4D55FA1194A17861A2E9CFA07FE877
Supplementary Figure S1-S3Review Process File
Deutsche Forschungsgemeinschaft - No. 805231
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
PMID 24357652
PQID 1562265059
PQPubID 26169
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4303452
proquest_miscellaneous_1490718290
proquest_journals_1562265059
pubmed_primary_24357652
wiley_primary_10_1002_embr_201337294_EMBR201337294
springer_journals_10_1002_embr_201337294
istex_primary_ark_67375_WNG_L8X91BXW_Z
PublicationCentury 2000
PublicationDate January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Oxford, UK
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO rep
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: BlackWell Publishing Ltd
References Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13: 378-385
Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795-803
Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107: 378-383
Weihofen A, Ostaszewski B, Minami Y, Selkoe DJ (2008) Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum Mol Genet 17: 602-616
Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20: 867-879
Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889-909
Beilina A, van der Burg M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA 102: 5703-5708
Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, Chung J (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377: 975-980
Takatori S, Ito G, Iwatsubo T (2008) Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 430: 13-17
Murata H, Sakaguchi M, Jin Y, Sakaguchi Y, Futami J, Yamada H, Kataoka K, Huh NH (2011) A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem 286: 7182-7189
Becker D, Richter J, Tocilescu MA, Przedborski S, Voos W (2012) Pink1 kinase and its membrane potential (Deltaψ)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode. J Biol Chem 287: 22969-22987
Haque ME, Thomas KJ, D'Souza C, Callaghan S, Kitada T, Slack RS, Fraser P, Cookson MR, Tandon A, Park DS (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci USA 105: 1716-1721
Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70: 1033-1053
Gilkerson RW, De Vries RL, Lebot P, Wikstrom JD, Torgyekes E, Shirihai OS, Przedborski S, Schon EA (2012) Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum Mol Genet 21: 978-990
Regev-Rudzki N, Yogev O, Pines O (2008) The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. J Cell Sci 121(Pt 14): 2423-2431
Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, Shokat KM (2013) A neo-substrate that amplifies catalytic activity of Parkinson's-disease-related kinase PINK1. Cell 154: 737-747
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191: 933-942
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298.
Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin. Proc Natl Acad Sci USA 107: 5018-5023
Lin W, Kang UJ (2008) Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem 106: 464-474
Kawajiri S, Saiki S, Sato S, Sato F, Hatano T, Eguchi H, Hattori N (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584: 1073-1079
Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14: 3477-3492
Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA, Przedborski S (2008) The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci USA 105: 12022-12027
Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJ (2010) Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci USA 107: 11835-11840
Muqit MM, Abou-Sleiman PM, Saurin AT, Harvey K, Gandhi S, Deas E, Eaton S, Payne Smith MD, Venner K, Matilla A, Healy DG, Gilks WP, Lees AJ, Holton J, Revesz T, Parker PJ, Harvey RJ, Wood NW, Latchman DS(2006) Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. J Neurochem 98: 156-169
Rakovic A, Grunewald A, Seibler P, Ramirez A, Kock N, Orolicki S, Lohmann K, Klein C (2010) Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet 19: 3124-3137
Shiba K, Arai T, Sato S, Kubo S, Ohba Y, Mizuno Y, Hattori N (2009) Parkin stabilizes PINK1 through direct interaction. Biochem Biophys Res Commun 383: 331-335
Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet 19: 352-363
Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12: 119-131
Beilina, van der Burg, Ahmad, Kesavapany, Miller, Petsko, Cookson (CR14) 2005; 102
Kim, Park, Kim, Song, Kwon, Lee, Kitada, Kim, Chung (CR28) 2008; 377
Schon, Przedborski (CR2) 2011; 70
Rakovic, Grunewald, Seibler, Ramirez, Kock, Orolicki, Lohmann, Klein (CR8) 2010; 19
Takatori, Ito, Iwatsubo (CR13) 2008; 430
Murata, Sakaguchi, Jin, Sakaguchi, Futami, Yamada, Kataoka, Huh (CR23) 2011; 286
Shiba, Arai, Sato, Kubo, Ohba, Mizuno, Hattori (CR27) 2009; 383
Gilkerson, De Vries, Lebot, Wikstrom, Torgyekes, Shirihai, Przedborski, Schon (CR11) 2012; 21
Muqit, Abou‐Sleiman, Saurin, Harvey, Gandhi, Deas, Eaton, Payne Smith, Venner, Matilla, Healy, Gilks, Lees, Holton, Revesz, Parker, Harvey, Wood, Latchman (CR29) 2006; 98
Ziviani, Tao, Whitworth (CR9) 2010; 107
Narendra, Tanaka, Suen, Youle (CR3) 2008; 183
Kawajiri, Saiki, Sato, Sato, Hatano, Eguchi, Hattori (CR7) 2010; 584
Greene, Grenier, Aguileta, Muise, Farazifard, Haque, McBride, Park, Fon (CR24) 2012; 13
Silvestri, Caputo, Bellacchio, Atorino, Dallapiccola, Valente, Casari (CR19) 2005; 14
Becker, Richter, Tocilescu, Przedborski, Voos (CR12) 2012; 287
Narendra, Jin, Tanaka, Suen, Gautier, Shen, Cookson, Youle (CR4) 2010; 8
Jin, Lazarou, Wang, Kane, Narendra, Youle (CR21) 2010; 191
Sha, Chin, Li (CR26) 2010; 19
Lin, Kang (CR16) 2008; 106
Geisler, Holmstrom, Skujat, Fiesel, Rothfuss, Kahle, Springer (CR6) 2010; 12
Regev‐Rudzki, Yogev, Pines (CR18) 2008; 121
Hertz, Berthet, Sos, Thorn, Burlingame, Nakamura, Shokat (CR17) 2013; 154
Suen, Narendra, Tanaka, Manfredi, Youle (CR10) 2010; 107
Dauer, Przedborski (CR1) 2003; 39
Deas, Plun‐Favreau, Gandhi, Desmond, Kjaer, Loh, Renton, Harvey, Whitworth, Martins, Abramov, Wood (CR25) 2011; 20
Vives‐Bauza, Zhou, Huang, Cui, de Vries, Kim, May, Tocilescu, Liu, Ko, Magrané, Moore, Dawson, Grailhe, Dawson, Li, Tieu, Przedborski (CR5) 2010; 107
Zhou, Huang, Shao, May, Prou, Perier, Dauer, Schon, Przedborski (CR20) 2008; 105
Weihofen, Ostaszewski, Minami, Selkoe (CR15) 2008; 17
Haque, Thomas, D'Souza, Callaghan, Kitada, Slack, Fraser, Cookson, Tandon, Park (CR22) 2008; 105
2010; 12
2012; 287
2010; 107
2010; 19
2006; 98
2008; 17
2010; 584
2008; 106
2003; 39
2008; 105
2012; 13
2008; 121
2008; 183
2005; 102
2011; 70
2011; 20
2013; 154
2009; 383
2008; 377
2008; 430
2010; 191
2012; 21
2011; 286
2010; 8
2005; 14
18687899 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12022-7
21138942 - Hum Mol Genet. 2011 Mar 1;20(5):867-79
21689593 - Neuron. 2011 Jun 23;70(6):1033-53
19966284 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):378-83
20126261 - PLoS Biol. 2010 Jan;8(1):e1000298
18577574 - J Cell Sci. 2008 Jul 15;121(Pt 14):2423-31
22354088 - EMBO Rep. 2012 Apr;13(4):378-85
18031932 - Neurosci Lett. 2008 Jan 3;430(1):13-7
20508036 - Hum Mol Genet. 2010 Aug 15;19(16):3124-37
20547844 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11835-40
21115803 - J Cell Biol. 2010 Nov 29;191(5):933-42
22080835 - Hum Mol Genet. 2012 Mar 1;21(5):978-90
18218782 - Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1716-21
18957282 - Biochem Biophys Res Commun. 2008 Dec 19;377(3):975-80
23953109 - Cell. 2013 Aug 15;154(4):737-47
15824318 - Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5703-8
18397367 - J Neurochem. 2008 Jul;106(1):464-74
12971891 - Neuron. 2003 Sep 11;39(6):889-909
19029340 - J Cell Biol. 2008 Dec 1;183(5):795-803
20153330 - FEBS Lett. 2010 Mar 19;584(6):1073-9
16207731 - Hum Mol Genet. 2005 Nov 15;14(22):3477-92
19358826 - Biochem Biophys Res Commun. 2009 Jun 5;383(3):331-5
22547060 - J Biol Chem. 2012 Jun 29;287(27):22969-87
18003639 - Hum Mol Genet. 2008 Feb 15;17(4):602-16
19880420 - Hum Mol Genet. 2010 Jan 15;19(2):352-63
20194754 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5018-23
20098416 - Nat Cell Biol. 2010 Feb;12(2):119-31
16805805 - J Neurochem. 2006 Jul;98(1):156-69
21177249 - J Biol Chem. 2011 Mar 4;286(9):7182-9
24398127 - EMBO Rep. 2014 Jan;15(1):5-6
References_xml – reference: Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107: 378-383
– reference: Beilina A, van der Burg M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA 102: 5703-5708
– reference: Becker D, Richter J, Tocilescu MA, Przedborski S, Voos W (2012) Pink1 kinase and its membrane potential (Deltaψ)-dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode. J Biol Chem 287: 22969-22987
– reference: Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191: 933-942
– reference: Takatori S, Ito G, Iwatsubo T (2008) Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 430: 13-17
– reference: Shiba K, Arai T, Sato S, Kubo S, Ohba Y, Mizuno Y, Hattori N (2009) Parkin stabilizes PINK1 through direct interaction. Biochem Biophys Res Commun 383: 331-335
– reference: Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJ (2010) Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci USA 107: 11835-11840
– reference: Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14: 3477-3492
– reference: Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling. Hum Mol Genet 19: 352-363
– reference: Rakovic A, Grunewald A, Seibler P, Ramirez A, Kock N, Orolicki S, Lohmann K, Klein C (2010) Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet 19: 3124-3137
– reference: Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298.
– reference: Lin W, Kang UJ (2008) Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem 106: 464-474
– reference: Haque ME, Thomas KJ, D'Souza C, Callaghan S, Kitada T, Slack RS, Fraser P, Cookson MR, Tandon A, Park DS (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci USA 105: 1716-1721
– reference: Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, Chung J (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377: 975-980
– reference: Gilkerson RW, De Vries RL, Lebot P, Wikstrom JD, Torgyekes E, Shirihai OS, Przedborski S, Schon EA (2012) Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Hum Mol Genet 21: 978-990
– reference: Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13: 378-385
– reference: Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA, Przedborski S (2008) The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci USA 105: 12022-12027
– reference: Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889-909
– reference: Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin. Proc Natl Acad Sci USA 107: 5018-5023
– reference: Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795-803
– reference: Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20: 867-879
– reference: Weihofen A, Ostaszewski B, Minami Y, Selkoe DJ (2008) Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1. Hum Mol Genet 17: 602-616
– reference: Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70: 1033-1053
– reference: Kawajiri S, Saiki S, Sato S, Sato F, Hatano T, Eguchi H, Hattori N (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584: 1073-1079
– reference: Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12: 119-131
– reference: Murata H, Sakaguchi M, Jin Y, Sakaguchi Y, Futami J, Yamada H, Kataoka K, Huh NH (2011) A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem 286: 7182-7189
– reference: Muqit MM, Abou-Sleiman PM, Saurin AT, Harvey K, Gandhi S, Deas E, Eaton S, Payne Smith MD, Venner K, Matilla A, Healy DG, Gilks WP, Lees AJ, Holton J, Revesz T, Parker PJ, Harvey RJ, Wood NW, Latchman DS(2006) Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. J Neurochem 98: 156-169
– reference: Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, Shokat KM (2013) A neo-substrate that amplifies catalytic activity of Parkinson's-disease-related kinase PINK1. Cell 154: 737-747
– reference: Regev-Rudzki N, Yogev O, Pines O (2008) The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. J Cell Sci 121(Pt 14): 2423-2431
– volume: 20
  start-page: 867
  year: 2011
  end-page: 879
  ident: CR25
  article-title: PINK1 cleavage at position A103 by the mitochondrial protease PARL
  publication-title: Hum Mol Genet
– volume: 17
  start-page: 602
  year: 2008
  end-page: 616
  ident: CR15
  article-title: Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1
  publication-title: Hum Mol Genet
– volume: 12
  start-page: 119
  year: 2010
  end-page: 131
  ident: CR6
  article-title: PINK1/Parkin‐mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat Cell Biol
– volume: 19
  start-page: 3124
  year: 2010
  end-page: 3137
  ident: CR8
  article-title: Effect of endogenous mutant and wild‐type PINK1 on Parkin in fibroblasts from Parkinson disease patients
  publication-title: Hum Mol Genet
– volume: 383
  start-page: 331
  year: 2009
  end-page: 335
  ident: CR27
  article-title: Parkin stabilizes PINK1 through direct interaction
  publication-title: Biochem Biophys Res Commun
– volume: 106
  start-page: 464
  year: 2008
  end-page: 474
  ident: CR16
  article-title: Characterization of PINK1 processing, stability, and subcellular localization
  publication-title: J Neurochem
– volume: 13
  start-page: 378
  year: 2012
  end-page: 385
  ident: CR24
  article-title: Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
  publication-title: EMBO Rep
– volume: 287
  start-page: 22969
  year: 2012
  end-page: 22987
  ident: CR12
  article-title: Pink1 kinase and its membrane potential (Deltaψ)‐dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode
  publication-title: J Biol Chem
– volume: 39
  start-page: 889
  year: 2003
  end-page: 909
  ident: CR1
  article-title: Parkinson's disease: mechanisms and models
  publication-title: Neuron
– volume: 377
  start-page: 975
  year: 2008
  end-page: 980
  ident: CR28
  article-title: PINK1 controls mitochondrial localization of Parkin through direct phosphorylation
  publication-title: Biochem Biophys Res Commun
– volume: 14
  start-page: 3477
  year: 2005
  end-page: 3492
  ident: CR19
  article-title: Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism
  publication-title: Hum Mol Genet
– volume: 8
  start-page: e1000298
  year: 2010
  ident: CR4
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol
– volume: 584
  start-page: 1073
  year: 2010
  end-page: 1079
  ident: CR7
  article-title: PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy
  publication-title: FEBS Lett
– volume: 107
  start-page: 5018
  year: 2010
  end-page: 5023
  ident: CR9
  article-title: Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin
  publication-title: Proc Natl Acad Sci USA
– volume: 19
  start-page: 352
  year: 2010
  end-page: 363
  ident: CR26
  article-title: Phosphorylation of parkin by Parkinson disease‐linked kinase PINK1 activates parkin E3 ligase function and NF‐kappaB signaling
  publication-title: Hum Mol Genet
– volume: 430
  start-page: 13
  year: 2008
  end-page: 17
  ident: CR13
  article-title: Cytoplasmic localization and proteasomal degradation of N‐terminally cleaved form of PINK1
  publication-title: Neurosci Lett
– volume: 21
  start-page: 978
  year: 2012
  end-page: 990
  ident: CR11
  article-title: Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition
  publication-title: Hum Mol Genet
– volume: 102
  start-page: 5703
  year: 2005
  end-page: 5708
  ident: CR14
  article-title: Mutations in PTEN‐induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability
  publication-title: Proc Natl Acad Sci USA
– volume: 98
  start-page: 156
  year: 2006
  end-page: 169
  ident: CR29
  article-title: Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress
  publication-title: J Neurochem
– volume: 105
  start-page: 1716
  year: 2008
  end-page: 1721
  ident: CR22
  article-title: Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP
  publication-title: Proc Natl Acad Sci USA
– volume: 286
  start-page: 7182
  year: 2011
  end-page: 7189
  ident: CR23
  article-title: A new cytosolic pathway from a Parkinson disease‐associated kinase, BRPK/PINK1: activation of AKT via mTORC2
  publication-title: J Biol Chem
– volume: 107
  start-page: 11835
  year: 2010
  end-page: 11840
  ident: CR10
  article-title: Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells
  publication-title: Proc Natl Acad Sci USA
– volume: 107
  start-page: 378
  year: 2010
  end-page: 383
  ident: CR5
  article-title: PINK1‐dependent recruitment of Parkin to mitochondria in mitophagy
  publication-title: Proc Natl Acad Sci USA
– volume: 105
  start-page: 12022
  year: 2008
  end-page: 12027
  ident: CR20
  article-title: The kinase domain of mitochondrial PINK1 faces the cytoplasm
  publication-title: Proc Natl Acad Sci USA
– volume: 154
  start-page: 737
  year: 2013
  end-page: 747
  ident: CR17
  article-title: A neo‐substrate that amplifies catalytic activity of Parkinson's‐disease‐related kinase PINK1
  publication-title: Cell
– volume: 70
  start-page: 1033
  year: 2011
  end-page: 1053
  ident: CR2
  article-title: Mitochondria: the next (neurode)generation
  publication-title: Neuron
– volume: 191
  start-page: 933
  year: 2010
  end-page: 942
  ident: CR21
  article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
  publication-title: J Cell Biol
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  ident: CR3
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J Cell Biol
– volume: 121
  start-page: 2423
  issue: 14
  year: 2008
  end-page: 2431
  ident: CR18
  article-title: The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization
  publication-title: J Cell Sci
– volume: 383
  start-page: 331
  year: 2009
  end-page: 335
  article-title: Parkin stabilizes PINK1 through direct interaction
  publication-title: Biochem Biophys Res Commun
– volume: 12
  start-page: 119
  year: 2010
  end-page: 131
  article-title: PINK1/Parkin‐mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat Cell Biol
– volume: 105
  start-page: 1716
  year: 2008
  end-page: 1721
  article-title: Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP
  publication-title: Proc Natl Acad Sci USA
– volume: 287
  start-page: 22969
  year: 2012
  end-page: 22987
  article-title: Pink1 kinase and its membrane potential (Deltaψ)‐dependent cleavage product both localize to outer mitochondrial membrane by unique targeting mode
  publication-title: J Biol Chem
– volume: 430
  start-page: 13
  year: 2008
  end-page: 17
  article-title: Cytoplasmic localization and proteasomal degradation of N‐terminally cleaved form of PINK1
  publication-title: Neurosci Lett
– volume: 154
  start-page: 737
  year: 2013
  end-page: 747
  article-title: A neo‐substrate that amplifies catalytic activity of Parkinson's‐disease‐related kinase PINK1
  publication-title: Cell
– volume: 106
  start-page: 464
  year: 2008
  end-page: 474
  article-title: Characterization of PINK1 processing, stability, and subcellular localization
  publication-title: J Neurochem
– volume: 21
  start-page: 978
  year: 2012
  end-page: 990
  article-title: Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition
  publication-title: Hum Mol Genet
– volume: 70
  start-page: 1033
  year: 2011
  end-page: 1053
  article-title: Mitochondria: the next (neurode)generation
  publication-title: Neuron
– volume: 14
  start-page: 3477
  year: 2005
  end-page: 3492
  article-title: Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism
  publication-title: Hum Mol Genet
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J Cell Biol
– volume: 20
  start-page: 867
  year: 2011
  end-page: 879
  article-title: PINK1 cleavage at position A103 by the mitochondrial protease PARL
  publication-title: Hum Mol Genet
– volume: 105
  start-page: 12022
  year: 2008
  end-page: 12027
  article-title: The kinase domain of mitochondrial PINK1 faces the cytoplasm
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 5703
  year: 2005
  end-page: 5708
  article-title: Mutations in PTEN‐induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability
  publication-title: Proc Natl Acad Sci USA
– volume: 191
  start-page: 933
  year: 2010
  end-page: 942
  article-title: Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
  publication-title: J Cell Biol
– volume: 107
  start-page: 11835
  year: 2010
  end-page: 11840
  article-title: Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells
  publication-title: Proc Natl Acad Sci USA
– volume: 286
  start-page: 7182
  year: 2011
  end-page: 7189
  article-title: A new cytosolic pathway from a Parkinson disease‐associated kinase, BRPK/PINK1: activation of AKT via mTORC2
  publication-title: J Biol Chem
– volume: 19
  start-page: 3124
  year: 2010
  end-page: 3137
  article-title: Effect of endogenous mutant and wild‐type PINK1 on Parkin in fibroblasts from Parkinson disease patients
  publication-title: Hum Mol Genet
– volume: 107
  start-page: 5018
  year: 2010
  end-page: 5023
  article-title: Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 889
  year: 2003
  end-page: 909
  article-title: Parkinson's disease: mechanisms and models
  publication-title: Neuron
– volume: 107
  start-page: 378
  year: 2010
  end-page: 383
  article-title: PINK1‐dependent recruitment of Parkin to mitochondria in mitophagy
  publication-title: Proc Natl Acad Sci USA
– volume: 584
  start-page: 1073
  year: 2010
  end-page: 1079
  article-title: PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy
  publication-title: FEBS Lett
– volume: 121
  start-page: 2423
  issue: 14
  year: 2008
  end-page: 2431
  article-title: The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization
  publication-title: J Cell Sci
– volume: 377
  start-page: 975
  year: 2008
  end-page: 980
  article-title: PINK1 controls mitochondrial localization of Parkin through direct phosphorylation
  publication-title: Biochem Biophys Res Commun
– volume: 8
  start-page: e1000298
  year: 2010
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol
– volume: 19
  start-page: 352
  year: 2010
  end-page: 363
  article-title: Phosphorylation of parkin by Parkinson disease‐linked kinase PINK1 activates parkin E3 ligase function and NF‐kappaB signaling
  publication-title: Hum Mol Genet
– volume: 98
  start-page: 156
  year: 2006
  end-page: 169
  article-title: Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress
  publication-title: J Neurochem
– volume: 17
  start-page: 602
  year: 2008
  end-page: 616
  article-title: Pink1 Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pink1
  publication-title: Hum Mol Genet
– volume: 13
  start-page: 378
  year: 2012
  end-page: 385
  article-title: Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
  publication-title: EMBO Rep
– reference: 18031932 - Neurosci Lett. 2008 Jan 3;430(1):13-7
– reference: 18003639 - Hum Mol Genet. 2008 Feb 15;17(4):602-16
– reference: 16805805 - J Neurochem. 2006 Jul;98(1):156-69
– reference: 18218782 - Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1716-21
– reference: 19966284 - Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):378-83
– reference: 21177249 - J Biol Chem. 2011 Mar 4;286(9):7182-9
– reference: 23953109 - Cell. 2013 Aug 15;154(4):737-47
– reference: 15824318 - Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5703-8
– reference: 21138942 - Hum Mol Genet. 2011 Mar 1;20(5):867-79
– reference: 21115803 - J Cell Biol. 2010 Nov 29;191(5):933-42
– reference: 16207731 - Hum Mol Genet. 2005 Nov 15;14(22):3477-92
– reference: 20153330 - FEBS Lett. 2010 Mar 19;584(6):1073-9
– reference: 22080835 - Hum Mol Genet. 2012 Mar 1;21(5):978-90
– reference: 24398127 - EMBO Rep. 2014 Jan;15(1):5-6
– reference: 18687899 - Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12022-7
– reference: 20508036 - Hum Mol Genet. 2010 Aug 15;19(16):3124-37
– reference: 19029340 - J Cell Biol. 2008 Dec 1;183(5):795-803
– reference: 12971891 - Neuron. 2003 Sep 11;39(6):889-909
– reference: 21689593 - Neuron. 2011 Jun 23;70(6):1033-53
– reference: 18397367 - J Neurochem. 2008 Jul;106(1):464-74
– reference: 19358826 - Biochem Biophys Res Commun. 2009 Jun 5;383(3):331-5
– reference: 20126261 - PLoS Biol. 2010 Jan;8(1):e1000298
– reference: 22354088 - EMBO Rep. 2012 Apr;13(4):378-85
– reference: 19880420 - Hum Mol Genet. 2010 Jan 15;19(2):352-63
– reference: 18577574 - J Cell Sci. 2008 Jul 15;121(Pt 14):2423-31
– reference: 18957282 - Biochem Biophys Res Commun. 2008 Dec 19;377(3):975-80
– reference: 20194754 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5018-23
– reference: 20098416 - Nat Cell Biol. 2010 Feb;12(2):119-31
– reference: 20547844 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11835-40
– reference: 22547060 - J Biol Chem. 2012 Jun 29;287(27):22969-87
SSID ssj0005978
Score 2.4253542
SecondaryResourceType review_article
Snippet PINK1 is a mitochondrial kinase proposed to have a role in the pathogenesis of Parkinson's disease through the regulation of mitophagy. Here, we show that the...
SourceID pubmedcentral
proquest
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 86
SubjectTerms Cytosol - enzymology
EMBO07
EMBO20
HEK293 Cells
HeLa Cells
Humans
Kinases
Leupeptins - pharmacology
Mitochondria
Mitochondria - metabolism
Mitochondrial Degradation
Mitochondrial Membranes - enzymology
mitophagy
Parkin
Parkinson Disease - enzymology
Parkinson's disease
Pathogenesis
PINK1
Proteasome Inhibitors - pharmacology
Protein Binding
Protein Interaction Domains and Motifs
Protein Kinases - physiology
Protein Transport
Proteolysis
Scientific Report
Scientific Reports
Translocation
Ubiquitin-Protein Ligases - metabolism
Valinomycin - pharmacology
Title Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy
URI https://api.istex.fr/ark:/67375/WNG-L8X91BXW-Z/fulltext.pdf
https://link.springer.com/article/10.1002/embr.201337294
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fembr.201337294
https://www.ncbi.nlm.nih.gov/pubmed/24357652
https://www.proquest.com/docview/1562265059
https://www.proquest.com/docview/1490718290
https://pubmed.ncbi.nlm.nih.gov/PMC4303452
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEIgXBOMWGMhICCFFKYnrXPy4lsEE65BGYRUvUeI4tIglUy-I7V_xDzm2E6dpizR4iRrbze18Pj6fz_ExQi-oy1PoR6lDooQ5lIrQSXt54EQ88hOXBwFRibSHx8HhZ_p-7I87nd8rUUvLRdrll1vXlfyPVKEM5CpXyf6DZM1FoQB-g3zhCBKG45VkPLhYlHOZ2NeGiuQn2I5A0j949kyHt4q5LRc1y0hGOSLJYUtJG8zNM-jIoPiKbKYXZamC80nyreXlPRj2P9ZehcZmzEqg7lN-qZf6fE_s_W5dmQn7i-Tezic-KWQGrSp6e57YR92VdifSP98fKF_QoJwV4se0mRgQdaTHG7gR2KfJ6syER9dmJtZmIPWMWhOrJLUtcHOHELVnDgxGTRkYNVFLRfsbUNT6tk6jrU70VosbY4LOMSvOUpn-FSg50AnajH61x39tUDShiiAmGfsW-vHp8bv4KBozrz8-jb9eQ9cJMBNSTxDVUUVMDf7mzeo8oS553X4CIEOyH__axmw2A3SNl77NoZQRNLqDblfsBe9rKN5FHVHsoht6P9OLXXRzWEVq3EMjg01cYRMrbGKDTayxiVvYxIsSr2ITAzaxweZ9NHp7MBocOtUOHs6Ugm3o8Fx4kpSnLOPE5a4QLE29jIAW6MnN7zzOOM2BUjAO7XgvERHPe1TI9dQiEL0HaKcoC_EI4YhxHtKc-4IRGqQ84V5GRR4KHuVy-xgLvVSfMz7XSVriv8nNQnv1946rrjyPPWABBLiKzyz03FSDopXes6QQ5RLaUAbmuIw7sNBDLR5zMwKkIwx8YqGwJTjTQCZxb9cU04lK5k7BhqTyn69qEa88lkopTmKJnNggx0JEQcBcfHuzGHTEiTl7fNXv8wTdavryHtpZzJbiKdjdi_SZQvofugHYyA
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VraBcEJRHAwWMhBCXiMRxHj5uq5bVstsDLGrExYqdCd1Ds1U3Rey_Z-w8YNUeOCaZOIln7PkmM_4M8F4ERtM40j7PCukLgamvoyrxM5PFRWCShDsi7flZMvkupnmc70DQr4Vx1e59StLN1B1N6Ce81Ja_k2IqwoPiHuxmcZKJEeyOx9Nv079lHdLNvjQBSJ_zMO-JGm-1QGjUduTvu6Dl7QrJIU26DWKdFzp9DI86-MjGrb6fwA7W-3C_3VBysw8P5l2q_CksjjfNam1ZfxlJFr-wZBTBfwnZdVv7imtmVzwva9ZYd2V9mtURa1bskkY5zYp1ScbJirp0J64uip-bZ7A4PVkcT_xuCwV_Kcg5-6bC0EZFWpaGByZAlFqHJSc1RHb3sdBIIyrCdNKQnIkKzEwVCbQLWjHB6DmM6lWNB8AyaUwqKhMjRWyJNoUJS4FViiar7P4dHnxw3amuWpYMRZ9gi8bSWJ2ffVazLJfhUX6ufnhw2Pe36sbLWlEUSTiQ0Jj04N1wmSzdpi-KGlc3JCMokA9t4teDF616hodxQn1pEnMP0i3FDQKWRXv7Sr28cGzagpy4sHd-7FX8z2s5TmeurOWowXI84M4EhsbvFlMn86Ovw9HL_2__LexNFvOZmpFVvIKHdF60P30OYdRc3-BrgkGNftNZ_h9YBgEL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVlRcEJRXoICREOISNXGcxJa4bEuXaulWCBY14mLFjkP3UO-qmyL23zN2HrBqDxyTTJzEM_Z8kxl_BnjLIq1wHKmQ8lKEjJk8VEmdhVzztIx0llFPpD09y06-s0mRFlvwoV8L46vd-5Rku6bBsTTZ5mBZ1V1Wnx6YS-W4PDG-QmzI7sAOzyKOodfOaDT5Nvlb4iH8TIyTgQgpjYuetPFGC4hMXaf-vg1m3qyWHFKmm4DWe6TxA7jfQUkyanX_ELaM3YO77eaS6z3YnXZp80cwO1o3i5VjACYoWf4yFcFo_nNMrto6WLMibvXz3JLGuS7n35y-SLMglzjicYa0FRoqKW3lTywvyp_rxzAbH8-OTsJuO4VwztBRh7o2sYuQlKg0jXRkjFAqriiqJHE7kcVaaFYjvhMa5XRSGq7rhBm3uNVkJnkC23ZhzTMgXGids1qnBqO3TOlSxxUzdW40r91eHgG8890ply1jhsRPcAVkeSrPzz7JU16I-LA4lz8C2O_7W3ZjZyUxokRMiMhMBPBmuIxW71IZpTWLa5RhGNTHLgkcwNNWPcPDKCLAPEtpAPmG4gYBx6i9ecXOLzyzNkOHztyd73sV__Nant-ZSmc5crCcAKg3gaHx28Xk8fTw63D0_P_bfw27Xz6O5SkaxQu4h6dZ-_9nH7abq2vzEhFRo151hv8H4Z4FTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cytosolic+cleaved+PINK1+represses+Parkin+translocation+to+mitochondria+and+mitophagy&rft.jtitle=EMBO+reports&rft.au=Fedorowicz%2C+Maja+A.&rft.au=de+Vries-Schneider%2C+Rosa+L.+A.&rft.au=R%C3%BCb%2C+Cornelia&rft.au=Becker%2C+Dorothea&rft.date=2014-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=15&rft.issue=1&rft.spage=86&rft.epage=93&rft_id=info:doi/10.1002%2Fembr.201337294&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_L8X91BXW_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon