Gain-of-Function Mutations in RARB Cause Intellectual Disability with Progressive Motor Impairment

ABSTRACT Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmat...

Full description

Saved in:
Bibliographic Details
Published inHuman mutation Vol. 37; no. 8; pp. 786 - 793
Main Authors Srour, Myriam, Caron, Véronique, Pearson, Toni, Nielsen, Sarah B., Lévesque, Sébastien, Delrue, Marie-Ange, Becker, Troy A., Hamdan, Fadi F., Kibar, Zoha, Sattler, Shannon G., Schneider, Michael C., Bitoun, Pierre, Chassaing, Nicolas, Rosenfeld, Jill A., Xia, Fan, Desai, Sonal, Roeder, Elizabeth, Kimonis, Virginia, Schneider, Adele, Littlejohn, Rebecca Okashah, Douzgou, Sofia, Tremblay, André, Michaud, Jacques L.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2016
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain‐of‐function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand‐induced transcriptional activity by twofold to threefold over the wild‐type receptor, also indicating a gain‐of‐function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans. We describe 9 subjects with microphthalmia who have de novo mutations in RARB (retinoic acid receptor beta), including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Subjects have a complex neurologic phenotype characterised by severe developmental delay, progressive spasticity, movement disorder, Chiari‐I malformation and feeding difficulties. Additionally, we show that these mutations confer a gain of function. This study provides the first direct insight into the role of retinoid acid in the human brain.
AbstractList Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain-of-function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand-induced transcriptional activity by twofold to threefold over the wild-type receptor, also indicating a gain-of-function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans.
Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain-of-function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand-induced transcriptional activity by twofold to threefold over the wild-type receptor, also indicating a gain-of-function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans. We describe 9 subjects with microphthalmia who have de novo mutations in RARB (retinoic acid receptor beta), including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Subjects have a complex neurologic phenotype characterised by severe developmental delay, progressive spasticity, movement disorder, Chiari-I malformation and feeding difficulties. Additionally, we show that these mutations confer a gain of function. This study provides the first direct insight into the role of retinoid acid in the human brain.
Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain-of-function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand-induced transcriptional activity by twofold to threefold over the wild-type receptor, also indicating a gain-of-function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans.Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain-of-function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand-induced transcriptional activity by twofold to threefold over the wild-type receptor, also indicating a gain-of-function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans.
ABSTRACT Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain‐of‐function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand‐induced transcriptional activity by twofold to threefold over the wild‐type receptor, also indicating a gain‐of‐function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans. We describe 9 subjects with microphthalmia who have de novo mutations in RARB (retinoic acid receptor beta), including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Subjects have a complex neurologic phenotype characterised by severe developmental delay, progressive spasticity, movement disorder, Chiari‐I malformation and feeding difficulties. Additionally, we show that these mutations confer a gain of function. This study provides the first direct insight into the role of retinoid acid in the human brain.
Author Tremblay, André
Pearson, Toni
Littlejohn, Rebecca Okashah
Becker, Troy A.
Sattler, Shannon G.
Schneider, Adele
Nielsen, Sarah B.
Rosenfeld, Jill A.
Schneider, Michael C.
Bitoun, Pierre
Desai, Sonal
Kimonis, Virginia
Douzgou, Sofia
Hamdan, Fadi F.
Delrue, Marie-Ange
Chassaing, Nicolas
Xia, Fan
Srour, Myriam
Michaud, Jacques L.
Kibar, Zoha
Roeder, Elizabeth
Caron, Véronique
Lévesque, Sébastien
Author_xml – sequence: 1
  givenname: Myriam
  surname: Srour
  fullname: Srour, Myriam
  organization: CHU Sainte-Justine Research Center, H3T 1C5, Montréal, Canada
– sequence: 2
  givenname: Véronique
  surname: Caron
  fullname: Caron, Véronique
  organization: CHU Sainte-Justine Research Center, H3T 1C5, Montréal, Canada
– sequence: 3
  givenname: Toni
  surname: Pearson
  fullname: Pearson, Toni
  organization: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, 10029, New York
– sequence: 4
  givenname: Sarah B.
  surname: Nielsen
  fullname: Nielsen, Sarah B.
  organization: Verona Pediatrics, New Jersey, 07044, Verona
– sequence: 5
  givenname: Sébastien
  surname: Lévesque
  fullname: Lévesque, Sébastien
  organization: Division of Medical Genetics, Department of Pediatrics, Centre Hospitalier Universitaire de Sherbrooke, J1H 5N4, Sherbrooke, Canada
– sequence: 6
  givenname: Marie-Ange
  surname: Delrue
  fullname: Delrue, Marie-Ange
  organization: Department of Pediatrics, Université de Montréal, H3T 1J4, Montreal, Canada
– sequence: 7
  givenname: Troy A.
  surname: Becker
  fullname: Becker, Troy A.
  organization: Division of Genetics and Metabolism, All Children's Hospital, Florida 33701, St-Petersburg
– sequence: 8
  givenname: Fadi F.
  surname: Hamdan
  fullname: Hamdan, Fadi F.
  organization: CHU Sainte-Justine Research Center, H3T 1C5, Montréal, Canada
– sequence: 9
  givenname: Zoha
  surname: Kibar
  fullname: Kibar, Zoha
  organization: CHU Sainte-Justine Research Center, H3T 1C5, Montréal, Canada
– sequence: 10
  givenname: Shannon G.
  surname: Sattler
  fullname: Sattler, Shannon G.
  organization: Carle Physician Group, Illinois, 61802, Urbana
– sequence: 11
  givenname: Michael C.
  surname: Schneider
  fullname: Schneider, Michael C.
  organization: Carle Physician Group, Illinois, 61802, Urbana
– sequence: 12
  givenname: Pierre
  surname: Bitoun
  fullname: Bitoun, Pierre
  organization: Génétique Médicale, Hôpital Jean Verdier AP-HP, C.H.U. Paris Nord, 93140, Bondy, France
– sequence: 13
  givenname: Nicolas
  surname: Chassaing
  fullname: Chassaing, Nicolas
  organization: Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, 31059, Toulouse, France
– sequence: 14
  givenname: Jill A.
  surname: Rosenfeld
  fullname: Rosenfeld, Jill A.
  organization: Baylor College of Medicine, Texas, 77030, Houston
– sequence: 15
  givenname: Fan
  surname: Xia
  fullname: Xia, Fan
  organization: Baylor College of Medicine, Texas, 77030, Houston
– sequence: 16
  givenname: Sonal
  surname: Desai
  fullname: Desai, Sonal
  organization: Department of Neurogenetics, Kennedy Krieger Institute, Maryland, 21205, Baltimore
– sequence: 17
  givenname: Elizabeth
  surname: Roeder
  fullname: Roeder, Elizabeth
  organization: Children's Hospital of San Antonio San Antonio, 78207, Texas
– sequence: 18
  givenname: Virginia
  surname: Kimonis
  fullname: Kimonis, Virginia
  organization: Division of Genetics and Genomic Medicine, Univerity of California-Irvine Medical Center, California, 92868, Orange
– sequence: 19
  givenname: Adele
  surname: Schneider
  fullname: Schneider, Adele
  organization: Division of Genetics and Genomic Medicine, Univerity of California-Irvine Medical Center, California, 92868, Orange
– sequence: 20
  givenname: Rebecca Okashah
  surname: Littlejohn
  fullname: Littlejohn, Rebecca Okashah
  organization: Children's Hospital of San Antonio San Antonio, 78207, Texas
– sequence: 21
  givenname: Sofia
  surname: Douzgou
  fullname: Douzgou, Sofia
  organization: Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Saint Mary's Hospital, M13 9WL, Manchester, UK
– sequence: 22
  givenname: André
  surname: Tremblay
  fullname: Tremblay, André
  organization: CHU Sainte-Justine Research Center, H3T 1C5, Montréal, Canada
– sequence: 23
  givenname: Jacques L.
  surname: Michaud
  fullname: Michaud, Jacques L.
  email: jacques.michaud@recherche-ste-justine.qc.ca
  organization: CHU Sainte-Justine Research Center, H3T 1C5, Montréal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27120018$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha2Kqry66Q-oLHXTTahfSewlTDsPiaHViCndWU64KaaJM_hRmH9PwgCLrrryke93ru695xDtud4BQh8oOaGEsC83qUsnjBMi3qADSpTMhm-xN-pcZWWpxD46DOGWECLznL9D-6ykjBAqD1A1M9ZlfZNNk6uj7R1epmhGEbB1eHW6OsMTkwLghYvQtlDHZFr81QZT2dbGLb638Qb_8P1vDyHYv4CXfew9XnQbY30HLh6jt41pA7x_fo_QevrtcjLPzr_PFpPT88wKxkRGGdDrYlhDVcOgYEA0QnJGuWq4UIYzBUJUvJFNBXVegDSEgmGEC17LWlX8CH3e9d34_i5BiLqzoR5mNg76FDSVRBa8ULn6H5SLnFFVDuinf9DbPnk3LDJSrFCEF3SgPj5TqergWm-87Yzf6pdDDwDdAfe2he1rnRI9RqjHCPVThHq-Xq6f1ODJdh4bIjy8eoz_o4uSl7m-upjp1a_5lTr7qfSUPwI3OZ34
ContentType Journal Article
Copyright 2016 WILEY PERIODICALS, INC.
Copyright © 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 WILEY PERIODICALS, INC.
– notice: Copyright © 2016 Wiley Periodicals, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/humu.23004
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
MEDLINE - Academic
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-1004
EndPage 793
ExternalDocumentID 4112810831
27120018
HUMU23004
ark_67375_WNG_RXHW9BV9_F
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fondation du Grand Défi Pierre Lavoie
– fundername: Fondation Jean‐Louis Lévesque
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29I
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNP
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0L
M1P
M66
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
X7M
XG1
XSW
XV2
ZZTAW
~IA
~KM
~WT
AANHP
ACCMX
ACRPL
ACYXJ
ADNMO
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
AGQPQ
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-i4224-12e1d62309b000eae4f4832139f349a329e44b3f8fbec56e8a01ea20343c8c9b3
IEDL.DBID DR2
ISSN 1059-7794
1098-1004
IngestDate Fri Jul 11 03:38:56 EDT 2025
Fri Jul 11 09:26:38 EDT 2025
Fri Jul 25 10:59:08 EDT 2025
Wed Feb 19 02:41:41 EST 2025
Wed Jan 22 17:10:05 EST 2025
Wed Oct 30 09:52:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords RARB
developmental delay
retinoic acid
movement disorder
gain-of-function
intellectual disability
Language English
License 2016 WILEY PERIODICALS, INC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i4224-12e1d62309b000eae4f4832139f349a329e44b3f8fbec56e8a01ea20343c8c9b3
Notes ArticleID:HUMU23004
istex:74A246A7517F7A06AED4EE32AE49FA398D8B3F06
ark:/67375/WNG-RXHW9BV9-F
Fondation Jean-Louis Lévesque
Fondation du Grand Défi Pierre Lavoie
Communicated by Hamish Scott
Contract grant sponsors: Fondation Jean‐Louis Lévesque; Fondation du Grand Défi Pierre Lavoie.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27120018
PQID 1802690361
PQPubID 30498
PageCount 8
ParticipantIDs proquest_miscellaneous_1808636959
proquest_miscellaneous_1803452197
proquest_journals_1802690361
pubmed_primary_27120018
wiley_primary_10_1002_humu_23004_HUMU23004
istex_primary_ark_67375_WNG_RXHW9BV9_F
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Human mutation
PublicationTitleAlternate Human Mutation
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Urbizu A, Toma C, Poca MA, Sahuquillo J, Cuenca-Leon E, Cormand B, Macaya A. 2013. Chiari malformation type I: a case-control association study of 58 developmental genes. PLoS One 8:e57241.
Crittenden JR, Graybiel AM. 2011. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59.
Krezel W, Ghyselinck N, Samad TA, Dupe V, Kastner P, Borrelli E, Chambon P. 1998. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279:863-867.
Srour M, Chitayat D, Caron V, Chassaing N, Bitoun P, Patry L, Cordier MP, Capo-Chichi JM, Francannet C, Calvas P, Ragge N, Dobrzeniecka S, et al. 2013. Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am J Hum Genet 93:765-772.
Lee LM, Leung CY, Tang WW, Choi HL, Leung YC, McCaffery PJ, Wang CC, Woolf AS, Shum AS. 2012. A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A 109:13668-13673.
Germain P, Kammerer S, Perez E, Peluso-Iltis C, Tortolani D, Zusi FC, Starrett J, Lapointe P, Daris JP, Marinier A, de Lara AR, Rochel N, Gronemeyer H. 2004. Rational design of RAR-selective ligands revealed by RARbeta crystal stucture. EMBO Rep 5:877-882.
Molotkova N, Molotkov A, Duester G. 2007. Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone. Dev Biol 303:601-610.
Marin-Padilla M, Marin-Padilla TM. 1981. Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci 50:29-55.
Slavotinek AM, Garcia ST, Chandratillake G, Bardakjian T, Ullah E, Wu D, Umeda K, Lao R, Tang PL, Wan E, Madireddy L, Lyalina S, et al. 2014. Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet 88:466-473.
Liao WL, Tsai HC, Wu CY, Liu FC. 2005. Differential expression of RARbeta isoforms in the mouse striatum during development: a gradient of RARbeta2 expression along the rostrocaudal axis. Dev Dyn 233:584-594.
Rataj-Baniowska M, Niewiadomska-Cimicka A, Paschaki M, Szyszka-Niagolov M, Carramolino L, Torres M, Dolle P, Krezel W. 2015. Retinoic acid receptor beta controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms. J Neurosci 35:14467-14475.
Samad TA, Krezel W, Chambon P, Borrelli E. 1997. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc Natl Acad Sci U S A 94:14349-14354.
Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, et al. 2013. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369:1502-1511.
Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, Rodenburg RJ, Yntema HG, Spruijt L, Vermeer S, Rinne T, van Gassen KL, et al. 2013. A post-hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 34:1721-1726.
Laue K, Pogoda HM, Daniel PB, van Haeringen A, Alanay Y, von Ameln S, Rachwalski M, Morgan T, Gray MJ, Breuning MH, Sawyer GM, Sutherland-Smith AJ, et al. 2011. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 89:595-606.
Krezel W, Kastner P, Chambon P. 1999. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89:1291-1300.
Dhamija R, Graham JM Jr., Smaoui N, Thorland E, Kirmani S. 2014. Novel de novo SPOCK1 mutation in a proband with developmental delay, microcephaly and agenesis of corpus callosum. Eur J Med Genet 57:181-184.
Maclean G, Dolle P, Petkovich M. 2009. Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning. Dev Dyn 238:732-745.
Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER. 2006. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603-615.
James AW, Levi B, Xu Y, Carre AL, Longaker MT. 2010. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 125:1352-1361.
Chatzi C, Brade T, Duester G. 2011. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia. PLoS Biol 9:e1000609.
Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. 1995. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378:681-689.
Sulik KK, Dehart DB, Rogers JM, Chernoff N. 1995. Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. Teratology 51:398-403.
Liao WL, Tsai HC, Wang HF, Chang J, Lu KM, Wu HL, Lee YC, Tsai TF, Takahashi H, Wagner M, Ghyselinck NB, Chambon P, Liu F-C. 2008. Modular patterning of structure and function of the striatum by retinoid receptor signaling. Proc Natl Acad Sci U S A 105:6765-6770.
Ross SA, McCaffery PJ, Drager UC, De Luca LM. 2000. Retinoids in embryonal development. Physiol Rev 80:1021-1054.
Padmanabhan R, Singh G, Singh S. 1981. Malformations of the eye resulting from maternal hypervitaminosis A during gestation in the rat. Acta Anat (Basel) 110:291-298.
Trakadis YJ, Buote C, Therriault JF, Jacques PE, Larochelle H, Levesque S. 2014. PhenoVar: a phenotype-driven approach in clinical genomics for the diagnosis of polymalformative syndromes. BMC Med Genomics 7:22.
Ozeki H, Shirai S, Ikeda K, Ogura Y. 1999. Critical period for retinoic acid-induced developmental abnormalities of the vitreous in mouse fetuses. Exp Eye Res 68:223-228.
Cunningham TJ, Duester G. 2015. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 16:110-123.
Ozeki H, Shirai S. 1998. Developmental eye abnormalities in mouse fetuses induced by retinoic acid. Jpn J Ophthalmol 42:162-167.
Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V, Sucov HM, Gage FH, Stevens CF, Evans RM. 1998. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 21:1353-1361.
Balkan W, Klintworth GK, Bock CB, Linney E. 1992. Transgenic mice expressing a constitutively active retinoic acid receptor in the lens exhibit ocular defects. Dev Biol 151:622-625.
2015; 35
1995; 51
2015; 16
2007; 303
2005; 233
2010; 125
2013; 369
1999; 68
1999; 89
2013; 93
2004; 5
2008; 105
1995; 378
1998; 279
2013; 8
1998; 21
2011; 5
1998; 42
2014; 88
2012; 109
2011; 9
2009; 238
1997; 94
1992; 151
2013; 34
2006; 49
1981; 110
2014; 57
2011; 89
2000; 80
1981; 50
2014; 7
References_xml – reference: James AW, Levi B, Xu Y, Carre AL, Longaker MT. 2010. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: potential mechanisms of retinoid-induced craniosynostosis. Plast Reconstr Surg 125:1352-1361.
– reference: Rataj-Baniowska M, Niewiadomska-Cimicka A, Paschaki M, Szyszka-Niagolov M, Carramolino L, Torres M, Dolle P, Krezel W. 2015. Retinoic acid receptor beta controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms. J Neurosci 35:14467-14475.
– reference: Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER. 2006. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603-615.
– reference: Laue K, Pogoda HM, Daniel PB, van Haeringen A, Alanay Y, von Ameln S, Rachwalski M, Morgan T, Gray MJ, Breuning MH, Sawyer GM, Sutherland-Smith AJ, et al. 2011. Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am J Hum Genet 89:595-606.
– reference: Lee LM, Leung CY, Tang WW, Choi HL, Leung YC, McCaffery PJ, Wang CC, Woolf AS, Shum AS. 2012. A paradoxical teratogenic mechanism for retinoic acid. Proc Natl Acad Sci U S A 109:13668-13673.
– reference: Dhamija R, Graham JM Jr., Smaoui N, Thorland E, Kirmani S. 2014. Novel de novo SPOCK1 mutation in a proband with developmental delay, microcephaly and agenesis of corpus callosum. Eur J Med Genet 57:181-184.
– reference: Marin-Padilla M, Marin-Padilla TM. 1981. Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci 50:29-55.
– reference: Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D. 1995. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378:681-689.
– reference: Molotkova N, Molotkov A, Duester G. 2007. Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone. Dev Biol 303:601-610.
– reference: Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V, Sucov HM, Gage FH, Stevens CF, Evans RM. 1998. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 21:1353-1361.
– reference: Padmanabhan R, Singh G, Singh S. 1981. Malformations of the eye resulting from maternal hypervitaminosis A during gestation in the rat. Acta Anat (Basel) 110:291-298.
– reference: Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, et al. 2013. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369:1502-1511.
– reference: Balkan W, Klintworth GK, Bock CB, Linney E. 1992. Transgenic mice expressing a constitutively active retinoic acid receptor in the lens exhibit ocular defects. Dev Biol 151:622-625.
– reference: Germain P, Kammerer S, Perez E, Peluso-Iltis C, Tortolani D, Zusi FC, Starrett J, Lapointe P, Daris JP, Marinier A, de Lara AR, Rochel N, Gronemeyer H. 2004. Rational design of RAR-selective ligands revealed by RARbeta crystal stucture. EMBO Rep 5:877-882.
– reference: Krezel W, Kastner P, Chambon P. 1999. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89:1291-1300.
– reference: Liao WL, Tsai HC, Wang HF, Chang J, Lu KM, Wu HL, Lee YC, Tsai TF, Takahashi H, Wagner M, Ghyselinck NB, Chambon P, Liu F-C. 2008. Modular patterning of structure and function of the striatum by retinoid receptor signaling. Proc Natl Acad Sci U S A 105:6765-6770.
– reference: Ross SA, McCaffery PJ, Drager UC, De Luca LM. 2000. Retinoids in embryonal development. Physiol Rev 80:1021-1054.
– reference: Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, Rodenburg RJ, Yntema HG, Spruijt L, Vermeer S, Rinne T, van Gassen KL, et al. 2013. A post-hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 34:1721-1726.
– reference: Ozeki H, Shirai S, Ikeda K, Ogura Y. 1999. Critical period for retinoic acid-induced developmental abnormalities of the vitreous in mouse fetuses. Exp Eye Res 68:223-228.
– reference: Slavotinek AM, Garcia ST, Chandratillake G, Bardakjian T, Ullah E, Wu D, Umeda K, Lao R, Tang PL, Wan E, Madireddy L, Lyalina S, et al. 2014. Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet 88:466-473.
– reference: Trakadis YJ, Buote C, Therriault JF, Jacques PE, Larochelle H, Levesque S. 2014. PhenoVar: a phenotype-driven approach in clinical genomics for the diagnosis of polymalformative syndromes. BMC Med Genomics 7:22.
– reference: Urbizu A, Toma C, Poca MA, Sahuquillo J, Cuenca-Leon E, Cormand B, Macaya A. 2013. Chiari malformation type I: a case-control association study of 58 developmental genes. PLoS One 8:e57241.
– reference: Chatzi C, Brade T, Duester G. 2011. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia. PLoS Biol 9:e1000609.
– reference: Srour M, Chitayat D, Caron V, Chassaing N, Bitoun P, Patry L, Cordier MP, Capo-Chichi JM, Francannet C, Calvas P, Ragge N, Dobrzeniecka S, et al. 2013. Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am J Hum Genet 93:765-772.
– reference: Crittenden JR, Graybiel AM. 2011. Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59.
– reference: Maclean G, Dolle P, Petkovich M. 2009. Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning. Dev Dyn 238:732-745.
– reference: Cunningham TJ, Duester G. 2015. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 16:110-123.
– reference: Ozeki H, Shirai S. 1998. Developmental eye abnormalities in mouse fetuses induced by retinoic acid. Jpn J Ophthalmol 42:162-167.
– reference: Samad TA, Krezel W, Chambon P, Borrelli E. 1997. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc Natl Acad Sci U S A 94:14349-14354.
– reference: Liao WL, Tsai HC, Wu CY, Liu FC. 2005. Differential expression of RARbeta isoforms in the mouse striatum during development: a gradient of RARbeta2 expression along the rostrocaudal axis. Dev Dyn 233:584-594.
– reference: Krezel W, Ghyselinck N, Samad TA, Dupe V, Kastner P, Borrelli E, Chambon P. 1998. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279:863-867.
– reference: Sulik KK, Dehart DB, Rogers JM, Chernoff N. 1995. Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. Teratology 51:398-403.
– volume: 233
  start-page: 584
  year: 2005
  end-page: 594
  article-title: Differential expression of RARbeta isoforms in the mouse striatum during development: a gradient of RARbeta2 expression along the rostrocaudal axis
  publication-title: Dev Dyn
– volume: 51
  start-page: 398
  year: 1995
  end-page: 403
  article-title: Teratogenicity of low doses of all‐trans retinoic acid in presomite mouse embryos
  publication-title: Teratology
– volume: 105
  start-page: 6765
  year: 2008
  end-page: 6770
  article-title: Modular patterning of structure and function of the striatum by retinoid receptor signaling
  publication-title: Proc Natl Acad Sci U S A
– volume: 238
  start-page: 732
  year: 2009
  end-page: 745
  article-title: Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning
  publication-title: Dev Dyn
– volume: 125
  start-page: 1352
  year: 2010
  end-page: 1361
  article-title: Retinoic acid enhances osteogenesis in cranial suture‐derived mesenchymal cells: potential mechanisms of retinoid‐induced craniosynostosis
  publication-title: Plast Reconstr Surg
– volume: 110
  start-page: 291
  year: 1981
  end-page: 298
  article-title: Malformations of the eye resulting from maternal hypervitaminosis A during gestation in the rat
  publication-title: Acta Anat (Basel)
– volume: 109
  start-page: 13668
  year: 2012
  end-page: 13673
  article-title: A paradoxical teratogenic mechanism for retinoic acid
  publication-title: Proc Natl Acad Sci U S A
– volume: 93
  start-page: 765
  year: 2013
  end-page: 772
  article-title: Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia
  publication-title: Am J Hum Genet
– volume: 88
  start-page: 466
  year: 2014
  end-page: 473
  article-title: Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects
  publication-title: Clin Genet
– volume: 94
  start-page: 14349
  year: 1997
  end-page: 14354
  article-title: Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor‐retinoid X receptor family
  publication-title: Proc Natl Acad Sci U S A
– volume: 378
  start-page: 681
  year: 1995
  end-page: 689
  article-title: Crystal structure of the RAR‐gamma ligand‐binding domain bound to all‐trans retinoic acid
  publication-title: Nature
– volume: 89
  start-page: 595
  year: 2011
  end-page: 606
  article-title: Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid
  publication-title: Am J Hum Genet
– volume: 303
  start-page: 601
  year: 2007
  end-page: 610
  article-title: Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone
  publication-title: Dev Biol
– volume: 35
  start-page: 14467
  year: 2015
  end-page: 14475
  article-title: Retinoic acid receptor beta controls development of striatonigral projection neurons through FGF‐dependent and Meis1‐dependent mechanisms
  publication-title: J Neurosci
– volume: 7
  start-page: 22
  year: 2014
  article-title: PhenoVar: a phenotype‐driven approach in clinical genomics for the diagnosis of polymalformative syndromes
  publication-title: BMC Med Genomics
– volume: 57
  start-page: 181
  year: 2014
  end-page: 184
  article-title: Novel de novo SPOCK1 mutation in a proband with developmental delay, microcephaly and agenesis of corpus callosum
  publication-title: Eur J Med Genet
– volume: 42
  start-page: 162
  year: 1998
  end-page: 167
  article-title: Developmental eye abnormalities in mouse fetuses induced by retinoic acid
  publication-title: Jpn J Ophthalmol
– volume: 21
  start-page: 1353
  year: 1998
  end-page: 1361
  article-title: An essential role for retinoid receptors RARbeta and RXRgamma in long‐term potentiation and depression
  publication-title: Neuron
– volume: 89
  start-page: 1291
  year: 1999
  end-page: 1300
  article-title: Differential expression of retinoid receptors in the adult mouse central nervous system
  publication-title: Neuroscience
– volume: 8
  start-page: e57241
  year: 2013
  article-title: Chiari malformation type I: a case‐control association study of 58 developmental genes
  publication-title: PLoS One
– volume: 279
  start-page: 863
  year: 1998
  end-page: 867
  article-title: Impaired locomotion and dopamine signaling in retinoid receptor mutant mice
  publication-title: Science
– volume: 9
  start-page: e1000609
  year: 2011
  article-title: Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia
  publication-title: PLoS Biol
– volume: 16
  start-page: 110
  year: 2015
  end-page: 123
  article-title: Mechanisms of retinoic acid signalling and its roles in organ and limb development
  publication-title: Nat Rev Mol Cell Biol
– volume: 50
  start-page: 29
  year: 1981
  end-page: 55
  article-title: Morphogenesis of experimentally induced Arnold–Chiari malformation
  publication-title: J Neurol Sci
– volume: 5
  start-page: 59
  year: 2011
  article-title: Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments
  publication-title: Front Neuroanat
– volume: 49
  start-page: 603
  year: 2006
  end-page: 615
  article-title: Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning
  publication-title: Neuron
– volume: 80
  start-page: 1021
  year: 2000
  end-page: 1054
  article-title: Retinoids in embryonal development
  publication-title: Physiol Rev
– volume: 369
  start-page: 1502
  year: 2013
  end-page: 1511
  article-title: Clinical whole‐exome sequencing for the diagnosis of mendelian disorders
  publication-title: N Engl J Med
– volume: 151
  start-page: 622
  year: 1992
  end-page: 625
  article-title: Transgenic mice expressing a constitutively active retinoic acid receptor in the lens exhibit ocular defects
  publication-title: Dev Biol
– volume: 5
  start-page: 877
  year: 2004
  end-page: 882
  article-title: Rational design of RAR‐selective ligands revealed by RARbeta crystal stucture
  publication-title: EMBO Rep
– volume: 68
  start-page: 223
  year: 1999
  end-page: 228
  article-title: Critical period for retinoic acid‐induced developmental abnormalities of the vitreous in mouse fetuses
  publication-title: Exp Eye Res
– volume: 34
  start-page: 1721
  year: 2013
  end-page: 1726
  article-title: A post‐hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases
  publication-title: Hum Mutat
SSID ssj0008553
Score 2.3640559
Snippet ABSTRACT Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo...
Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 786
SubjectTerms Adolescent
Child
Child, Preschool
developmental delay
Dystonic Disorders
Female
Gain of Function Mutation
gain-of-function
Genetic disorders
Humans
Infant, Newborn
Intellectual disabilities
intellectual disability
Intellectual Disability - genetics
Male
Models, Molecular
Motor ability
movement disorder
Movement Disorders - genetics
Mutation
Mutation, Missense
Protein Conformation
RARB
Receptors, Retinoic Acid - chemistry
Receptors, Retinoic Acid - genetics
retinoic acid
Transcriptional Activation
Title Gain-of-Function Mutations in RARB Cause Intellectual Disability with Progressive Motor Impairment
URI https://api.istex.fr/ark:/67375/WNG-RXHW9BV9-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.23004
https://www.ncbi.nlm.nih.gov/pubmed/27120018
https://www.proquest.com/docview/1802690361
https://www.proquest.com/docview/1803452197
https://www.proquest.com/docview/1808636959
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KQfHFj_qV2soK4oOQNsluPhZ8aavXU0iRw7P3IstussGjmCt3F2n75J_g3-hf0plsLqcigr6EwM6GTWZm95fZ2d8APDexjIo0jPwwNqkvdBr4mTDcT0wpozQzqSgpNJCfJMOxeDeJJxvwanUWxvFD9AE38ox2viYH12axvyYN_dx8aSiNuSUDpWQtQkSjNXdUFscuuz6WCCGl6LlJo_11V4Sk9DUv_oQvf4Wr7XozuAOfViN1aSZne83S7BVXv5E4_u-r3IXbHRBlB85y7sGGrbfghitNebkFN_Nu0_0-VMd6Wv_49n1W4WWA6yDpkuWN28RfsGnNRgejQ3akm4VlP59LYa87Bt_lJaOAL3tP2WCUePvVsnyGv_vsLU5H0zmFKB_AePDmw9HQ78oz-FOBC78fRjYsET0FRKsYWG1FJajuEZcVF1LzSFqBaq-yCu0kTmymg9DqKOCCF1khDX8Im_Wsto-BJYlBpJoVBcdnVLxCybIMsV_IKyl46cGLVk3q3FFwKD0_o4y0NFanJ8dqNBmeysOPUg082FnpUXXOuFBEcpdIXKpDD571zehGtDeiaztrWhkuEMrI9K8yWcITGUsPHjkb6QcUob1TgUMPXraa7hscLXSkSMeq1bEajvNxe7f9L8JP4BaCtcQlH-7A5nLe2F0EREvztDX8ax3CB3I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRTw2PMorUMBIwAIpbWI7Dy9YtB2mGdqM0KjTzs7k4YhRRYJmEmBY8Qn8CL_CR_AlXCeZDCCExKILNlGkOJYf99onN8fnAjyOHUETz6am7cSeySPPMn0eM9ONU0E9P_Z4qkMD4dANxvzlxJmswdflWZhGH6ILuGnPqNdr7eA6IL29Ug19U72tNI_Z4i2n8kAtPuAX2_z5oIfT-4TS_oujvcBskwqYU47blWlTZae451taDNBSkeIZ19l6mMgYFxGjQnFsbOZn2DvHVX5k2SqiFuMs8RMRM6z3HJzXKcS1VH9vtFKr8h2n4fM7AkGr4J0aKt1etRVBsJ6_j39CtL8C5HqH61-Fb8uxaYgtp1tVGW8ln36TjfxvBu8aXGmxNtlpnOM6rKl8Ay402TcXG3AxbHkFNyDbj6b5989figwvfdzqtbmSsGp4CnMyzcloZ7RL9qJqrsjPR29IrxUpLhdEx7TJK01409zi94qERVnMyABX3OlMR2FvwvhM-nsL1vMiV3eAuG6MYNxPEoZ1ZCzDkmlq43s2ywRnqQFPa7uQ7xqVERnNTjXpznPkyXBfjibBidg9FrJvwObScGS73syl1vFzBaIR24BH3WNcKfTvnyhXRVWXYRzRmvD-WsZ3mSscYcDtxii7BlF0aZ3D0YBntWl1Dxrlayq1TcnapmQwDsf13d1_KfwQLgVH4aE8HAwP7sFlxKZuw7XchPVyVqn7iP_K-EHtdQRen7Wl_gCM3WPm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRVRseJRXoICRgAVS2sR2Hl6waDukM5SMqhHTzs7k4YhRRVLNJMCw4hP4EH6Fn-BLuE4yGUAIiUUXbKJIcSw_7rVPbo7PBXgcO4Imnk1N24k9k0eeZfo8ZqYbp4J6fuzxVIcGwqHbH_OXE2eyBl-XZ2EafYgu4KY9o16vtYOfpdnOSjT0bfWu0jRmi7eUykO1-IAfbPPngx7O7hNKgxev9_tmm1PAnHLcrUybKjvFLd_SWoCWihTPuE7Ww0TGuIgYFYpjWzM_w845rvIjy1YRtRhniZ-ImGG9F-Aidy2hE0X0RiuxKt9xGjq_IxCzCt6JodKdVVsRA-vp-_gnQPsrPq43uOAqfFsOTcNrOd2uyng7-fSbauT_MnbX4EqLtMlu4xrXYU3lm3Cpyb252ISNsGUV3IDsIJrm3z9_KTK8BLjRa2MlYdWwFOZkmpPR7miP7EfVXJGfD96QXitRXC6IjmiTI01308zi94qERVnMyADX2-lMx2Bvwvhc-nsL1vMiV3eAuG6MUNxPEoZ1ZCzDkmlq43s2ywRnqQFPa7OQZ43GiIxmp5py5znyZHggR5P-idg7FjIwYGtpN7JdbeZSq_i5ArGIbcCj7jGuE_rnT5SroqrLMI5YTXh_LeO7zBWOMOB2Y5Ndgyg6tM7gaMCz2rK6B43uNZXapmRtU7I_Dsf13d1_KfwQNo56gXw1GB7eg8sITN2GaLkF6-WsUvcR_JXxg9rnCLw5b0P9AeceYpU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gain-of-Function+Mutations+in+RARB+Cause+Intellectual+Disability+with+Progressive+Motor+Impairment&rft.jtitle=Human+mutation&rft.au=Srour%2C+Myriam&rft.au=Caron%2C+V%C3%A9ronique&rft.au=Pearson%2C+Toni&rft.au=Nielsen%2C+Sarah+B&rft.date=2016-08-01&rft.eissn=1098-1004&rft.volume=37&rft.issue=8&rft.spage=786&rft_id=info:doi/10.1002%2Fhumu.23004&rft_id=info%3Apmid%2F27120018&rft.externalDocID=27120018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon